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Triply heavy baryons QQQ in vacuum and in a hot QCD medium

Jiaxing Zhao1,* and Shuzhe Shi 2,†

1SUBATECH, Université de Nantes, IMT Atlantique, IN2P3/CNRS, 4 Rue Alfred Kastler, 44307 Nantes Cedex 3, France
2Physics Department, Tsinghua University, Beijing 100084, China

(Received 15 November 2023; accepted 16 January 2024; published 5 February 2024)

We study the properties of baryons consisting of three heavy quarks (“triply heavy baryons”) in the vacuum
and in a hot QCD medium, which is created in relativistic heavy-ion collisions. Masses and wave functions
of �ccc, �ccb, �bbc, and �bbb up to the second radial excited states are obtained by solving the three-body
Schrödinger equation with the hyperspherical harmonics method. With parameters completely fixed by fitting
quarkonium bound states in vacuum, we predicted the masses for 1S, 2S, and 3S states of triply heavy baryons.
We also computed the temperature dependence of baryon masses and the thermal widths in a hot QCD medium.
These properties are important for the precise study of triply heavy baryon production in heavy ion collisions.
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I. INTRODUCTION

Taking into account the fact that charm and bottom quarks
are very heavy and their moving velocity is small, there
exists a hierarchy of scales in the study of heavy quarks:
m � mv � mv2 [1,2]. Integrating out the degrees of free-
dom with momenta larger than m and mv successively in the
QCD Lagrangian, one can derive its nonrelativistic versions
NRQCD and pNRQCD [2,3]. Furthermore, if one neglects
the color transition between the color-singlet and color-octet
states, pNRQCD becomes a potential model [2,3]. In this case,
one can employ the Schrödinger equation to study the prop-
erties of hadrons consisting of only heavy quarks. It turns out
that the mass spectra of quarkonium are explained very well
based on the Schrödinger equation with the Cornell potential;
see the review paper [4]. The Schrödinger equation has also
been extended to the three-body case to predict the masses
of baryons consisting of three heavy quarks [5–10], in the
following denoted as “triply heavy baryons.”

Searching for the QCD phase transition is one of the
physics goals of relativistic heavy-ion collisions. The phase
transition happens around 160 MeV, predicted by the lattice
QCD and effective models [11–14]. The high temperature
phase is the so called quark-gluon plasma (QGP) and has
been confirmed in experiments [15]. This hot QCD medium
changes the quarkonium production rate, compared to the
vacuum case which happens in pp or e+e− collisions.
Quarkonium suppression was proposed as confirmation of
the production of the QGP [16]. The evolution and pro-
duction of quarkonia in QGP medium depends closely on
their finite-temperature properties, such as binding energy
and width [17–22]. Analogously, to study the yield of triply
heavy baryons QQQ in the QGP, their finite-temperature
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properties are necessary. Many theoretical studies show that
the �cc and �ccc yields per binary nucleon-nucleon collision
in heavy-ion collisions at the Relativistic Heavy Ion Collider
(RHIC) and the Large Hadron Collider (LHC) will be largely
enhanced in comparison with nucleon-nucleon collisions in
vacuum [23–26]. Searching for these triply heavy baryons
in relativistic heavy ion collisions at LHC energy attracted
much attention, and has been listed as one of goala of next-
generation LHC heavy-ion experiments [27]. Therefore, it
is important to figure out their properties in the hot QCD
medium, especially with the help of the newly obtained heavy
quark finite-temperature potential [28,29]. In this work, we
employ the three-body Schrödinger equation to study the
properties of triply heavy baryon states �ccc, �ccb, �bbc, and
�bbb both in the vacuum and at finite temperatures.

The structure of this paper is as follows. In Sec. II we
present the framework for solving the three-body Schrödinger
equation. The baryon properties, including mass and size, in
the vacuum and in a hot medium, are investigated in Secs. III
and IV, respectively. A summary is given in Sec. V.

II. THEORETIC FRAMEWORK

A. Coordinate transformation

For a system of three quarks with the mass μi (i = 1, 2, 3),
the wave function �(r1, r2, r3) and the energy E satisfy the
Schrödinger equation⎛⎝ 3∑

i=1

p̂2
i

2μi
+

∑
i< j

Vi j (|ri j |)
⎞⎠� = E �, (1)

under the boundary condition that the wave function vanishes
when coordinates approach infinity. We have neglected the
direct three-body potentials and assumed that the interac-
tion potential is the summation of the two-body interactions.
This approximation is supported by the lattice QCD [30,31]
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and perturbation theory [32] calculations when the size of
the triply heavy flavor baryon is not too large (r � 0.5 fm).
Taking into account the one-gluon-exchange interaction, the
two-body potential can be effectively expressed as [33,34],

Vi j (|ri j |) = −λa
i · λa

j

4

[
V c

i j (|ri j |) + V ss
i j (|ri j |)si · s j

]
, (2)

where λa
i (a = 1, . . . , 8) are the SU(3) Gell-Mann matrices,

the factor 1/4 is from the normalization, V c
i j is the spin in-

dependent interaction, V ss
i j is the strength of the spin-spin

interaction, and |ri j | = |ri − r j | is the distance between two
quarks labeled by i and j. We employ the Cornell potential to
describe the spin-independent central interaction V c

i j between
two quarks and the lattice result [34] for the spin-spin cou-
pling,

V c
i j (|ri j |) = − α

|ri j | + σ |ri j |,

V ss
i j (|ri j |) = βe−γ |ri j |. (3)

The parameters in the potential, α, σ , β, and γ are given by
lattice QCD with some uncertainties, which can be fixed by
fitting the experimental data of charmonium and bottomonium
masses. We will show this later.

In order to solve the three-body Schrödinger equation, we
first introduce the Jacobi coordinates,

R = 1

μ
(μ1r1 + μ2r2 + μ3r3),

x1 =
√

(μ1 + μ2)μ3

μ

(
r3 − μ1r1 + μ2r2

μ1 + μ2

)
,

x2 =
√

μ1μ2

(μ1 + μ2)μ
(r2 − r1), (4)

where μ ≡ ∑3
i=1 μi is the total mass. With such coordinates,

the kinetic energy becomes

3∑
i=1

p̂2
i

2μi
= P̂2 + q̂2

1 + q̂2
2

2μ
, (5)

where q̂1 and q̂2 are the relative momenta that conjugate to x1

and x2, respectively.
Since the potential depends only on the relative coor-

dinates xi and the total momentum is conserved, one can
factorize the three-body motion into a center-of-mass mo-
tion and a relative motion, �(r1, r2, r3) = eiP·R
(x1, x2). The
bound state properties only relate to the relative motion of
the system, and we just need to deal with the six-dimensional
wave equation. We then express the relative coordinates x1

and x2 in the hyperspherical frame [35]: hyperradius ρ =√
x2

1 + x2
2 and hyperangles � = {α2, θ1, φ1, θ2, φ2}, where the

angle α2 ≡ arcsin(x2/ρ) is defined within the range [0, π/2],
and {xi, θi, φi} are the spherical coordinates corresponding
to xi. With the hyperspherical coordinates, the Schrödinger
equation governing the relative wave function 
(ρ,�) can be
written as[

1

2μ

(
− d2

dρ2
− 5

ρ

d

dρ
+ K̂2

ρ2

)
+ V (ρ,�)

]

 = Er
, (6)

where the corresponding energy eigenvalue Er = E − P2

2M and
K̂ is the hyperangular momentum operator. The hyperspheri-
cal harmonic (HH) functions Yκ (�) are the eigenstates of K̂2,

K̂2Yκ (�) = K (K + 4)Yκ (�), (7)

where K , referred to as the grand-orbital momentum,
is the quantum number describing the magnitude of the
hyperangular momentum. There are eight operators that
commute with the kinetic energy term in the Hamiltonian and
with each other. In addition to K , the other conserved quantum
numbers are total angular momentum (L), total magnetic
quantum number (M), angular momentum corresponding to
each Jacobi coordinate (l1 and l2), and n. Here l1 (l2) is the
orbital angular momentum quantum number of subsystems 1
and 2 (3 and the diquark formed by 1 and 2). n is the relative
radial quantum number. These quantum numbers satisfy

K = 2n + L, L = l1 + l2, M = m1 + m2. (8)

We have introduced the shorthand that κ ≡
{K, L, M, n, l1, l2}. In a three-body system, the HH function
can be expressed as

Yκ (�) =
∑

m1,m2

〈l1m1l2m2|LM〉Y m1
l1

(θ1, φ1)Y m2
l2

(θ2, φ2)

× [N sinl2 α2 cosl1 α2 P
l2+ 1

2 ,l1+ 1
2

n (cos 2α2)
]
, (9)

with Y m
l being the spherical harmonics, Pl

n the associated
Legendre polynomials, and

N =
√

(2K + 4)n!�(n + l1 + l2 + 2)

�
(
n + l2 + 3

2

)
�

(
n + l1 + 3

2

) . (10)

See, e.g., [36–38] for properties of the HH functions.

B. Spatial, color, and spin wave functions

As shown in (2), the potential V (ρ,�) depends on the
color and spin degrees of freedom. We start to construct
the color and spin wave functions, based on the symmetry
properties. Identical fermions should fulfill the Pauli principle,
and the total wave function should be antisymmetric under
exchange. For heavy quarks, the flavor wave function is trivial.
So, the total wave function can be expressed as

� = ψspace φcolor χspin, (11)

where the color wave function φcolor = (QQ)3̄c
Q3c is antisym-

metric. For the spin space, one has

2 ⊗ 2 ⊗ 2 = (3 ⊕ 1) ⊗ 2 = 4 ⊕ 2 ⊕ 2. (12)

As a result, the othonormal basis is listed as follows:

χ s
+ 3

2
= ∣∣ 3

2 ,+ 3
2

〉
S = |↑↑↑〉,

χ s
+ 1

2
= ∣∣ 3

2 ,+ 1
2

〉
S = 3−1/2[|↑↑↓〉 + |↑↓↑〉 + |↓↑↑〉],

χ s
− 1

2
= ∣∣ 3

2 ,− 1
2

〉
S = 3−1/2[|↓↓↑〉 + |↓↑↓〉 + |↑↓↓〉],

χ s
− 3

2
= ∣∣ 3

2 ,− 3
2

〉
S = |↓↓↓〉,

χms
+ 1

2
= ∣∣ 1

2 ,+ 1
2

〉
MS = 6−1/2[|↑↓↑〉 + |↓↑↑〉 − 2|↑↑↓〉],
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χms
− 1

2
= ∣∣ 1

2 ,− 1
2

〉
MS = 6−1/2[2|↓↓↑〉 − |↓↑↓〉 − |↑↓↓〉],

χma
+ 1

2
= ∣∣ 1

2 ,+ 1
2

〉
MA = 2−1/2[|↑↓↑〉 − |↓↑↑〉],

χma
− 1

2
= ∣∣ 1

2 ,− 1
2

〉
MA = 2−1/2[|↑↓↓〉 − |↓↑↓〉]. (13)

Here the superscript ms or ma represents exchange antisym-
metry or symmetry between particles 1 and 2. It is easy to get

si · s j |χ s〉 = 1

4
|χ s〉,

s1 · s2|χms〉 = 1

4
|χms〉,

s1 · s3|χms〉 = −1

2
|χms〉 −

√
3

4
|χma〉,

s2 · s3|χms〉 = −1

2
|χms〉 +

√
3

4
|χma〉,

s1 · s2|χma〉 = −3

4
|χma〉,

s1 · s3|χma〉 = −
√

3

4
|χms〉,

s2 · s3|χma〉 =
√

3

4
|χms〉, (14)

where the subscript has been omitted.
Noting that the ground state spacial wave function is sym-

metric, we focus on S-wave states (with L = 0) in this work.
For �ccc and �bbb, the spin wave function must be symmet-
ric. Therefore, only the |φcχ

s〉 state with JP = 3
2

+
will be

considered. The potential elements in color-spin space can be
expressed as

〈φcχ
s|

∑
i< j

Vi j |φcχ
s〉 = V c

12 + V c
13 + V c

23

2
+ V ss

12 + V ss
13 + V ss

23

8
.

(15)

For �ccb and �bbc, the spin wave function should be symmet-
ric when exchanging the first two particles. The ground states
can be |φcχ

s〉 with JP = 3
2

+
or |φcχ

ms〉 with JP = 1
2

+
. The

potential elements of the former are given in Eq. (15), whereas
those of the latter can be written as

〈φcχ
ms|

∑
i< j

Vi j |φcχ
ms〉

= V c
12 + V c

13 + V c
23

2
+ V ss

12

8
− V ss

13 + V ss
23

4
. (16)

C. Hyperspherical harmonics expansion

The potential V (ρ,�) depends not only on the hyperradius
but also on the eight hyperangles. The Schrödinger equa-
tion (6) cannot be further factorized into a radial part and an
angular part. Instead, one expands the wave function in terms
of the hyperspherical harmonic (HH) functions Yκ (�). The
total relative wave function can be expanded as


(ρ,�) =
∑

κ

Rκ (ρ)Yκ (�)|φcχ
s〉, (17)

for the 3
2

+
states and


(ρ,�) =
∑

κ

Rκ (ρ)Yκ (�)|φcχ
ms〉 (18)

for the 1
2

+
states. Taking such an expansion and employing

the reduced radial wave function as uκ (ρ) ≡ ρ5/2Rκ (ρ), the
multivariable Schrödinger equation becomes a set of coupled
differential equations of a single variable,[

1

2μ

d2

dρ2
− 4K (K + 4) + 15

8μρ2
+ Er

]
uκ =

∑
κ ′

Vκκ ′uκ ′ ,

(19)

where Vκκ ′ is the potential matrix,

Vκκ ′ =
∫

Y∗
κ (�)V (ρ,�)Yκ ′ (�)d�

=
∑
i< j

∫
Vi j (|ri j |)Y∗

κ (�)Yκ ′ (�)d�, (20)

with the volume element being

d� = cos2 α2 sin2 α2 sin θ1 sin θ2dα2dθ1dφ1dθ2dφ2. (21)

D. Computation of the potential matrix

Computing the potential matrix is nontrivial. In the most
general form, (20) is a five-dimensional integral, which is
computationally expensive. However, taking the assump-
tion that the total interaction potential is the summation of
two-body interaction Vi j (|ri j |), one can reduce (20) into a
one-dimensional integral by performing particle permutation.
Let us first focus on V12, which depends only on x2; see
Eq. (4). The integral over α2 is the only nontrivial one out of
the five hyperangles, whereas the remainder can be computed
analytically using the orthogonal relation of the HH func-
tions. To compute other sectors of the potential matrix, the
trick is to consider another form of Jacobi coordinate, which
differs from the previous one by a particle permutation and
puts r2 − r3 or r3 − r1 in the newly defined x2. We label the
convention in Eq. (4) as x(12)

i , and the other two conventions
as x(23)

i and x(31)
i . Explicitly, they are defined as

x(23)
1 =

√
(μ2 + μ3)μ1

μ

(
r1 − μ2r2 + μ3r3

μ2 + μ3

)
,

x(23)
2 =

√
μ2μ3

(μ2 + μ3)μ
(r3 − r2), (22)

and

x(31)
1 =

√
(μ3 + μ1)μ2

μ

(
r2 − μ3r3 + μ1r1

μ3 + μ1

)
,

x(31)
2 =

√
μ3μ1

(μ3 + μ1)μ
(r1 − r3), (23)

which can be related to x(12) by(
x(12)

1

x(12)
2

)
=

(
a11 a12

a21 a22

)
·
(

x(i j)
1

x(i j)
2

)
, (24)
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TABLE I. Potential model parameters.

mb mc α σ

4.7 GeV 1.29 GeV 0.308 0.15 GeV2

γ βbb̄ βcc̄ βbc̄=βcb̄

1.982 GeV 0.239 GeV 1.545 GeV 0.525 GeV

where ai j is element of the rotation matrix.
It has been shown that under particle permutation, different

HHs are related by a unitary transformation,

Yκ (�) =
∑
κ ′

R(i j)
κκ ′ Yκ ′ (�(i j) ), (25)

and the coefficients R(i j)
κκ ′ are refereed to as the Raynal-Revai

coefficients [39]. The Raynal-Revai coefficient is nonvanish-
ing only for the HHs with the same grand-orbital momentum
(K), total angular momentum (L), and magnetic quantum
number (M). Details of the Raynal-Revai coefficients, espe-
cially its explicit form for K = 0, 2, 4, 6, are shown in the
Appendix.

With these preparations, we are now ready to compute the
potential matrix for an arbitrary (i, j) pair:

V (i j)
κκ ′ (ρ) ≡

∫
V (i j)(|ri j |)Y∗

κ (�)Yκ ′ (�)d�

=
∑
kk′

(
R(i j)

κk

)∗
R(i j)

κ ′k′

×
∫

V (i j)(|ri j |)Y∗
k (�(i j) )Yk′ (�(i j) )d�(i j)

=
∑
kk′

(
R(i j)

κk

)∗
R(i j)

κ ′k′V
(12)

kk′ (ρ). (26)

III. BARYONS IN VACUUM

In this section, we start with computing the heavy flavor
baryons QQQ bound states in a vacuum. As mentioned before,
we first fix the parameters in the potential and the quark
masses (mc and mb) with the known charmonium, bottomo-
nium, and also Bc meson data. Their masses can be calculated
via the two-body Schrödinger equation with the potential

VQQ̄ = 4
3

[
V c

i j (r) + V ss
i j (r)si · s j

]
, (27)

where 4/3 is the color factor for color-singlet states QQ̄.
With the model parameters presented in Table I, we obtain
the quarkonium masses and Bc mesons shown in Table II.
Here the parameters and quarkonium masses have been used
and calculated in previous work [41]. One can see that the
quarkonium masses can be well described.

With the known parameters, we then solve the three-body
Schrödinger equations (19) for triply heavy baryons QQQ.
The baryon mass comes from the summation of the con-
stituent masses μ = ∑3

i=1 μi and the binding energy Er which
is determined by the radial equations,

MB = μ + Er, (28)

TABLE II. The experimental [40] and calculated quarkonium
masses.

State Mexp(GeV) Mtheo(GeV)

ηc 2.981 2.968
J/ψ 3.097 3.102
hc(1P) 3.525 3.480
χc(1P) 3.556 3.500
ηc(2S) 3.639 3.654
ψ (2S) 3.696 3.720
ηb 9.398 9.397
ϒ(1S) 9.460 9.459
hb(1P) 9.898 9.845
χb(1P) 9.912 9.860
ηb(2S) 9.999 9.957
ϒ(2S) 10.023 9.977
Bc(1S0 ) 6.275 6.282
Bc(3S1) 6.347
Bc(1P1) 6.726
Bc(3P0,1,2) 6.738
Bc(21S0) 6.871 6.886
Bc(23S1) 6.915

and the root-mean-squared radius is defined as

r2
rms =

∫ ∑
κ

|Rκ (ρ)|2ρ7dρ. (29)

One may find r2
rms = 〈 1

3

∑3
i=1(ri − X)2〉 when all

three quarks have the same mass. The normalization∫ ∑
κ |Rκ (ρ)|2ρ5dρ = 1 for the radial functions Rκ (ρ).

One can only include a finite number of hyperspherical har-
monics in a numerical calculation, and our truncation is made
according to the symmetry properties of the system. Since we
focus in this work on the S-wave baryon states, the relevant
hyperspherical harmonics are those corresponding to vanish-
ing total orbital angular momentum L and magnetic quantum
number M, i.e., L = M = 0. We choose all such hyperspher-
ical harmonic functions with hyperangular quantum number
K � 6. This leads to coupled differential equations which are
numerically solved by using the inverse power method [42].
The main advantage of taking the inverse power method is its
high precision for both ground and excited states.

We show the baryon wave functions for the ground state
1S, first radial excited state 2S, and the second radial excited
state 3S of �ccc, �ccb, �bbc, and �bbb in Fig. 1 and present
the masses and root-mean-squared radii in Table III. There
are respectively one, two, three, and four states with quantum
numbers K = 0, 2, 4, and 6. They are respectively represented
by red, gold, blue, and purple curves in Fig. 1. The clear
hierarchy of their magnitudes shows the convergence of the
hyperspherical harmonic expansion. For the equal-mass sys-
tem, i.e., �ccc and �bbb, we notice the vanishing of the K = 2
states, which always corresponds to n = 1. When interchang-
ing the coordinates of two quarks, S states of the equal-mass
system are always symmetric whereas n = 1 states are an-
tisymmetric. Thus, �ccc and �bbb do not contain a K = 2
component. For the unequal-mass baryons, i.e., �ccb and �bbc,
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(a–1) (b–1) (c–1)

(a–2) (b–2) (c–2)

(a–3) (b–3) (c–3)

FIG. 1. (a) The vacuum radial probabilities for 1S (top), 2S (middle), and 3S (bottom) states of �ccc (solid) and �bbb (dotted) with quantum
number JP = (3/2)+. The same for (b) �ccb and (c) �bbc particles with JP = (3/2)+ (solid) and JP = (1/2)+ (dotted). Lines with different
colors correspond to K = 0 (red), 2 (gold), 4 (blue), and 6 (purple). See text for detailed explanation of the states.

the K = 2 states become nonvanishing, and the contributions
of other higher order hyperspherical harmonic functions are
more sizable. Comparing the spin half states of �ccb and
�bbc, We find that the spin half states of �ccb and �bbc are,
respectively, lighter than the corresponding three-halves state.
The modest differences in the mass difference and the wave
functions indicate that the spin-spin interaction is a higher-
order effect compared to the central interaction. We also check
the convergence of hyperspherical harmonics expansion by
observing the same results, up to desired accuracy, when
keeping states with K � 4 only. The ground state masses of
these triply heavy baryons are consistent with previous studies
based on lattice QCD [43–46], the potential model [5–10], and
other effective theories [47–51].

IV. BARYONS IN HOT MEDIUM

As mentioned before, a hot QCD medium—quark-gluon
plasma (QGP)—is created in relativistic heavy ion collisions.
The typical temperature of the QGP is hundreds of MeV,
estimated by the spectrum of the direct photon [53], which is
much larger than the binding energy of most hadrons. Only
the tightly bound states of heavy quarks, such as J/ψ and
ϒ , can survive in the QGP but with a large thermal width, as
shown in lattice results [22,54,55]. In this section, we come to
study the finite-temperature properties of triply heavy baryon

states. The finite temperature properties of quarkonium states
are encoded in the finite temperature potential between heavy
quark Q and antiquark Q̄. For the baryons, there are no studies
on their finite-temperature potential in either weak or strong
coupling regions. In the weak coupling limit, the HTL study
shows that the heavy quark potential is proportional to the
color factor [56]. So, for the color wave function (QQ)3̄c

Q3c of
the baryons, both the real and imaginary potentials still satisfy
the same relation as shown in Eq. (2). Besides, we neglect the
influence of hot QCD medium on the heavy quark spin-spin
interaction.

The heavy-quark interaction potential is screened by other
color objects in the QGP, and consequently the long-range
interaction (3) is strongly suppressed when the temperature
is high enough, as shown in the hard-thermal-loop (HTL)
perturbative calculation [56]. Besides, the potential develops
an imaginary part which originates from the Landau damping
[56]. While in the strong coupling region, the heavy quark
potential can be extracted from the Wilson loop in lattice QCD
[28,29,52]. The result also shows that the heavy quark poten-
tial is complex valued. The real part of the potential shows the
screening effect, while the imaginary part reflects the decay of
quarkonium under scattering with thermal partons. However,
the value of the potential depends on the extraction strategies;
the details are shown in [29]. To account for the theoretical
uncertainty, we choose two qualitatively different schemes

TABLE III. The calculated triply heavy flavor baryon mass Mtheo and the root-mean-squared radius rrms for the ground state 1S and
radial-excited states 2S and 3S.

JP = 3
2

+
JP = 1

2

+

�ccc �ccb �bbc �bbb �ccb �bbc

State 1S 2S 3S 1S 2S 3S 1S 2S 3S 1S 2S 3S 1S 2S 3S 1S 2S 3S

Mtheo(GeV) 4.80 5.31 5.74 8.19 8.68 9.08 10.96 11.33 11.63 14.36 14.77 15.09 8.17 8.66 9.07 10.87 11.28 11.59
rrms(fm) 0.30 0.45 0.57 0.22 0.33 0.43 0.19 0.31 0.41 0.16 0.26 0.34 0.22 0.33 0.42 0.18 0.30 0.40
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of finite-temperature potentials, both of which are given by
recent lattice QCD calculation, in this study.

The first potential scheme is the from Ref. [28], which
has an obvious color-screened real potential, named potential
(I). Both the real and imaginary potentials can be fitted by a
functional form based on the Gauss law approach [22],

Re V (T, r) = −α

(
mD + e−mDr

r

)
+ σ

mD
(2 − (2 + mDr)e−mDr ),

Im V (T, r) = −αT φ(mDr)

−
√

π

4
mDT σ r3G2,2

2,4

(
− 1

2 ,− 1
2

1
2 , 1

2 ,− 3
2 ,−1

∣∣∣1

4
m2

Dr2

)
(30)

with

φ(x) = 2
∫ ∞

0
dz

z

(z2 + 1)2

(
1 − sin(xz)

xz

)
, (31)

where G is the Meijer-G function. When going into a high-
temperature region, Im V (r) is consistent with the result from
the pure HTL theory [56]. Both Re V and Im V only de-
pend on a single temperature dependent parameter, the Debye
mass mD(T ), which can be obtained by fitting the lattice data
[28,52]. α and β in the potential are the same as in the vacuum
case.

The second potential scheme is from Ref. [29], which
is the result of lattice QCD with dynamical fermions and
extracted by assuming Gaussian spectral function. We call
it potential (II). In this case, the real part potential exhibits
negligible screening effect even up to ≈700 MeV, and it can
be parametrized via Eq. (3). Meanwhile, the imaginary part is
found to follow a simple form where VI/T is a single-variable
function of r T . For the relevant region, it value is greater than
potential (I). Potential (II) is quantitatively consistent with
the deep-learning extraction of the heavy quark potential [57]
from lattice QCD results of masses and widths [54,55]. The
temperature-dependent real and imaginary parts of potentials
(I) and (II) are shown by colored and black curves, respec-
tively, in Fig. 2.

With the complex potential, we solve the coupled radial
equations (19) and both the energy eigenvalues and wave
functions are also complex valued. The real part of the energy
eigenvalue gives the baryon mass, MB(T ) = μ + Re[Er (T )],
while the imaginary part gives the thermal width of the
baryons, �(T ) = −Im [Er (T )]. The results for triply heavy
baryons, �ccc, �ccb, �bbc, and �bbb, are shown in Fig. 3.

First, we can see the large difference in masses and widths
between two potential schemes. With potential (I), masses
decrease with the temperature while the thermal widths are
generated with temperature increases. With potential (II), we
observe weaker temperature dependence of masses, owning
to fact that the mass is mostly controlled by the real part
potential. The thermal widths are increasing with temperature
and are quantitatively larger than the those using potential (I).
For �ccc and �ccb the second radial excited states 3S disappear
when the temperature is higher than 0.15 GeV, as presented
when using the potential (I).

(a)

(b)

FIG. 2. Distance dependence of (a) real and (b) temperature-
scaled imaginary potentials taking potentials (I) [28,52] (colored
dashed) and (II) [29](black solid). Results for potential (II) are tem-
perature independent.

Second, we can see that replacing one charm with the
bottom quark, the thermal decay width of �ccb is very close
to �ccc (also for �bbc and �bbb). Comparing to the widths of
quarkonium with potential (I) computed in Ref. [22], we find
the thermal width of �ccc is obviously larger than J/ψ , while
�bbb is almost the same as the ϒ .

The results indicate that most of the triply heavy baryons
can also survive in a hot QCD medium for a long time in both
cases. Meanwhile, with potential (I), there exists an obvious
dissociation temperature Td . When the medium temperature
is higher than Td , the triply heavy baryon will disappear im-
mediately. With the potential (II), the triply heavy baryon can
still survive at high temperatures as long as the temperature
of the medium drops fast. These two different behaviors will
be reflected in the transport and final production of triply
heavy baryons in relativistic heavy ion collisions. Precisely
studying the yield of these baryons in the QGP should go
beyond the hadronization at the phase transition hypersurface
as in previous studies [23–26].

V. SUMMARY

In this work, we study the properties of triply heavy
baryons in the vacuum and at finite temperature, which is
created in high-energy nuclear collisions. We employ the
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(a) (b) (c) (d)

FIG. 3. Masses (top) and thermal widths (bottom) for 1S (red), 2S (green), and 3S (blue) states of (a) �ccc, (b) �ccb, (c) �bbc, and (d) �bbb

as functions of temperature T . The solid lines are with potential (II) [29], while the dashed lines are with potential (I) [28,52].

hyperspherical harmonics expansion and solve the three-body
Schrödinger equation. We obtain the masses and wave func-
tions of �ccc, �ccb, �bbc, and �bbb, up to second radial excited
states, for both zero and finite temperatures. In the vacuum,
the predicted ground state masses are consistent with other
studies. In a hot medium, the temperature dependence of the
baryon masses and the thermal decay widths are calculated.
These properties are important to their productions in heavy
ion collisions, as they are expected to affect the yield and mo-
mentum distributions of heavy-flavor hadrons in high-energy
nuclear collisions.
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APPENDIX: RAYNAL-REVAI COEFFICIENT

The Raynal-Revai coefficient is non vanishing only for
the HHs with the same grand-orbital momentum (K), total
angular momentum (L), and magnetic quantum number (M).
A general expression for the Raynal-Revai coefficients is ob-
tained in the form of multiple sums over the powers of the
coefficients ai j :

R(i j)
κκ ′ ≡ 〈l ′

i , l ′
j |li, l j〉K,L

= (−1)n+n′(
Cn

li,l j
Cn′

l ′i ,l
′
j

)−1/2 ∑
l1,l2,l3,l4

il2−l1+l j−l ′j

× f (l1, l3; l ′
i ) f (l2, l3; li ) f (l2, l4; l ′

j ) f (l1, l4; l j )

× sgn(a12)l1 sgn(a21)l2 sgn(a11)l3 sgn(a22)l4

×
⎛⎝l3 l1 l ′

i
l2 l4 l ′

j
lx ly L

⎞⎠ ∑
ν1,ν2

(−1)ν1Cν1
l1l2

Cν2
l3l4

× |a12|2ν1+l1+l2 |a11|2ν2+l3+l4 , (A1)

where

Cn
jl = (2n + j + l + 1)!

n!(n + j + l + 1)![2(n + j) + 1]!![2(n + l ) + 1]!!
,

(A2)

and

f (a, b; c) =
√

(2a + 1)(2b + 1)〈a0b0|c0〉. (A3)

The notation in the three-by-three matrix is the 9j Clebsch–
Gordan coefficient. The summation is restricted by

K = 2n + li + l j = 2n′ + l ′
i + l ′

j

= 2(ν1 + ν2) + l1 + l2 + l3 + l4. (A4)

For the quantum numbers K = 0 and L = 0, the Raynal-
Revai coefficient R(i j) = 1. For the quantum numbers K =
2 and L = 0, the Raynal-Revai coefficient is a two-by-two
matrix and can be expressed as (here we already take the
equalities a11 = a22 and a12 = −a21, which are given by the
rotation matrix),

R(i j)
2×2 =

(
a2

11 − a2
12 −2a11a12

2a11a12 a2
11 − a2

12

)
. (A5)

For the quantum numbers K = 4 and L = 0,

R(i j)
3×3 =

⎛⎝c11 c12 c13

c21 c22 c23

c31 c32 c33

⎞⎠, (A6)

with

c11 = −10

3
a2

11a2
12 + a4

12 + a4
11,

c12 = 4

√
2

3
a11a3

12 − 4

√
2

3
a3

11a12,

c13 = 8
√

2

3
a2

11a2
12,

c22 = a4
12 + a4

11 − 6a2
11a2

12,

c23 = 4√
3

a11a3
12 − 4√

3
a3

11a12,

c33 = −2

3
a2

11a2
12 + a4

12 + a4
11. (A7)

and c21 = −c12, c32 = −c23, and c31 = c13.
For the quantum numbers K = 6 and L = 0,

R(i j)
4×4 =

⎛⎜⎜⎝
c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

⎞⎟⎟⎠, (A8)
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with

c11 = a6
11 + 7a2

11a124 − 7a4
11a2

12 − a6
12,

c12 = −2
√

5a11a5
12 − 2

√
5a5

11a12 + 28
√

5

5
a3

11a3
12,

c13 = −8a2
11a4

12 + 8a4
11a2

12,

c14 = −16
√

5

5
a3

11a3
12,

c22 = a6
11 + 67

5
a2

11a4
12 − 67

5
a4

11a2
12 − a6

12,

c23 = 32√
5

a3
11a3

12 − 8√
5

a11a5
12 − 8√

5
a5

11a12,

c24 = −24

5
a2

11a4
12 + 24

5
a4

11a2
12,

c33 = a6
11 − 7a4

11a2
12 + 7a2

11a4
12 − a6

12,

c34 = − 6√
5

a5
11a12 + 4√

5
a3

11a3
12 − 6√

5
a11a5

12,

c44 = a6
11 − 3

5
a4

11a2
12 + 3

5
a2

11a4
12 − a6

12, (A9)

and c21 = −c12, c31 = c13, c41 = −c14, c32 = −c23, c42 =
c24, and c43 = −c34.
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