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Optimal colliding energy for the synthesis of a superheavy element with Z = 119
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The evaporation residue (ER) cross sections of 3n and 4n channels related to the synthesis of a superheavy
element (SHE) with the charge number Z = 119 in the 51V + 248Cm reaction have been calculated by the
dinuclear system (DNS) model as a sum of the partial cross sections of the corresponding channels. The angular
momentum distribution of the compound nucleus (CN) is estimated by the dynamical trajectory calculations of
the capture probability, which is considered as the DNS formation probability. The fusion probability decreases
by the increase of the DNS angular momentum due to its influence on the intrinsic fusion barrier B∗

fus. The
range α2 = 60◦–70◦ of the orientation angle of the axial symmetry axis of the deformed target nucleus 248Cm
is favorable for the formation of the CN. The fusion probability decreases at around α2 = 90◦ since the number
of the partial waves contributing to the capture decreases. Therefore, it is important to calculate the capture
cross section dynamically. The 4n channel cross section of the SHE synthesis is larger than the 3n channel cross
section maximum value of the ER cross section and it is 12.3 fb at Ec.m. = 232 MeV.
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I. INTRODUCTION

The synthesis of superheavy elements (SHEs) represents
a remarkable achievement in the field of nuclear physics
[1,2]. These exotic elements, characterized by staggering
atomic masses and short lifetimes, have intrigued scientists for
decades. The heaviest superheavy element was synthesized
by using 48Ca-induced complete fusion reactions, which have
been successfully used to synthesize SHEs with charge num-
bers Z = 112–118 in the neutron evaporation channels [3–9].
However, reactions 50Ti + 249Bk and 249Cf [10], 54Cr + 248Cm
[11], and 58Fe + 244Pu [12] did not provide success for the
synthesis of SHEs with Z = 119 and 120.

A lot of theoretical investigations have been devoted to
describing the measured data of the evaporation residue cross
sections and to making predictions of their values in different
reactions leading to the formation of SHEs with Z = 119 and
120 [13–22]. Their results can be useful to make a choice of a
pair of colliding nuclei and to fix a range of the beam energies
leading to the observable cross sections in the synthesis of
the wanted SHE. The authors in Ref. [14] made a conclusion
that the most promising reactions of the synthesis of super-
heavy elements Z = 119 and Z = 120 are 50Ti + 248Bk and
50Ti + 249,251Cf, respectively. For example, for the synthesis
of the superheavy element Z = 119, values of the ER cross
section in the 50Ti + 249Bk and 51V + 248Cm reactions are pre-
dicted in the range 1–100 fb [13,17–22] (detailed information
is presented later in this work).
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The very small cross sections obtained in the synthesis
of SHEs by different reactions require finding a favorable
reaction (projectile and target pair) among them and the op-
timal beam energy range, which is very narrow (no more
than 10 MeV). The ER formation process is the last stage of
the complicated reaction mechanism in heavy-ion collisions
near the Coulomb barrier energies. Processes that can occur
during the formation of the ER, and can be in competition
with the ER, are described below (and also can be seen
in Fig. 1 of [23]):

(1) The initial phase includes competition between the
deep-inelastic collision where incomplete momentum
transfer occurs and the capture process with full mo-
mentum transfer. Depending on the values of initial
energy and angular momentum, one of these two pro-
cesses can occur. As the energy of the incident nucleus
decreases, the projectile can be stuck in a potential
well, and this is the capture of the projectile by the
target nucleus. However, the relative kinetic energy
of the system can be large enough to overcome the
Coulomb barrier, even after the dissipation of a sig-
nificant part, and this process is called deep-inelastic
collision (see Fig. 2 in Ref. [24]). As mentioned above,
competition between these processes strongly depends
on the incident energy of the system and the angular
momentum of relative motion. Capture is the first step
towards the formation of a superheavy element and it
leads to the formation of a molecular-like dinuclear
system with a larger lifetime. During this time it can
develop, changing its charge and mass asymmetry due
to multinucleon transfer, and changing its form.

2469-9985/2024/109(2)/024613(10) 024613-1 ©2024 American Physical Society

https://orcid.org/0000-0002-2689-8686
https://orcid.org/0000-0003-3578-1647
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.109.024613&domain=pdf&date_stamp=2024-02-20
https://doi.org/10.1103/PhysRevC.109.024613


AVAZBEK NASIROV AND BAKHODIR KAYUMOV PHYSICAL REVIEW C 109, 024613 (2024)

(2) Competition between the quasifission process and the
formation of an excited mononucleus with large an-
gular momentum is the next stage in the evolution of
the DNS. After capture of the projectile nucleus by the
target, the DNS may break up into two fragments, and
the products of this mechanism are called quasifission
products. Therefore, complete dissipation of kinetic
energy (capture stage) is the main characteristic of the
quasifission process. It strongly depends on the exci-
tation energy E∗

DNS and angular momentum L = �h̄ of
the dinuclear system, nuclear shapes (deformations),
and the orientation angles of the nuclei relative to the
beam direction. In addition, the quasifission process is
the main hindrance to the evolution of the DNS into
the CN.

(3) In the next phase of the process, a rotating and ex-
cited mononucleus, which is formed by the transfer
of all nucleons from lighter to heavier nuclei, should
reach the equilibrium state to form the CN. During
this evolution, it can decay into two fragments, and the
products of this splitting are named fast fission. As was
discussed in Ref. [25], the angular momentum of the
excited mononucleus has an inverse proportionality to
the fission barrier. The range of the angular momentum
of the system is established in the capture stage. This
means a mononucleus with larger angular momentum
has a lower fission barrier or no fission barrier entirely.
In this kind of scenario, the excited mononucleus will
go into fast fission instead of going to the equilibrium
state.

Finally, the formed CN can break up, which gives fusion-
fission products, or can survive against fission by cooling
(emission of neutrons, protons, alpha particles, and gamma
quanta). This competition strongly depends on the excitation
energy of the system and the fission barrier, and it can be cal-
culated by the survival probability Wsur. According to all these
stages, ER cross section σER can be calculated as summation
over all partial waves � as described in Refs. [26,27]:

σER(Ec.m.) =
∑

�

σcap(Ec.m., �)PCN(Ec.m., �)Wsur (Ec.m., �).

(1)

A short description of the model used in the calculation of the
cross sections of the capture, complete fusion, and ER forma-

tion in competition with the fission is presented in Sec. II. The
results of the calculation of the partial fusion, quasifission, and
ER cross sections are discussed in Sec. III.

II. MODEL

A. Capture cross section

Two conditions must be satisfied for the capture in the
collision dynamics.

(1) The initial energy Ec.m. of a projectile in the center-
of-mass system should be larger than the minimum of the
potential well of the nucleus-nucleus interaction (Coulomb
barrier + rotational energy of the entrance channel) to over-
come or tunnel through the barrier along a relative distance in
the entrance channel to form a DNS.

(2) At the same time the value of the relative kinetic energy
above the entrance channel barrier should be in correspon-
dence with the size of the potential well: in the case of the
collision of massive nuclei the size of the potential is small
and, if the initial collision energy is very large relative to the
entrance channel barrier, the dissipation of the kinetic energy
may not be enough to make its value lower than the barrier of
a potential well, i.e., to cause trapping in the potential well.
As a result, the capture does not occur and the deep-inelastic
collision takes place. These events are separated by the anal-
ysis of the collision dynamics. The range of values of the
orbital angular momentum leading to capture is determined
by solving the equations of motion for the relative distance R
and orbital angular momentum � [24,28]. Trajectory calcula-
tions show that the values of � leading to capture can form a
“window.” The boundary values �m and �d of the � “window”
leading to capture depend on the beam energy, the size of
the potential well of the nucleus-nucleus potential, and the
friction coefficients of radial motion and angular momentum.
The values of �m and �d are found from calculation of the
collision trajectory of nuclei by the solution of the equation of
motion for the radial distance R between their centers of mass
and orbital angular momentum [24,28]. The capture prob-
ability P�

cap(Ec.m., �; {αi, βi}) for the collision energy Ec.m.

depends on the orientation angles αi of the axial symmetry
axis of the colliding deformed nuclei i = 1 and 2; βi are
their deformation parameters. The capture probability is deter-
mined from the trajectory calculations by the use of following
conditions:

P (�)
cap(Ec.m., �, {αi, βi}) =

⎧⎪⎪⎨
⎪⎪⎩

1 if �m < � < �d and Ec.m. > VB,

0 if � < �m or � > �d and Ec.m. > VB,

P (�)
tun (Ec.m., �, {αi, βi}) for all � if Vmin < Ec.m. � VB,

(2)

where VB and Vmin are the barrier and minimum values of
the potential well of the nucleus-nucleus interaction in the
entrance channel.

Theoretical values of the capture cross sections are calcu-
lated with the quantities characterizing the entrance channel

using the formula [23]

σcap(Ec.m., �; {αi, βi})

= λ2

4π
(2� + 1)P�

cap(Ec.m., �; {αi, βi}), (3)
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where λ is the de Broglie wavelength of the entrance channel.
P (�)

tun is the probability of the barrier penetrability, which is
calculated using the improved WKB formula by Kemble [29]:

P (�)
tun(Ec.m., {αi, βi}) = 1

1 + exp [2K (Ec.m., �, {αi, βi})]
, (4)

where

K (Ec.m., �, {αi, βi})

=
∫ Rout

Rin

dR

√
2μ

h̄2 [V (R, �, {αi, βi}) − Ec.m.]. (5)

Rin and Rout are inner and outer turning points which were
estimated by V (R) = Ec.m..

B. Fusion cross section

The partial fusion cross section is determined by the prod-
uct of capture cross section σcap(Ec.m., �, {αi, βi}) and the
fusion probability PCN(Ec.m., �, {αi, βi}) of the DNS for the
various excitation energies [30,31]:

σfus(Ec.m., �; {αi, βi})

= σcap(Ec.m., �; {αi, βi})PCN(Ec.m., �; {αi, βi}). (6)

The fusion probability PCN(Ec.m., �, {αi, βi}) takes into ac-
count the change in mass and charge distributions of DZ in
DNS fragments after capture [23]. In general, it is calcu-
lated as the sum of the competing channel of quasifission
and complete fusion at different charge asymmetries from the
symmetric configuration Zsym of the DNS to the configuration
corresponding to the maximum value of the driving potential
Zmax, and can be represented in the form

PCN(Ec.m., �, {αi, βi})

=
Zmax∑
Zsym

DZ (E∗
Z , �, {αi, βi})P(Z )

CN (E∗
Z , �, {αi, βi}). (7)

The values of DZ (E∗
Z , �, {αi, βi}) are calculated by the solution

of the transport master equation with the nucleon transition
coefficients depending on the occupation numbers and ener-
gies of the single-particle states of nucleons of the DNS nuclei
[23]. The fusion probability P(Z )

CN (E∗
Z , �, {αi, βi}) for the DNS

fragments with the charge configuration Z rotating with the
orbital angular momentum � is calculated as the branching
ratio of the level densities of the quasifission barrier BZ

qf at

a given mass asymmetry, over the intrinsic barrier B∗(Z )
fus and

symmetry barrier B(Z )
sym on the mass asymmetry axis [32]:

P(Z )
CN (E∗

Z ) = ρfus(E∗
Z )

ρfus(E∗
Z ) + ρqf (E∗

Z ) + ρsym(E∗
Z )

. (8)

The use of the level density function of the Fermi system
leads to the formula for the fusion probability at the DNS
excitation energy E∗

Z and angular momentum L from its charge
asymmetry Z:

P(Z )
CN (E∗

Z ) = e−B∗(Z )
fus /TZ

e−B∗(Z )
fus /TZ + e−B∗(Z )

qf /TZ + e−B∗(Z )
sym /TZ

. (9)

TABLE I. Deformation parameters β2 and β3 of the ground states
and of the first excited 2+ and 3− states of nuclei used in the calcula-
tions in this work.

Nucleus β2 [34] β3 [34] β2+ [35] β3− [36]

51V 0.0 0.0 0.2 0.17
248Cm 0.235 0.0 0.297 0.065

Here the values of the level density on the barriers
B(Z )∗

fus (αi, βi ), B∗(Z )
sym (αi, βi ), and B(Z )

qf (αi, βi ) have been used. To
simplify the presentation of Eqs. (8) and (9) the arguments
(αi, βi ) of the functions E∗

Z (αi, βi ), TZ (αi, βi ), B∗(Z )
fus (αi, βi ),

B∗(Z )
sym (αi, βi ), and B(Z )

qf (αi, βi ) are not indicated in Eqs. (8)
and (9). The excitation energy E∗

Z (Ec.m, �) of the DNS with
the charge Z and mass A numbers of the light fragment is
determined by the difference between collision energy Ec.m

and peculiarities of the driving potential Udr calculated for the
given value of �:

E∗
Z (Ec.m, �, αi, βi ) = Ec.m − Vmin(ZP, AP, Rm, αi, βi )

+	U (Z, A, �, αi, βi ), (10)

where

	U (Z, A, �, αi, βi )

= U (ZP, AP, �, αi, βi ) − U (Z, A, �, αi, βi ) (11)

is a change of the driving potential of the DNS during its
evolution from the initial value (Z = ZP and A = AP)

U (ZP, AP, �, αi, βi ) = BP(ZP, AP ) + BT (ZT , AT )

− BCN + Vmin(ZP, AP, �, αi, βi ) (12)

to the final configuration with the charge and mass numbers Z
and A, respectively,

U (Z, A, �, αi, βi ) = B1(Z, A) + B2(Ztot − Z, Atot − A)

− BCN + Vmin(Z, A, �, αi, βi ), (13)

where Ztot = ZP + ZT and Atot = AP + AT . When the final
configuration of the DNS is the CN, Eq. (10) gives the CN
excitation energy:

E∗
CN(Ec.m, �) = Ec.m + Qgg − VCN(�), (14)

where Qgg = B1 + B2 − BCN is the energy balance of the
reaction; B1, B2, and BCN are the binding energies of the
interacting nuclei and CN, which are taken from the tables
in Refs. [33,34]; VCN(�) is the CN rotational energy.

For the reacting nuclei in this work, the parameters of the
quadrupole and octupole deformations of the ground states are
taken from Ref. [34] while the ones for the first excited 2+ and
3− states are obtained from Refs. [35] and [36], respectively.
The target nucleus 248Cm has a deformed shape in the ground
state (see Table I) and possibilities of the collision with dif-
ferent orientation angles α2 relative to the beam direction are
taken into account by averaging the contributions of collisions
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with different values of α2:〈
σfus(Ec.m, β

(1)
i , �)

〉
α2

=
∫ π/2

0
sin α2dα2σi

(
Ec.m, �; β (1)

i , α2
)
. (15)

The projectile nucleus 51V is spherical in its ground state
(see Table I) but the first excited quadrupole state β2+ = 0.2
is considered as the zero-point vibrational state and α1 is
the direction of the spherical nucleus. For simplicity, we use
α1 = 0. Consequently, a partial fusion cross section is found
by averaging over values of the vibrational states β2 and β3 of
the spherical nucleus:

〈σfus(Ec.m, �)〉
β

(1)
i

=
∫ β2+

−β2+
dβ

(1)
2

∫ β3−

−β3−
dβ

(1)
3 g

(
β

(1)
2 , β

(1)
3

)
× σfus

(
Ec.m, β

(1)
2 , β

(1)
3 , �

)
. (16)

The surface vibrations are regarded as independent har-
monic vibrations, and the nuclear radius is considered to be
distributed as a Gaussian distribution [37],

g(β2, β3) = exp

[
−R2

0

[∑
λ βλY ∗

λ0(α1)
]2

2σ 2
β

](
2πσ 2

β

)−1/2
. (17)

σ 2
β2

= R2
0

4π

∑
λ

β2
λ. (18)

For the simplicity of presentation of the formulas (15) and
(16) obtained by averaging over α2 and β

(1)
i , we henceforth

use σfus(Ec.m, �) = 〈σfus(Ec.m, β
(1)
i , α2, �)〉

α2,β
(1)
i

.
The effect of the orientation angle of the axial symmetry

axis on the complete fusion is seen from Fig. 1, showing the
dependence of the cross section of the CN formation in the
51V + 248Cm reaction on the orientation angle of the axial
symmetry axis of 248Cm relative to the beam direction and
quadrupole deformation values β2+ at surface vibration. The
largest cross section of complete fusion corresponds to the
orientation angles 60◦–70◦ of the target nucleus.

The reason for the increasing cross section of complete
fusion at the orientation angles 60◦–70◦ of the target nucleus
248Cm is related to the decrease of the intrinsic fusion barrier
B∗

fus at these values of α2. The values of B∗
fus determined

from the peculiarities of the driving potential are 10.67 and
6.20 MeV for orientation angles α2 = 30◦ and 60◦, respec-
tively (see Fig. 2).

The complete fusion cross section is calculated as a sum
of its partial cross sections:

σfus(Ec.m.) =
� f∑
�m

σcap(Ec.m., �)PCN(Ec.m., �). (19)

For the 51V + 248Cm reaction for all considered collisions we
obtained �m = 0. The initial maximum value of �d has been
taken equal to 50 and the calculations of the dynamics of
collision gives different values for complete fusion and quasi-
fission processes (see Fig. 3 as well as Figs. 5, 8, and 9).
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FIG. 1. The dependence of the cross section of the CN forma-
tion in the 51V + 248Cm reaction on the orientation angle α2 of the
axial symmetry axis of 248Cm relative to the beam direction and
quadrupole deformation values β2 at surface vibration of the 51V
surface around spherical shape.

C. Quasifission cross section

The quasifission process is an alternative way to complete
fusion in the evolution of the DNS formed at capture of
the projectile by the target nucleus. Therefore, the quasifis-
sion probability is estimated by the expression Pqf (Ec.m., �) =
1 − PCN(Ec.m., �). Consequently, the partial quasifission cross
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FIG. 2. The driving potential for the DNS formed in the
51V + 248Cm reaction calculated for the orientation angles 30◦ and
60◦ of the axial symmetry axis of 248Cm relative to the beam di-
rection. The intrinsic fusion barrier B∗

fus is shown for the charge
asymmetry of the entrance channel Z = 23.

024613-4



OPTIMAL COLLIDING ENERGY FOR THE SYNTHESIS … PHYSICAL REVIEW C 109, 024613 (2024)

0 5 10 15 20 25 30 35 40 45 50 55

10-3

10-2

10-1

100

101

Pa
rti

al
cr

os
s

se
ct

io
n

(m
b/
h)

Quasifission
Complete fusion
Fast fission

DNS angular momentum (h)

51V+248Cm
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fission (dot-dashed curve), complete fusion (solid curve), and fast
fission (dashed curve) calculated for the collision energy Ec.m. =
236 MeV as a function of the DNS angular momentum �.

section is determined by the product of capture cross sec-
tion σcap(Ec.m., �) and quasifission probability Pqf :

σqfis(Ec.m., �) = σcap(Ec.m., �)Pqf (Ec.m., �). (20)

It should be noted that the quasifission process takes place
at all values of the orbital angular momentum � leading to
capture, including head-on collisions of the projectile and
target nuclei.

D. Fast fission cross section

The fast fission process related to the mononucleus formed
from the DNS, which has survived against quasifission and
is being transformed to the CN. The CN stability depends
on the fission barrier, which is calculated as a sum of the
parametrized macroscopic fission barrier Bm

fis(�) depending on
the angular momentum J [25] and the microscopic (shell)
correction 	Esh:

Bfis(�, T ) = c Bm
fis(�) − h(T ) q(�) 	Esh, (21)

where c = 1. h(T ) and q(�) represent the damping func-
tions of the nuclear shell correction 	Esh with the increase
of the excitation energy E∗

CN and � angular momentum,
respectively [38]:

h(T ) = {1 + exp[(T − T0)/d]}−1 (22)

and

q(�) = {1 + exp[(� − �1/2)/	�]}−1, (23)

where, in Eq. (22), T = √
E∗

CN/a is the effective nuclear tem-
perature depending on the excitation energy E∗

CN and the level
density parameter a = Atot/10, d = 0.3 MeV is the rate of
washing out the shell corrections with the temperature, and
T0 = 1.16 MeV is the value at which the damping factor h(T )
is reduced by 1/2. Analogously, in Eq. (23), 	� = 3h̄ is the
rate of washing out the shell corrections with the angular

momentum, and �1/2 = 20h̄ is the value at which the damping
factor q(�) is reduced by 1/2.

Fast fission occurs when the orbital angular momentum has
a value � > � f , where � f is its value leading to the negligible
small fission barrier Bfis(�, T ) as a function of T .

Due to including dependence of the fission barrier
Bfis(�, T ) of the CN on its angular momentum � and tem-
perature, the cross section of the fast fission process can be
calculated by the following equation:

σfast.fis(Ec.m.) =
�d∑
� f

σcap(Ec.m., �)PCN(Ec.m., �). (24)

There are two differences in the formation of the quasifission
and fast fission products: (1) the quasifission can take place
at all values the orbital angular momentum while the fast
fission occurs only at its values causing full damping of the
fission barrier Bfis; (2) the quasifission is a breakup of the DNS
formed at capture while the fast fission is the fission of the
mononucleus which has survived against quasifission and is
going to be transformed to the CN.

E. Survival probability

The evaporation residue (ER) cross section at the given
value of the CN excitation energy E∗

x is calculated as a sum
of the partial cross sections found for the angular momentum
� of the system:

σ
(x)
ER (E∗

x ) =
�d∑
0

σ
(x)
ER (E∗

x , �), (25)

where σ
(x)
ER (E∗

x , �) describes the cross section of the particle
emission from the intermediate nucleus with the excitation
energy E∗

x at each step x of the deexcitation cascade by the
formula [24,38]

σ
(x)
ER (E∗

x , �) = σ x−1
ER (E∗

x−1, �)W (x)
sur (E∗

x−1, �). (26)

Here, σ
(x−1)
ER (E∗

x−1, �) is the partial cross section of the forma-
tion of the intermediate excited nucleus at the (x − 1)th step,
and, obviously,

σ
(0)
ER (E∗

CN, �) = 〈σfus(Ec.m, �)〉
β

(1)
i

, (27)

which is calculated by (15) and (16); W (x)
sur (E∗

x−1, �) is the
survival probability of the xth intermediate nucleus against
fission along the deexcitation cascade of CN. The survival
probability W (x)

sur (E∗
x−1, �) is calculated by the statistical model

implanted in KEWPIE2 [39], which is dedicated to the study of
the evaporation residues at the synthesis of the SHE.

The probability of the SHE depends on the competition
between the fission and neutron evaporation, which is deter-
mined by the survival probability W (x)

sur (E∗
x−1, �). It has been

calculated by the statistical model [39], where the Weisskopf
approximation [40] is used to calculate neutron emission
width:


n = (2Sn + 1)μn

π2h̄2

∫ E∗
CN−Bn

0

σ n
inv(εn)ρB(E∗

B )εndεn

ρCN(E∗
CN)

, (28)
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where ρCN(E∗
CN) is the level density of the intermediate nu-

cleus, E∗
B is the excitation energy of the residual nucleus after

the emission of a neutron, Bn is the binding energy of the
neutron with the residue nucleus, μn = mn(MCN − mn)/MCN

is the reduced mass of the system consisting of the neutron and
evaporation residue nucleus, where mn and MCN are masses
of neutron and CN, respectively. Sn and εn denote the intrinsic
spin of the neutron and its kinetic energy, and σ n

inv is the cross
section for the time-reversed reaction.

In the KEWPIE2 code, the fission-decay width is estimated
within the standard Bohr-Wheeler transition-state model [41]:


BW
f = 1

2πρ
gs
CN(E∗

CN, JCN)

∫ E∗
CN−B f

0
ρsd

C (E∗
sd, JCN)

× Tfiss(ε f )dε f , (29)

where the excitation energy at the saddle point is E∗
sd =

E∗
CN − B f − ε f , ρ

gs
CN (E∗

CN , JCN ) and ρsd
C (E∗

sd , JCN ) are the
level densities of the nucleus at the ground-state and saddle-
point deformations, and JCN is the total angular momentum
of the CN.

The KEWPIE2 code [39] utilizes the enhanced state-density
equation, initially suggested in Ref. [42], to calculate different
decay widths. The penetration factor, Tfiss(ε f ), corresponds
to the Hill-Wheeler transmission coefficient [43]. The level-
density parameter has been taken from the recent work by
Nerlo-Pomorska et al. [44]. In this work, the estimates for
the level-density parameter obtained for different deforma-
tions terms are fitted by a liquid-drop type formula, which is
expressed in the following form:

a = 0.092A + 0.036A2/3Bs + 0.275A1/3Bk

− 0.00146
Z2

A1/3
Bc, (30)

where Bs is the surface term, Bk is the curvature term and Bc

is the Coulomb term for a deformed nucleus [45], and they are
given in the following forms:

Bs = 1 + 2
5α2

2 − 4
105α3

2 − 66
175α4

2,

Bk = 1 + 2
5α2

2 + 16
105α3

2 − 82
175α4

2, (31)

Bc = 1 − 1
5α2

2 − 4
105α3

2 + 51
245α4

2,

here α2 = √
5/4πβ2, where β2 refers to the quadrupole defor-

mation parameter.
The shell-correction effects decrease as the excitation en-

ergy rises. To incorporate this damping effect, Ignatyuk’s
prescription [46] was used in the calculation, which considers
the level density parameter to be dependent on the excitation
energy. In the ground state, one has the following explicit
expression:

ags(E
∗
x ) = a

[
1 + (1 − e−E∗

x /Ed )
	Esh

E∗
x

]
, (32)

where the default value of the shell-damping energy Ed

has been fixed at 19.0 MeV on the basis of our previous
calculations of the decay for the different reactions. The
fission barrier consists of two parts calculated by the macro-
scopic liquid-drop model and microscopic shell correction

222 224 226 228 230 232 234 236 238
10-1

100

101

102

51V+248Cm

C
ro

ss
 s

ec
tio

ns
 (m

b)

Ec.m.(MeV)

 Quasifission
 Fusion
 Fast fission

FIG. 4. Theoretical cross sections of the quasifission (red dashed
curve), complete fusion (solid blue curve), and fast fission (dot-
dashed green curve) for the 51V + 248Cm reaction as a function of
Ec.m..

energy [47]. The liquid-drop fission barrier is estimated by
using the Lublin-Strasbourg drop model [48]. The ground-
state shell correction energies and the parametrizations for
the liquid-drop fission barrier are from the mass table of
Möller et al. [34].

III. RESULTS AND DISCUSSIONS

The results of the total cross sections of the quasifission,
complete fusion, and fast fission processes obtained in this
work are presented in Fig. 4 by the red dashed, blue solid, and
green dot-dashed curves, respectively. It is seen that quasifis-
sion is the dominant channel since the intrinsic barrier B∗

fus

510
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45

50

0.000
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224

226
228

230
232

234
236

51V+248Cm

DNS angular momentum (h)

E c.m
.
(M

eV
)

PCN

FIG. 5. Dependence of the fusion probability PCN calculated for
the 51V + 248Cm reaction as a function Ec.m. and angular momentum.
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FIG. 6. The dependence of the driving potential calculated for
the 51V + 248Cm reaction as a function of the orbital angular mo-
mentum �. The intrinsic fusion barrier B∗

fus is shown for the charge
asymmetry of the entrance channel Z = 23. The results are presented
for the orientation angle of 248Cm α2 = 60◦ and β2(1) = −0.12.

causing a hindrance to complete fusion is sufficiently large
and the quasifission barrier Bqf providing the stability of the
DNS is small. Therefore, the fusion probability is small too.

The dependence of the fusion probability on the orbital
angular momentum and Ec.m. is seen in Fig. 5. It is calculated
as a ratio of the partial cross section of the CN formation σ

(�)
fus

to the partial capture cross section. It can be seen from Fig. 5
that the fusion probability is greater with the increase of the
beam energy since the DNS excitation energy E∗

Z increases
at the fixed intrinsic fusion barrier B∗

fus. The decrease of PCN

by the increase of angular momentum L is explained by the
increase of B∗

fus and decrease of the quasifission barrier Bqf

as a function of the angular momentum. The maximum value
of PCN is obtained in the ranges of 232 < Ec.m. < 236 MeV
and 15h̄ < L < 30h̄. The increase of B∗

fus with the increase of
L is related with the increase of the rotational energy of the
DNS (see Fig. 6). B∗

fus is determined as a difference between
the maximum value of the driving potential and its value

220 222 224 226 228 230 232 234 236 238 240

10-3

10-2

10-1

σ ER
(p

b)

Ec.m. (MeV)

 4n
 3n

51V+248Cm

FIG. 7. Theoretical cross sections of the 3n (dashed blue curve)
and 4n (solid red curve) channels of the ER formation in the
51V + 248Cm reaction as a function of Ec.m..

corresponding to the charge and mass number of the colliding
nuclei at the given value L (for details see Refs. [24,31]). The
excitation energy of the formed CN is 35 < E∗

CN < 39 MeV.
The results of the calculation of the ER cross section by the
statistical method (KEWPIE2 code [39]) presented in Sec. II E
are shown in Fig. 7. The maximum value of the excitation
function for the 4n channel is 12.3 fb (1 fb = 10−15 b) and it
corresponds to Ec.m. = 232 MeV. The observation of the 3n
channel is less probable since it is 6.6 fb, which is reached
at Ec.m. = 225 MeV. In Table II, the results obtained in this
work for the ER cross section in the 3n and 4n channels
are compared with the corresponding predictions presented in
Refs. [13,17–19,21,22]. It is seen that our results are close to
the predicted values of σER in Refs. [13,18]. The values of
Ec.m. presented in Table II are the energies corresponding to
the maximum values of the cross sections of the 3n and 4n
channels, which are calculated by using different methods of
calculation in the cited papers.

The smallest value of the ER cross section is related to
the small fusion cross section. It is much smaller than the

TABLE II. Comparison of the theoretical predictions of the ER cross sections obtained in this work with results presented in
Refs. [13,17–19,21,22].

Reaction Ec.m. (MeV) 3n (fb) Ec.m. (MeV) 4n (fb) Ref.

225 6.6 232 12.3 this work
227 5.5 237 10.1 [13]
228 2.9 236 5.9 [22]

51V + 248Cm 230 9.2 248 1.2 [21]
232 19.5 245 99.6 [17]

237 11.8 [18]

230 40 [18]
230 18.7 [19]

224 11.9 236 64 [13]
50Ti + 249Bk 226 48.2 244 5.67 [21]

225 29.8 233 35.6 [22]
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FIG. 8. The partial quasifission cross sections calculated for the
51V + 248Cm reaction as a function of Ec.m. and orbital angular
momentum.

cross section of quasifission, which is the dominant process
in a wide range of angular momentum (see Fig. 8). The
partial fusion cross sections presented in Fig. 9 show that the
contribution of the collisions with orbital angular momentum
L = (15–30)h̄ at the collision energies Ec.m. = 232–236 is
large. It means that the beam energy being used in the RIKEN
experiments is optimal for the synthesis of the new superheavy
element with charge number Z = 119 [49]. The other reason
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FIG. 9. The partial fusion cross sections calculated for the
51V + 248Cm reaction as a function of Ec.m. and orbital angular
momentum.
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FIG. 10. The partial fast fission cross sections calculated for
the 51V + 248Cm reaction as a function of Ec.m. and orbital angular
momentum.

for decreasing the number of synthesis events is the fast fission
phenomenon: the mononucleus survived against quasifission
splits instead of reaching the CN stage. This occurs because of
the absence of the fission barrier Bfis, which is sensitive to its
rotational energy and excitation energy. It is well known that
the stability of superheavy elements is determined exclusively
by the shell effects of their nucleon structure.

The dependence of the fast fission cross section on the
orbital angular momentum and collision energy can be seen
from Fig. 10. Its maximum values correspond to the colli-
sion energies as in the case of the complete fusion, but fast
fission is strong at the large values of angular momentum
L = (35–45)h̄.

IV. CONCLUSIONS

The ER cross section of 3n and 4n channels related to
the synthesis of the SHE with charge number Z = 119 in the
51V + 248Cm reaction has been calculated by the DNS model
as a sum of the partial cross sections of the corresponding
channels. The angular momentum distribution of the CN is
estimated by the dynamical trajectory calculations of the cap-
ture probability, which is considered as the DNS formation
probability. The fusion probability decreases by the increase
of the DNS angular momentum due to its influence on the
intrinsic fusion barrier B∗

fus. The range α2 = 60◦–70◦ of the
orientation angle of the axial symmetry axis of the deformed
target nucleus 248Cm is favorable for the formation of the CN.
The fusion probability decreases at around α2 = 90◦ since
the number of the partial waves contributing to the capture
decreases. Therefore, it is important to calculate the capture
cross section dynamically. The 4n channel cross section of the
SHE synthesis is larger than the 3n channel cross section and
the maximum value of the ER cross section is 12.3 fb at
Ec.m. = 232 MeV.
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