
PHYSICAL REVIEW C 109, 024611 (2024)

Decay of the superheavy nucleus 310126
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There are three accepted next proton closures beyond the lead atomic number: Z = 114, 120, and 126. The
heaviest one, Z = 126, is analyzed within its decay process. A binary adapted macroscopic-microscopic method
is used to obtain all fission barriers along different decay channels. The whole range of mass asymmetry is
calculated for the fragment emission. The deformed two-center shell model is used to obtain the proton and
neutron single-particle energy levels. The levels are used as input for the shell correction energy. The binary
Yukawa-plus-exponential model leads to calculation of the macroscopic part of the deformation energy. The
dynamics is completed with the Werner-Wheeler mass tensor components. The Wentzel-Kramers-Brillouin
(WKB) method provides the penetrabilities and therefore the half-lives for all possible decay channels of 310126.
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I. INTRODUCTION

Superheavy elements have now been synthesized in many
laboratories all over the world. Cyclotrons at Lawrence Berke-
ley [1] and Flerov Laboratory [2] were among the first tools
used to obtain these nuclei in heavy ion reactions. Later
on, more powerful accelerators were built at GSI-Darmstadt
[3,4] and RIKEN [5]. The relevance and importance were
underlined in [6]. Theoretically, the macroscopic-microscopic
model predicted for the first time the existence of these ele-
ments beyond uranium. The possible ground states appear as
a result of proton shell closures, revealed due to the Strutinsky
[7] shell correction method. Early calculations indicated three
possible rather stable elements due to these closures. The
first one indicated that Z = 114 could be a stable nucleus
compared to its neighbors. Such calculations were performed
in [8,9]. Self-consistent calculations with Hartree-Fock ap-
proach using finite range (Gogny) forces predicted stability
around 298114 [10], whereas Z = 120 was obtained as an en-
ergy minimum using zero-range Skyrme interactions in [11].
The occurrence of spherical shell closure in the superheavy
nucleus region was studied in detail in [12] also within the
relativistic Hartree-Fock-Bogoliubov theory. These detailed
calculations provide Z = 120 as a reliable prediction for pro-
ton closure. In the same work however, Z = 114 and 126 are
also considered as promising candidates. The last candidate
for superheavy minimum energy is Z = 126. This proton clo-
sure was obtained using zero-range Skyrme forces SkP and
Ly7. The same proton closure was calculated with macro-
scopic plus Woods-Saxon microscopic potentials in [13]. A
gap in the neutron energy at N = 184 was confirmed since
early calculations within the macroscopic-microscopic calcu-
lations [14,15], but also by self-consistent methods [11,16] or
using a semiempirical shell model mass equation [17].

Up to now, the macroscopic-microscopic method proved
to be a reliable approach for the study of the stability and

decay of heavy elements. The macroscopic part is based on
a deformed charged liquid drop body. The microscopic term
comes as the shell corrections, basically calculated as the
Strutinsky term [7]. A lot of work is dedicated to the theory
of fission for superheavy elements, for example in [18–20],
using the modified generalized liquid drop model, or liquid
drop plus Nilsson shell model in [21], in order to compute the
fission barriers. Self-consistent models like Skyrme-Hartree-
Fock and relativistic mean field have been used extensively
for study in the superheavy region, and have been shown
to exhibit differences in their predictions concerning fission
barrier heights [22]. Also fission barriers for heavy nuclei
are investigated beyond the second saddle point by the con-
strained relativistic mean field method [23].

The alpha emission from superheavy nuclei draws special
attention, in connection with the presumed stable Z = 126
element. This part is related to the present work, being a
good opportunity to compare calculations with experimentally
detected alpha chain emission. Such theoretical calculations
were performed for example in [24], using a Coulomb and
proximity potential model for deformed nuclei. Again, the
modified generalized liquid drop model is employed to study
the heavy particle radioactivity of Z = 126 [25]. As proof of
the diversity of the theoretical models, the alpha-decay chain
of 314–340126 is also studied using a cubic plus proximity
potential with an improved transfer matrix model in [26],
but also, again, the macroscopic-microscopic method, with
Yukawa potential for alpha emission, in [27].

The present work is related to the above cited publica-
tions as being an exploration of the stability and decay of
the presumed doubly magic superheavy element 310126. The
study presents a specialized binary macroscopic-microscopic
method for the calculation of the typical fission quantities
applied to this massive nucleus. All possible decay chan-
nels are covered, browsing the whole range of fission mass
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asymmetry. Section II presents the theoretical details of the
method. Section III is dedicated to the numerical results of
the calculations and discussion of the fission quantities. The
last section draws the principal conclusions.

II. SPECIALIZED MACROSCOPIC-MICROSCOPIC
MODEL FOR FISSION PHENOMENA

The binary macroscopic-microscopic method has been de-
veloped to assess the evolution of the nuclear shape from a
single parent nucleus to two separated fission fragments. Its
main characteristics allow the description of the two partially
overlapped quantum systems and the smooth passage towards
separated ones [28]. The total statical deformation energy Eb

is obtained as the sum of the liquid drop and the microscopic
energies:

Eb = �E (def)
mac + δEsh. (1)

The macroscopic term �E (def)
mac is built up as a charged liquid

drop compensated by the surface nuclear force, being the only
shape dependent classical quantities. The microscopic part
consists of a binary modeled shell correction energy δEsh,
adapting the Strutinsky method to the two-nucleus system.
The two overlapping quantum wells are deformed according
to the shape characteristics of each fission partner at a certain
point of elongation. The microscopic term is calculated sep-
arately for protons and neutrons, and the results are added.
Finally the fission barrier Eb is obtained as the sum of the
macroscopic and microscopic terms at each stage of the de-
formation evolution of the process.

A. The deformed macroscopic Yukawa-plus-exponential energy

The doubly built Yukawa-plus-exponential potential �EYE

plus the Coulomb one �EC , form the macroscopic energy
part. Each of the terms is obtained for a deformed part-
ner, where one adds the interaction between them. The total
macroscopic deformation energy term is scaled to the spheri-
cal configuration, so that

�EC = EC − E sph
C ,

�EYE = EYE − E sph
YE ,

E (def)
mac = �EYE + �EC . (2)

The Coulomb term takes into account also the different values
of the charge density:

�EC = 2π

3

(
ρ2

eH FCH + ρ2
eLFCL + 2ρeHρeLFCHL

) − 3Z2e2

5r0A1/3
.

(3)

Here ρeH and ρeL are the charge densities (H = heavy, L =
light), and Fi j are the shape dependent terms. The last ex-
pression accounts for the spherical Coulomb energy of the
parent, as one considers 310126 doubly magic. The fragments
are considered to be ellipsoidally deformed. The Coulomb
interaction term FCHL between the two partially overlapped
fragments reads

FCHL =
∫ zs

−aH

dz
∫ R+aL

zs
dz′GHL(z, z′) (4)

where aH , aL are the long semiaxes of the fragments at a
certain distance between centers R. The integrand is an ex-
clusively geometric term:

GHL(z, z′) =
{
ρH (z)ρL(z′)

K (kHL ) − 2D(kHL )

3

[
2
[
ρ2

H (z) + ρ2
L (z′)

] − (z − z′)2 + 1.5(z − z′)
(

dρ2
H (z′)
dz′ − dρ2

L (z)

dz

)]

+ K (kHL )

[
ρ2

H (z)ρ2
L(z′)

3
+

(
ρ2

H (z) − 0.5(z − z′)
dρ2

H (z)

dz

)(
ρ2

L(z′) + 0.5(z − z′)
dρ2

L(z′)
dz′

)]}

× 1

{[ρH (z) + ρL(z′)]2 + (z − z′)2}1/2
. (5)

Here we have to mention the use of the complete elliptic
integrals of first and second degree taken from [29]

D(k) = K (k) − F (k),

K (k) =
∫ π/2

0
(1 − k2 sin2 t )−1/2dt,

F (k) =
∫ π/2

0
(1 − k2 sin2 t )1/2dt . (6)

The argument k is chosen so as to have the cuts on the sym-
metry axis at −1 and 1. The noninteracting terms FCH and FCL

are easily obtained by replacing HL with heavy H and light
L symbols, and the corresponding shape equations ρH (z) and
ρL(z).

The nuclear surface term is constructed taking into account
the finite range of the nuclear force. One uses the Yukawa-
plus-exponential potential [30], adapted for binary shapes.
Similarly to the Coulomb treatment, the nuclear surface term
reads

�EYE = E (def)
Y − E (sph)

Y

= 1

4πr2
0

[
csH DYH + csLDYL + 2

(
csH csL

)1/2
DYHL

]

−
{

1 − 3

(
a

R0

)2

+
(

R0

a
+ 1

)[
2 + 3

a

R0

+ 3

(
a

R0

)2]
exp

(
−2R0

a

)}
csA

2/3, (7)
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where the surface coefficients depend on the isospin of the
nucleus:

csH,L = as

[
1 − κ

(
NH,L − ZH,L

AH,L

)2]
. (8)

The DY terms are again only shape configuration dependent.
Their basic formula [31] is adapted for binary configuration
of two interacting nuclei. The interaction term reads

DYHL =
∫ 2π

0

∫ zs

−aH

∫ R+aL

zs

E (HL)
YH

E (HL)
YL

Q(HL)d� dz dz′, (9)

where the constituents depend exclusively on the nuclear
shape equation:

E (H,L)
YL

= ρ2
H,L(z) − ρH,L (z)ρH,L(z′) cos �

− 0.5(z − z′)
dρ2

H,L(z)

dz
,

E (H,L)
YL

= ρ2
H,L(z) − ρH,L (z)ρH,L(z′) cos �

+ 0.5(z − z′)
dρ2

H,L(z′)
dz′ ,

Q(HL) = 2 −
[(σH,L

a

)2
+ 2

σH,L

a
− 2

]

× exp
(
−σH,L

a

) 1

σ 4
H,L

. (10)

The surface strength coefficient σH,L reads

σH,L = [
ρ2

H,L(z) + ρ2
H,L (z′) − 2ρH,L(z)ρH,L(z′) cos �

+ (z − z′)2]1/2
. (11)

In this way, through the surface equations for fission con-
figurations ρH,L (z), and the different strength values for the
finite nuclear force csH,L and the surface dependent ones σH,L,
as well as accounting for the different charge densities, the
macroscopic energy is a binary dependent term.

B. Microscopic corrections

The macroscopic barrier for superheavy nuclei is almost
nonexistent. The Coulomb repulsion is so strong that the
surface forces are overcome, hence, with only this energy,
massive nuclear systems could not survive. The microscopic
potential generates the single-particle levels, which provide
an additional energy named shell corrections. This effect was
emphasized for the first time in [7]. A binary microscopic
potential has been constructed to account for this special type
of quantum evolution. Such models have draw attention since
the 1970s in [32], and have been developed also under a real-
istic binary Woods-Saxon potential [33], also used to predict
the production of superheavy elements by incomplete fusion
reactions [34]. The potential constructed here, VDTCSM, for the
microscopic part of the binary method is based on a two-
center deformed oscillators, with spin-orbit and l̂2 interactions
added [35], for axially symmetric shapes:

VDTCSM(ρ, z) = V2-osc(ρ, z) + Vl̂ŝ(ρ, z) + Vl̂2 (ρ, z), (12)

where the two-deformed oscillators part read:

V2-osc(ρ, z) =
⎧⎨
⎩

1
2 m0

[
ω2

ρH
ρ2 + ω2

zH (z + zH )2
]
, (ρ, z) ∈ vol(AH ),

1
2 m0

[
ω2

ρL
ρ2 + ω2

zL(z − zL )2
]
, (ρ, z) ∈ vol(AL ).

The frequencies are related to the ellipsoidal deformations through the equipotential nuclear surface condition:

ωρH,L

ωzH,L

= aH,L

bH,L
and V2-osc = V0 = m0ω

2
0R2

H,L

2
(13)

with aH,L, bH,L being the fragment ellipsoid semiaxes, and RH,L the corresponding radius of the spherical shape for the same
mass. At this point the spin-orbit Vl̂ŝ and Vl̂2 potentials determine which proton shell will be a complete closure after Z = 82.
For a considered sphere, these additional terms are

V (sph)
l̂ ŝ

= − h̄

m0ω0
κ l̂ ŝ,

V (sph)
l̂2 = − h̄

m2
0ω

3
0

κμl̂2. (14)

One can see that the force intensity coefficients κ and μ are decisive in determining a local minimum of these quantities. As the
shape evolves towards binary configurations, the residual interactions are obtained as _

V (H,L)
l̂ ŝ

(ρ, z) = −
{

h̄

m0ω0H,L
κH,L(ρ, z), [∇V2−osc(ρ, z) × p̂]ŝ

}
, (ρ, z) ∈ vol(AH,L),

V (H,L)
l̂2 (ρ, z) = −

{
h̄

m2
0ω

3
0H,L

κH,LμH,L (ρ, z), [∇V2−osc(ρ, z) × p̂]2

}
, (ρ, z) ∈ vol(AH,L). (15)
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These forms ensure the passage from the initial spherical values to the final heavy (H) and light (L) spin-orbit and l̂2 fragment
values. An anticommutator is used to ensure self-adjointness.

The total deformed two-center Hamiltonian HDTCSM reads

HDTCSM(ρ, z) = − h̄2

2m0
� + VDTCSM(ρ, z), (16)

which is solved for the two-oscillator part. This leads to the binary Schrödinger equation. When solved, it provides the solutions
that constitute the basis {
m,nρ ,ν} for solving the deformation dependent potentials:


m,nρ ,ν (φ, ρ, z) = �m(φ)R|m|
nρ

(ρ)Zν (z), (17)

where

�m(φ) = 1√
2π

exp (imφ),

R|m|
nρ

(ρ) =
[

2(nρ + 1)α2
H

(nρ + |m| + 1)

]1/2

exp

(
−α2

Hρ2

2

)(
α2

Hρ2
) |m|

2 L|m|
nρ

(
α2

Hρ2
)
,

Z (H,L)
ν (z) =

⎧⎨
⎩CνH exp

[ − α2
H (z+zH )2

2

]HνH [−αH (z + zH )], z ∈ vol(AH )

CνL exp
[ − α2

L (z−zL )2

2

]HνL [αL(z − zL )], z ∈ vol(AL ).
(18)

The last function Z (H,L)
ν (z) provides the solution belonging to

the heavy (H) or light (L) region of the potential, hence the
binary character of the process. The spin-orbit l̂ ŝ and l̂2 matrix
operators

〈′|l̂ ŝ|〉 = 〈
m′n′
ρν ′ |V (H,L)

l̂ ŝ
(ρ, z)|
m,nρ ,ν〉vol(H,L),

〈′|l̂2|〉 = 〈
m′n′
ρν ′ |V (H,L)

l̂2 (ρ, z)|
m,nρ ,ν〉vol(H,L) (19)

provide, after diagonalization within the {
m,nρ ,ν} basis, the
residual energies for each region of the fissionlike configu-
ration, and, further on, the single-particle schemes at every
stage of elongation. Once the level schemes are obtained,
the single-particle energies are input data for the Strutinsky
method to obtain the final shell corrections [7]. The stable
state of the parent is ensured by a strong negative value of this
quantity, which in turn comes out when searching for the most
stable state of the spherical nucleus. The spin-orbit and l̂2

operators provide this energy minimum by finding the appro-
priate strength parameters κ and μ. The Strutinsky method is
repeated for protons, Eshp, and neutrons, Eshn, independently
and the results are summed:

δEsh = Eshp + Eshn, (20)

where

Eshp,shn =
n∑

ν=1

2Eνp,n − Ũp,n. (21)

The first term is the sum of the proton/neutron single particle
energy levels, whereas Ũp,n is the so-called smoothed distri-
bution energy. This term is calculated by considering the level
scheme as being uniformly distributed with a level density of
[36]

g̃(ε) =
∫ ∞

−∞
ζ

(
ε − ε′

γ

)
g(ε′)dε′ = 1

γ

∑
i

ζ

(
ε − εi

γ

)
, (22)

where γ ≈ h̄ω0 is the smoothing range and

ζ (x) = 1√
π

exp (−x2)
m∑

k=0

a2kH2k (x) (23)

is the smoothing function. This work takes m = 3 as the
summing limit, which corresponds to the so-called plateau
condition. The sought smoothed energy Ũ is finally obtained
as

Ũp,n = 2
∫ λ̃p,n

−∞
g̃p,n(ε)ε dε. (24)

Integration goes up to the smoothed Fermi level λ̃p,n which is
obtained from the particle number conservation for protons
and neutrons. At this point the statical value of the fission
barrier is available as the sum of macroscopic and microscopic
energies, as in Eq. (1). This value is deformation dependent,
thus, at every distance between the centers of the fragments,
one has a certain energy value. The whole range of these
values constitutes the final fission barrier. The advantage of
this binary procedure developed here is that one can follow a
certain fission channel, with a previously determined heavy-
light pair of fragments.

III. FISSION DYNAMICS

The Wentzel-Kramers-Brillouin (WKB) procedure is em-
ployed to find the possible fission paths. Thus, in order to
complete the dynamics, the mass tensor B must be intro-
duced. This work uses the binary Werner-Wheeler method,
which is based on the concept of irrotational flow [37]. This
procedure has been adapted for a multidimensional space of
deformation: the two ratios of the spheroid semiaxes χH =
bH/aH and χL = bL/aL, for the heavy and light fragments,
the small semiaxis of the light fragment bL, and the dis-
tance between centers R. In this way one has the total inertia
B = B(bL, χL, χH ; R). When one impose an arbitrary tensor
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contraction on the R direction, one can assume a function
B(R):

B(bL(R), χH (R), χL(R); R)

= BbLbL

(
dbL

dR

)2

+ 2BbLχH

dbL

dR

dχH

dR

+2BbLχL

dbL

dR

dχL

dR
+ 2BbLR

dbL

dR

+BχH χH

(
dχH

dR

)2

+ 2BχH χL

dχH

dR

dχL

dR
+ 2BχH R

dχH

dR

+BχLχL

(
dχL

dR

)2

+ 2BχLR
dχL

dR
+ BRR. (25)

The functions BL(R), χH (R), and χL(R) can be chosen in any
possible way, provided that at the end of the process they take
the final values corresponding to the separated values. The
tensor components are defined as

Bi j = πσm

∫ zmax

zmin

Ti j (z; bL, χL, χH ; R)dz, (26)

where

Ti j (z; q) = ρ2
s (z; q)

[
Xi(z)Xj (z) + 1

8
ρ2

s (z; q)
∂Xi

∂z

∂Xj

dz

]
. (27)

Here σm is the nucleus mass density, and ρ2
s (z; q) is the binary

nuclear surface equation. The advantage of the procedure is
that the Xi terms are only geometry dependent:

X (H,L)
i = − 1

ρ2
s (z; q)

∂

∂qi

∫ zs,zmax

zmin,zs

ρ2
s (z′; q)dz′. (28)

The peculiar character of this kind of calculation in the present
case is the application of formulas separately for the heavy
and light parts of the overlapping region of the fission con-
figuration. The final quantity is obtained by summing the two
values:

Xi = X (H )
i + X (L)

i . (29)

The mass tensor B(bL, χL, χH ; R) is calculated for all pos-
sible geometric parameters mentioned above, along the whole
deformation from parent up to separated fragments. At this
point, the penetrability Pfis can be calculated for every avail-
able path within the multidimensional space of deformation:

Pfis = exp [−Kfis(bL, χH , χL; R)] (30)

with

Kfis(bL, χH , χL; R) = 2

h̄

∫
(fis)

[2B(bL(R), χL(R),

× χH (R); R)Eb(R)]1/2dR. (31)

After all possible points in this multidimensional space are
covered, the minimization of the action integral Kfis follows. It
will provide the final fission path within (bL, χL, χH ; R) space
for a given fission channel (AH , ZH ; AL, ZL). Then all possible
combinations of mass and charge asymmetry are taken into
account for the initial parent nucleus.

FIG. 1. Potential energy surface as a function of mass asym-
metry ηA and reduced distance between centers (R − Ri )/(Rt − Ri )
for the superheavy nucleus 310126. Favorable fission channels are
emphasized.

The lifetime calculation follows the usual formula for
spontaneous fission:

T = h ln 2

2

1

EνPfis
, (32)

where Eν is the zero point vibration energy and ν is the
assault frequency. After numerical computation, the logarithm
of spontaneous fission lifetime is obtained as

lg Ts f = −20.54 + lg [1 + exp 2Kfis] − lg (2Eν ), (33)

where the zero point vibration energy Eν is taken as 0.7 MeV.

IV. DISCUSSION OF THE RESULTS

A possibly stable superheavy nucleus could be found
at Z = 126, N = 184. This proton-neutron pair has been
advanced many times as a center of stability within the su-
perheavy region in Refs. [11,13,15,17,26], among others. The
binary multidimensional method previously presented is ap-
plied to 310126 for all possible fission channels, starting with
alpha emission up to symmetrical decay. The spin-orbit and
l̂2 potentials determine the local energy minimum leading to
a stable ground state. Changing these potentials is the results
of different strength parameters κ and μ. For 310126 one finds
κp = 0.055 and μp = 0.400 for the local proton quantum well
Z = 126, and κn = 0.045 and μn = 0.400 for the neutron one
N = 184, where significant negative shell corrections have
been calculated.

The deformation energy calculations for the entire range
of mass asymmetry ηA = (AH − AL )/A are presented as a
potential energy surface for 310126 in Fig. 1. The fission
barriers are displayed as a function of ηA and the reduced
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distance between centers (R − Ri )/(Rt − Ri ), where Ri and Rt

are the initial and touching point values. Valleys are visible
in quasisymmetric mass reactions as well as at the extreme
of alpha decay. Some favorable channels are emphasized in
the figure. In the mass symmetry region two fission channels
are promising as far as the picture shows:. 160Gd + 150Sm and
164Dy + 146Nd. A more asymmetric channel is visible at the
mass asymmetry corresponding to the 182W + 128Te pair. The
much more remote channel of alpha decay carves another val-
ley within the potential energy surface. The first observation
is that symmetric channels have a much shorter fission barrier.
The exit point in this region is at a reduced distance between
centers of (R − Ri )/(Rt − Ri ) ≈ 0.45. This fact means that
the barrier ends while the two fragments are still partially
overlapped. It is a particular feature for superheavy nuclei,
mentioned also for one-center potentials, as in [9]. Within the
two-center nuclear shell model, this means that at such a rather
short distance between centers the fragment single-particle
structures are already formed, for mass symmetric fission
reactions. In contrast for the extreme mass asymmetry channel
of alpha decay, the barrier goes well beyond the touching
point. This characteristics is common for the alpha emission
barrier from heavy nuclei, not only for superheavies. It is due
to the finite range of the nuclear forces taken into account
through the Yukawa-plus-exponential potential, as explained
later.

The potential energy surface is obtained by minimizing the
action integral within the multidimensional space of deforma-
tion, as a result of the next step, the introduction of the mass
tensor components. The action integral thus obtained allows
the calculation of the penetrabilities by the WKB procedure.
At this point, note that a large number of similar calculations
use only the constant reduced mass μA = (AH − AL )/A, in-
stead of the deformation dependent inertia B(bL, χL, χH ). The
results differ by orders of magnitude, affecting the lifetime
predictions. The comparison between penetrability logarithms
calculated with B(bL, χL, χH ) and μA (not to be mistaken for
the l̂2 strength parameter μ), are presented in Fig. 2, for the
whole range of mass asymmetry. Differences go up to ten
orders of magnitude. The reduced mass (dotted line) produces
always lower values of penetrability. The highest values are
obtained for mass symmetric fission channels. A maximum
appears at 164Dy + 146Nd, followed by 160Gd + 150Sm. The
Coulomb repulsion has a main role here, since it is maximized
at symmetric fragment charges, compensating the finite range
Yukawa forces which stabilize the system. Another compara-
ble maximum in penetrability appears at 182W + 128Te. Then
the next peak is obviously evidenced for the alpha decay chan-
nel. The particular feature for alpha decay is that it appears
within an abrupt change of behavior of the penetrability. All
other channels neighboring the alpha emission have much
lower probability. This is certainly due to the very strong
bound of the two-proton–two-neutron configuration, namely
a very deep, negative shell correction energy. The shell cor-
rection value added to the total energy for alpha decay is
−12.3 MeV, which drastically lowers the macroscopic barrier.

The corresponding effect on the half-life behavior for spon-
taneous fission channels as a function of mass asymmetry is
presented in Fig. 3. The dotted line displays the half-lives

FIG. 2. Logarithm of penetrability for reduced mass, lg Pμ, and
Werner-Wheeler, lg T sf

WW, mass inertia calculations, for the decay of
310126 as a function os mass asymmetry ηA. Favored fission channels
and alpha decay differences are mentioned, due to the two kinds of
calculations.

FIG. 3. Logarithm of half-life for reduced mass, lg T s f
μ , and

Werner-Wheeler, lg T sf
WW, mass inertia calculations, for the decay of

310126, as a function of mass asymmetry ηA. Quasisymmetric favored
fission channels as well as the alpha decay one are presented.
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FIG. 4. Contribution of the macroscopic terms to the liquid drop
energy for five emitted fragments from 310126. The Yukawa-plus-
exponential term (EYE) in the upper plot shows increasing values as
one moves to more symmetric reactions. The Coulomb term (EC)
abruptly decreases for heavy fragment emission, but varies softly
for alpha decay (middle plot). The total macroscopic barrier (Emac)
shows the largest values for alpha decay.

calculated with the reduced mass μ, whereas the full line
displays the complete dynamics with the Werner-Wheeler
(WW) mass tensor. The lowest values are visible in the sym-
metrical region of mass division. Minimum peaks appear for
164Dy + 146Nd, 160Gd + 150Sm, and for the quasisymmetrical
182W + 128Te reactions, corresponding to the highest penetra-
bilities. It is worthwhile to mention the different behaviors
for the two kinds of calculation. Within the reduced mass
line, the alpha decay half-life is almost equal to the sym-
metrical splitting one. When calculations are performed with
the Werner-Wheeler mass tensor, the mass symmetrical re-
action produces a half-life about eight orders of magnitude
lower. Even the difference between alpha half-lives with μ

and WW calculations, � lg T4He, is of 2.3 orders of magnitude.
Such differences between μ and WW calculations are further
analyzed.

The shape of the barrier is determined by the macroscopic
and microscopic energies. The macroscopic one is formed by
the Coulomb and nuclear surface terms, of the Yukawa-plus-
exponential (Y + E) type. An explanatory plot is presented

FIG. 5. Fission barriers for quasisymmetric 146Nd emission and
alpha decay, as a function of the reduced distance between centers,
(R − Ri )/(Rt − Ri ). The shape of the barriers would suggest a much
larger half-life for alpha decay than for any other channel (large and
high barrier), without the influence of the inertia tensor.

in Fig. 4. The balance between the two macroscopic terms
is emphasized for five different reactions, increasing the light
fragment proton number from alpha up to 146Nd emission.
The nuclear surface term EYE (upper plot) increases until
little after the touching point, due to the finite range of the
nuclear forces. After that, this term is constant, equal to the
two separated fragment values. The Coulomb term (middle
plot), scaled to the initial sphere value, abruptly decreases.
The smoother decrease is for alpha decay. Though at a lower
level, the surface Y + E energy overcomes the Coulomb term
at a longer distance between centers for alpha decay. At the
same distances, the Coulomb term for more symmetric reac-
tions is much lower, decreasing the total macroscopic value of
the barrier. The final Y + E energies are shown on the lower
plot. There is a drastic decrease of the macroscopic barrier
as the charge asymmetry decreases and the reaction becomes
more symmetric. The difference between the Y + E and total
barriers is due to the shell effects.

In Fig. 5 the fission barriers are displayed for two major
competitors for the decay of 310126. The barrier of the sym-
metric channel 164Dy + 146Nd is extremely narrow. Its height
of almost 15.2 MeV does not compensate for its width. The
exit point for this barrier is at a reduced distance between
centers of less than 0.5. Note that the touching point is at value
1. That means a scission point exists inside the overlapping
region, on the steep decline of the total deformation energy.
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FIG. 6. Mass inertia for alpha decay, B4He, and for 146Nd emis-
sion, B146Nd. The horizontal dotted lines are the reduced masses for
the two reactions.

FIG. 7. Logarithms of penetrability for two fission channels
which have same value when calculated with the reduced mass (up-
per plot) and differ when calculated with the Werner-Wheeler inertia
(lower plot).

TABLE I. Logarithms of penetrability and fission lifetime with
reduced mass, lg Pμ and lg Tμ, and with Werner-Wheeler mass tensor
calculations, lg PWW and lg TWW.

Reaction lg Pμ lg PWW lg Tμ lg TWW

160Gd + 150Sm −25.99 −19.38 5.46 −1.16
164Dy + 146Nd −25.74 −19.2 5.20 −1.34
168Er + 142Ce −29.68 −22.1 9.14 1.56
172Yb + 138Ba −28.44 −21.17 7.91 0.63
178Hf + 132Xe −27.95 −20.78 7.41 0.24
182W + 128Te −27.37 −20.15 6.83 −0.39
192Os + 118Sn −32.21 −24.19 11.67 3.65
198Pt + 112Cd −43.98 −32.67 23.44 12.12
204Hg + 106Pd −46.97 −35.51 26.43 14.97
208Pb + 102Ru −48.48 −37.19 27.94 16.65
214Po + 96Mo −51.53 −39.9 30.99 19.36
218Rn + 92Zr −51.11 −40.95 30.56 20.41
222Ra + 88Sr −46.95 −38.3 26.42 17.76
226Th + 84Kr −39.83 −33.1 19.29 12.56
230U + 80Se −39.05 −33.72 18.51 13.18
236Pu + 74Ge −39.16 −34.28 18.62 13.74
240Cm + 70Zn −39.13 −34.94 18.59 14.4
246Cf + 64Ni −38.29 −35.02 17.74 14.48
250Fm + 60Fe −40.24 −37.46 19.70 16.91
254No + 56Cr −39.13 36.92 18.59 16.38
258Rf + 52Ti −41.23 −39.21 20.69 18.67
262Sg + 48Ca −42.06 −40.62 21.82 20.08
268Hs + 42Ar −44.02 −42.73 23.48 22.19
274Ds + 36S −41.32 −40.63 20.78 20.08
278Cn + 32Si −42.92 −42.1 22.38 21.56
282Fl + 28Mg −52.57 −48.74 32.03 28.2
286Lv + 24Ne −50.29 −48.94 29.76 28.4
290118 + 20O −43.97 −42.17 23.43 21.64
296120 + 14C −47.69 −45.62 27.15 25.08
300122 + 10Be −51.71 −49.8 31.17 29.06
306124 + 4He −29.04 −26.93 8.5 6.39

In contrast, the alpha decay barrier (full line) goes way be-
yond the touching point, displaying an extremely large width
together with its 17.4 MeV maximum height. Based only on
this picture, one would expect a much larger half-life for alpha
decay than for any other fission channel. Consequently, there
must be a quantitative compensation in the WKB calculation
for alpha decay. The reason for such a drastic change in
half-life is presented in Fig. 6. The variation of the Werner-
Wheeler total mass tensor Bi, contracted along the distance
between centers, versus the reduced distance is presented for
the quasisymmetrical fission channel 164Dy + 146Nd (dotted
line) and for alpha decay (full line). The straight horizontal
lines are the reduced mass μ values. For alpha emission, what
one gains in lower than μ inertia Bi values up to 0.5 reduced
distance, one loses in penetrability because of higher than μ

values from 0.5 to 1. Nevertheless, even such small difference
in inertia produces the gap � lg T4He mentioned above. The
WW mass inertia variation for 146Nd emission has lower val-
ues all along the deformation path. This negative difference
against the reduced mass produces the lowest action integral,
making the symmetrical channels competitive against alpha
decay.
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The direct effect of the mass tensor versus reduced mass
difference upon the penetrability is shown in Fig. 7, where the
same two fission channels are analyzed within the penetra-
bility against the reduced mass effect. The upper plot shows
the penetrability logarithm lg Pμ calculated with the reduced
mass for 20O (full line) and 112Cd (dotted line) emission. What
one can observe is that, despite a different fission path, both
reactions end up at the same value of lg Pμ. The same reactions
are calculated with the Werner-Wheeler mass tensor (lg PWW,
lower plot). The difference of ten orders of magnitude in the
final values is obvious, making the more symmetric 112Cd
emission favorable.

All possible mass asymmetries have been calculated, from
symmetry up to totally asymmetric alpha decay from 310126.
The numerical results are presented in Table I. Logarithms
of the penetrabilities and fission lifetimes are displayed for
Werner-Wheeler and reduced mass type approaches. The dif-
ferences in penetrability are reflected in half-life values. Mass
tensor dependent calculations produce six to eleven orders of
magnitude difference in half-life. The most remarkable reac-
tions are in the symmetrical mass division region. Emission
of 150Sm, 146Nd, and 128Te display a favored way of decay
versus alpha emission, though this asymmetrical channel has
an obvious half-life minimum.

V. CONCLUSIONS

The binary macroscopic-microscopic method has been de-
veloped for the calculation of fission barriers. The use of
the deformed two-center shell model ensures the passage of
the microscopic corrections from the parent quantum well
through the partially overlapped binary deformed potentials,
up to final separated fragments. The dynamics of the pro-
cess has been completed with the use of the Werner-Wheeler
mass inertia specialized in binary shape configurations. The
calculations applied to the decay of the presumed doubly
magic 310126 show favored symmetric fission channels for
146Nd, 150Sm, and 128Te versus alpha emission. The re-
sults also display a minimum for alpha decay half-life, but
less probable than mass symmetrical reactions, when the
mass inertia is used instead of the reduced mass in the
dynamics.
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