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Theoretical predictions for lepton-induced single-pion production (SPP) on 12C are revisited in order to assess
the effect of different treatments of the current operator. On one hand we have the asymptotic approximation,
which consists in replacing the particle four-vectors that enter in the operator by their asymptotic values, i.e.,
their values out of the nucleus. On the other hand we have the full calculation, which is a more accurate approach
to the problem. We also compare with results in which the final nucleon is described by a relativistic plane wave,
to rate the effect of the nucleon distortion. The study is performed for several lepton kinematics, reproducing the
SPP contribution to the inclusive and semi-inclusive cross sections belonging to the low-Q2 region (between 0.05
and 1 GeV2), which is of special interest in charged-current (CC) neutrino-nucleus 1π production. The results
of the SPP contribution to the inclusive electron cross section are compared with experimental data. We find
nontrivial corrections comparable in size with the effect of the nucleon distortion, namely, corrections up to 6%,
either increasing or diminishing the asymptotic prediction, and a shift of the distributions towards higher energy
transfer. For the SPP contribution to the semi-inclusive cross section, we observe the correction to be prominent
mainly at low values of the outgoing nucleon kinetic energy. Finally, for CC neutrino-induced 1π+ production,
we find a reduction at low Q2 with respect to both the plane-wave approach and the asymptotic case.
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I. INTRODUCTION

In accelerator-based neutrino experiments, such as DUNE
[1], NOνA [2,3] and MINERνA [4,5], inelastic interactions
constitute the main interaction mechanism that contribute to
the total cross sections. In other experiments such as T2K
[6] or the SBN program [7–9], quasielastic (QE) scattering
is the main interaction mechanism but single-pion production
(SPP) in the resonance (�-baryon) region also plays an im-
portant role [10]. Also, SPP is a background in the QE-like
or 0π signal, for example, if the pion is below the detec-
tion threshold or the resonance has a nonpionic decay. These
events are modeled by event generators based on theoretical
models, therefore, realistic predictions are essential to dimin-
ish systematic errors in the neutrino energy reconstruction
[11,12]. Moreover, at low-Q2, model predictions systemati-
cally overshoot experimental cross sections from T2K and,
mostly, MINERvA datasets [13]; it makes the study of model
uncertainties in this region interesting.

There are several approaches describing electroweak SPP
on the nucleon [14–25]. By kinematic constraints, the am-
plitudes for SPP on free nucleons can at most depend on
the invariant mass W , the squared four-momentum transfer
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Q2, and the scattering angles of the pion �π . The underlying
description for these amplitudes, usually in terms of nucleons,
mesons and nucleon resonances, can depend explicitly on the
kinematics of all external particles. Therefore, the use of such
a model for SPP in the nucleus has to deal with this depen-
dence, and with the fact that the nucleons inside the nucleus
are not fixed momentum states, i.e., they are off shell. The
study of this off-shellness is the main purpose of this work.
For this reason we use the model of Ref. [26]. It is based
on the tree-level diagrams from the nonlinear sigma model
Lagrangian [27], as used in many descriptions of SPP in the
� region. These diagrams make it straightforward to compute
the amplitude for kinematics reached in SPP on the nucleus,
and to include the off-shell features aforementioned.

The initial nucleon wave function is obtained by solv-
ing the Dirac equation with relativistic mean field (RMF)
potentials [28]. For the final nucleon we work within the
relativistic distorted wave impulse approximation (RDWIA)
[29,30], which means that the scattered nucleon wave function
is also a solution of the Dirac equation in the continuum. In
this work, we will use the energy-dependent RMF (ED-RMF)
potential [31], in which orthogonality between initial- and
final-nucleon states is preserved by construction. We describe
the pion as a plane wave; work is in progress on implementing
the distortion of the pion wave function in our framework.
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In the present work we go beyond the so-called asymptotic
approximation, which is widely used, including in the Hybrid
model [13,32]. It is more often called “local approximation”
[24,33–35], because it eliminates coordinate derivatives in
coordinate space expressions. Analogously, in momentum
space the asymptotic approximation consists in defining the
hadronic operator using the asymptotic values of the particle
four-vectors (i.e., their values out of the nucleus) instead of
those inside the nucleus. In this work, all computations are
performed in momentum space,1 so the nonasymptotic (or
nonlocal) treatment can be trivially fully implemented. The
advantage of the asymptotic approach is that it is compu-
tationally much less demanding (this will become clear in
the next section). In Refs. [24,33–35,37–40] comparisons be-
tween the asymptotic approximation and the full calculation
were performed for photon- and lepton-induced coherent and
incoherent pion production.

In this work, for the first time, we present a study of the
nonlocality effects within the framework of a fully relativistic
nuclear model and for incoherent single-pion electro- and
neutrino-production on nuclei, in particular for 12C. Both SPP
contributions to the inclusive and semi-inclusive differential
cross sections for different lepton kinematics at low-Q2 are
presented. We find nontrivial differences with corrections both
to the shape and strength of the cross section.

This work is organized as follows. In Sec. II we briefly
describe the SPP process: In Sec. II A we explain the kine-
matics and cross section of SPP on the nucleus; in Sec. II B we
summarize the most important aspects about the pion model
we use, and the treatment of the nuclear dynamics. Results
and conclusions are presented in Secs. III and IV, respectively.
Finally, in the Appendix we provide details of a change of
variables that allows for the analytic integration over one of
the angles that defines the kinematics, which helps to reduce
the computational effort.

II. SINGLE-PION PRODUCTION ON THE NUCLEUS

We describe the SPP process as a one-nucleon interaction
instead of a many-body one, and assume that only one boson
is exchanged between leptonic and hadronic systems. These
two deep-rooted considerations are the so-called impulse
approximation (IA) and the first-order Born approximation,
respectively.

The process is sketched in Fig. 1. An initial lepton with
four-vector Ki = (Ei, ki ) goes to the final one with Kf =
(E f , k f ) via exchange of a single boson with Q = (ω, q). The
boson couples to a bound nucleon with P = (E , p) in the
nucleus A with PA = (EA, pA). After the transition in which
a single pion is produced, represented as Oμ

1π , the final state
is made up of the knockout nucleon with PN = (EN , pN ), the
final pion with Kπ = (Eπ , kπ ), and the residual system PB =
(EB, pB). For the case of the nucleon, the interaction with the
residual system is taken into account, so inside the nucleus the

1To our knowledge, the pioneering works for pion photoproduction
of Refs. [34,36] were the first ones that computed the amplitude in
momentum space.

FIG. 1. Diagrammatic representation of the general SPP process
with all four-momenta depicted.

four-vector of the struck nucleon is P′
N = (EN , p′

N ), being off
shell.

A. Kinematics and cross section

To describe the kinematics, and therefore, obtain the cross
section of the SPP process, only nine independent vari-
ables are needed [41]. We choose the following variables2

(ki, k f , θ f , kπ ,�π,�N , Em) as our nine-dimensional phase
space.

The four-momentum of the exchanged boson between the
lepton vertex and the hadronic vertex is given by

Q = Ki − Kf , (1)

its three-momentum q is taken along the ẑ axis, q = (0, 0, q).
Imposing four-momentum conservation, we obtain, for the
hadronic vertex

Q + PA = Kπ + PN + PB. (2)

With the initial nucleus at rest, PA = (mA, 0), momentum and
energy conservation give

q = pB + pN + kπ , (3)

ω + mA = EB + EN + Eπ , (4)

where E2
B = p2

B + m2
B. The mass of the residual system is

related to the missing energy as mB = Em + mA − M, being M
the mass of the knockout nucleon. From Eqs. (4) and (3) one
obtains a second-order equation for pN . The explicit solution
can be found in Ref. [41], such that for certain kinematics
the cross section for the two energy-momentum conserving
solutions should be added incoherently.

The electroweak cross section, in the most general way
[10], is given by3

d10σ

dk f dpN dkπ dEm
= ρ(Em)FX

(2π )8
δ(EN + Eπ − ω − E )LμνHμν,

(5)

2The variable Em represents the missing energy, i.e., the amount of
energy transferred to the residual system B as internal energy.

3Note that nothing depends on the final lepton azimuth angle φ f .
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where E = mA − EB. The function ρ(Em) represents the den-
sity of final states for the residual nucleus. The factor FX is
given by

FEM = (4πα)2

Q4
, FCC = (GF cos θc)2

2
, (6)

depending on whether the interaction is electromagnetic (EM)
or charged current (CC), α being the fine-structure constant,
GF the Fermi coupling constant and θc the Cabibbo angle. The
quantity Q2 is defined as positive:

Q2 = −(Ki − Kf )2 = q2 − ω2 > 0. (7)

The dimensionless lepton tensor Lμν , which depends on the
type of the interaction (EM or CC), is defined as

LEM
μν = 1

2EiE f
Sμν

LCC
μν = 2

EiE f
(Sμν − ihAμν ),

(8)

where it has been separated into symmetric (S) and antisym-
metric (A) tensors, given by

Sμν = Ki,μKf ,ν + Ki,νKf ,μ − gμνKi · Kf ,

Aμν = εαβμνKα
i Kβ

f . (9)

In Eqs. (8) and (9), gμν is the metric tensor given by gμν =
diag(+,−,−,−), εαβμν is the fully antisymmetric Levi-
Civita tensor within the convention ε0123 = +1, i represents
the imaginary unit, and h stands for the initial lepton helicity,
h = −1 (+1) for neutrinos (antineutrinos).

The hadronic tensor is defined for each nuclear shell κ as

Hμν
κ = Nκ

2 j + 1

∑
mj ,sN

(Jμ)†Jν, (10)

where we are summing over all final spin states, sN being
the projection of the spin of the final nucleon, and averaging
over initial spin states, mj being the projection of the angular
momentum j of the bound state. Nκ stands for the occupation
of the nuclear shell.4 All the nuclear information is enclosed
in the hadronic current

Jμ = Jμ(κ, mj, sN , Q, PN , Kπ ). (11)

The discussion of the hadronic current is exposed in Sec. II B.
Integrating the Dirac delta in Eq. (5) over pN we get

d9σ

dE f d� dEπ d�π�N dEm
= FX

E f k f EπkπEN pN

(2π )8 frec

× ρ(Em) LμνHμν, (12)

where

frec =
∣∣∣∣1 + EN

EB

(
1 + pN · (kπ − q)

p2
N

)∣∣∣∣, (13)

is the recoil factor.

4Within a pure shell model ρ(Em ) = ∑
κ δ(Em − E κ

m ), where E κ
m is

a fixed value for each shell, and Nκ = 2 j + 1.

B. Nuclear framework and single-pion production model

The Hybrid model is included in the nuclear dynamics
through the hadronic current of Eq. (11), as all the nuclear
information is confined in it. For the most general case, it is of
the form

Jμ = 1

(2π )3/2

∫
dp

∫
dk′

π ψ̄ sN (p′
N , pN )φ∗(k′

π , kπ )

×,Oμ
1π (Q, P′

N , K ′
π )ψmj

κ (p) (14)

with p′
N = q + p − k′

π . Here Oμ
1π represents the SPP current

operator, ψ
mj
κ (p) is the Fourier transform of the bound nu-

cleon relativistic wave function in coordinate space

ψ
mj
κ (p) = 1

(2π )3/2

∫
dr e−ip·rψmj

κ (r), (15)

ψ
mj
κ (r) is computed within the RMF model [28], which is

an extension of the original Walecka σ -ω model [42]. The
single particle wave function ψ

mj
κ (r) is the solution of the

Dirac equation with central scalar and vector potentials, with
well-defined energy and angular momentum. On the other
hand, ψ sN (p′

N , pN ) is the Fourier transform of the relativistic
wave function of the knockout nucleon with fixed energy and
spin,

ψ sN (p′
N , pN ) = 4π

√
EN + M

2M

∑
κ,mj ,ml

e−iδκ il

×
〈
lml

1

2
sN | jm j

〉
Y ml

l (�pN
)ψmj

κ (p′
N ), (16)

where δκ is the phase shift, 〈 j1m1 j2m2|JM〉 are Clebsch-
Gordan coefficients, Y ml

l (�pN ) are spherical harmonics, and
ψ

mj
κ (p′

N ) is a spinor obtained as in Eq. (15). For the final
nucleon we use the ED-RMF potential [32], so orthogonality
between nucleon initial and final states is automatically satis-
fied, which is important to avoid spurious contributions to the
cross section [43,44]. Finally, φ(k′

π , kπ ) corresponds to the
final pion wave function in momentum space. In the most gen-
eral case, the pion and nucleon in Eq. (14) are both off shell.
They are not pure momentum states, the momentum depen-
dence is given by the primed momenta, while the unprimed
one is the asymptotic momentum given by pN =

√
E2

N − M2

and kπ = √
E2

π − m2
π .

In this work, we describe the pion as a plane wave,

φ(k′
π , kπ ) =

√
(2π )3

2Eπ

δ(3)(k′
π − kπ ), (17)

and therefore, Eq. (14) simplifies to

Jμ = 1√
2Eπ

∫
dp ψ̄ sN (p′

N , pN )Oμ
1π (Q, P′

N , Kπ )ψmj
κ (p)

(18)

with p′
N = q + p − kπ . It is also interesting to consider the

RPWIA case where both the final nucleon and pion are plane
waves. By computing this, the impact of the distortion in the
final nucleon can be assessed. In this scenario, the hadronic
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FIG. 2. Left: s-channel (resonance pole, RP). Right: u-channel
(cross-resonance pole, CRP).

current is

Jμ =
√

(2π )3M

2EπEN
ū(pN , sN )Oμ

1π (Q, PN , Kπ )ψmj
κ (p) (19)

with p = pN + kπ − q.

Current operator

The current operator is constructed by summing the am-
plitudes coming from several Feynman diagrams. On one
hand, the direct (RP or resonance pole) and crossed (CRP
or crossed-resonance pole) diagrams for nucleon resonances
can be seen in Fig. 2. The resonances included here are the
P33(1232) or � baryon, D33(1515), P11(1430), and S11(1535).

Moreover, the tree level background terms derived from the
πN Lagrangian of chiral perturbation theory (ChPT) are also
included. The background contributions are shown in Fig. 3.

All these diagrams constitute the Hernandez, Nieves, and
Valverde (HNV) model of Refs. [14,45,46], which is valid
for invariant masses W � 1.4 GeV, where W = √

s and s =
(P + Q)2. Then, this model reaches its limit of applicability
as it only includes lowest-order amplitudes (see, for instance,
Ref. [26]). For that reason, in Ref. [26], an extension of
the model based on Regge phenomenology [47–51] was pre-
sented. The Regge approach is a well-tested formalism that
permits access to the high energy regime (W > 2 GeV). The
Regge phenomenology was applied by reggeizing the ChPT-
background contributions, what was denominated in Ref. [26]
as the “ReChi model.” Finally, both models, HNV and ReChi,
were combined by a blending function that transitions from
one model to the another while W increases.

The resulting Hybrid model has been used in several
works, for both electro- and neutrino production. In Ref. [26],

FIG. 3. ChPT-background diagrams (from left to right and top
to bottom): s-channel (nucleon pole, NP), u-channel (cross-nucleon
pole, CNP), contact term (CT), pion pole (PP), and t-channel (pion-
in-flight term, PF).

FIG. 4. Inclusive 12C(e, e′) cross section using different pieces of
the current operator for a specific lepton kinematics. The black line
is for the � contribution, the purple line is for reggeized background,
and the blue line is the contribution from the other three resonances.
The dashed orange line is the ChPT background but without Regge.
Calculations were performed within the RPWIA approach.

it was tested on free nucleons. In Refs. [52–54], it was ap-
plied within the relativistic plane wave impulse approximation
(RPWIA) to scattering on nuclei. Finally, in Refs. [13,32], the
distortion of the final nucleon was included. Moreover, the
low energy part of the model has been implemented in the
NuWro Monte Carlo event generator [55].

As an example, in Fig. 4 we show the contributions cen-
tered on the delta (and slightly beyond it) of different parts of
the operator for electron scattering. We also show the behavior
of the ChPT contribution without the Regge phenomenology
so one can judge its impact at high energies. Note that the
final result is not the sum of the cross section contributions
displayed separately in Fig. 4 but the coherent sum of their
amplitudes; see Eq. (20).

The current operator of the hadronic current reads

Oμ
1π =

∑
R

Oμ
R + Oμ

ChPT, (20)

where Oμ
R is the operator of resonance R, taking into ac-

count that Oμ
R = Oμ

RP + Oμ
CRP. Analogously, Oμ

ChPT represents
the sum of the different nonresonant background current
operators.

So far, all the Hybrid model predictions with nucleon
distortion have been carried out using the asymptotic approx-
imation. It consists in replacing the primed momenta in the
operator by their asymptotic values,

Oμ
1π (Q, P′

N , K ′
π ) −→ Oμ

1π (Q, PN , Kπ ), (21)

hence, the operator does not depend on p anymore and
has to be evaluated only once before the integral over p
in Eq. (18). The current operator Oμ

1π is a complex object
whose evaluation requires a non-negligible computational
effort, so the asymptotic approximation allowed us in previ-
ous works to produce systematic comparisons with inclusive
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FIG. 5. The effect of the asymptotic approximation on the
P11(1430) RP diagram. Double differential cross sections for the
reaction 12C(e, e′) for the channel n → pπ− within two different
incoming energies are presented as a function of W free. Solid lines
are for Ei = 1 GeV, dashed lines are for Ei = 2 GeV.

electron-nucleus and flux-folded neutrino-nucleus cross sec-
tion data [13,32], which otherwise would have been too
computationally demanding. In the RPWIA case, where final
particles are described by plane waves and therefore they are
on shell, it is meaningless to talk about asymptotic approxi-
mation or full calculation; both are exactly equivalent.

From the explicit expressions of the diagrams in Figs. 2
and 3, given in Ref. [26], it is easy to see that the terms
that are affected by the asymptotic approximation to Eq. (18),
are the propagators of the direct and crossed resonances (in-
cluding the nucleon pole). For the spin-3/2 resonances, the
electroweak coupling to the resonance is affected as well,
through the terms proportional to CV

4 , CA
4 , and CV

5 . This can
be seen in Ref. [26]. As the pion is treated as a plane wave
in this work, the contributions of the PP and PF terms will
not change. When pion distortion would be included, only the
contact terms are unaffected by the asymptotic approximation.

As an example of how the full or approximate treatments
of the operator can change each term in Eq. (20), in Fig. 5 we
show the double differential electromagnetic cross section for
the n → pπ− channel with two different incoming energies
as a function of W free =

√
M2

N + 2ωMN − Q2, i.e., the invari-
ant mass if the interaction would occur on a free stationary
nucleon. We observe that the full calculation yields to a small
increment and a shift towards higher W free values with respect
to the approximate calculation.

III. RESULTS

Our motivation is to address the effects of the asymptotic
approximation, identifying the kinematical regions where it
works better and where it fails. For that, we focus on the study
of the SPP contribution to the inclusive and semi-inclusive
electron scattering cross sections on 12C. We also show neu-
trino scattering results for a fixed incoming energy.

A. Electroproduction

The SPP contribution to the inclusive cross section is ob-
tained by explicit integration over the hadronic variables,

d3σ

dω d�
=

∫
dTN d�N d�π

d8σ

dω d� dTN d�π d�N
. (22)

In Fig. 6 we show our predictions for the SPP contribu-
tion to the inclusive cross section and compare them with
experimental data. We present RDWIA with and without the
asymptotic approximation, and RPWIA. For the nucleon dis-
tortion, we have considered the ED-RMF potential; though
not shown here, we also performed calculations with the real
part of the energy-dependent A-independent carbon-12 poten-
tial (EDAI-C) of Ref. [59], and found only slight differences
with respect to ED-RMF, mainly in the low TN region, as
expected [31,60].

The panels show four different kinematics. First, we
point out that an underprediction of the experimental data
is expected, as other reaction channels contributing to the
experimental signal, like quasielastic scattering, multinucleon
knockout, and two-pion production, among others, are not
included.

In Ref. [32] it was found that, within the asymptotic ap-
proximation, the distortion of the final nucleon resulted in
a reduction of the total strength and a shift of the distribu-
tions towards lower ω values, with respect to the RPWIA
predictions that are taken as reference. Here, we find that
with the full calculation (i.e., RDWIA and without asymptotic
approximation) the reduction of the strength tends to remain
but the shift disappears.

At high energy and momentum transfer, which corresponds
to high kinetic energy of the knocked out nucleon, the three
approaches must tend to move closer to each other, because
the energy dependent potentials weaken for increasing nu-
cleon energies [32]. This is confirmed by the results in Fig. 6,
where we observe that the predictions from the three models
are quite different at low energies, panel (a), but they tend to
get closer for higher energies, panels (c) and (d).

It is interesting to observe that, for the kinematics of
Figs. 6(c) and 6(d), the full model is extremely close to the
much simpler RPWIA one. It would be dangerous to under-
stand from this that the RPWIA treatment is compatible with
the more complete RDWIA approach. From the results in
Fig. 6, we do conclude that the impact of the approximations
in the 1π production operator are comparable to those of nu-
cleon distortion and around or below 10% for these inclusive
results, depending on the kinematics.

To better understand the effect of the full calculation, we
present in Fig. 7 the SPP contribution to the semi-inclusive
differential cross sections as a function of the kinetic energy
of the nucleon TN . The SPP contribution to the semi-inclusive
cross section is obtained integrating over the pion and nucleon
solid angles. We find TN to be the most relevant variable as
the nuclear potential felt by the final nucleon depends on it.
First, second, third and fourth rows correspond to the lepton
kinematics of Figs. 6(a)–6(d), respectively. In every row, we
show the results from low to high ω values in regular steps,
and we set the same scale for x and y axes to assess the actual
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FIG. 6. SPP contribution to the 12C(e, e′) inclusive cross section for different kinematics. Plots show the predictions of the RPWIA and
ED-RMF models with (APPROX) and without (FULL) asymptotic approximation. Data of panel (a) are from [56], data of panels (b) and
(c) are from [57], and data of panel (d) are from [58].

strength affecting the SPP contribution to the inclusive cross
section. We also give the Q2 value in each case.

We find that, in general, the full result and the one with
asymptotic approximation have similar shapes, determined by
the distortion of the nucleon. We find that the full calculation
is always lower than the approximate one up to ω ≈ 430 MeV,
then it is always larger up to ω ≈ 655 MeV, where the relative
magnitude switches again. This can explain, in part, that for
low incident energy we have a reduction of the inclusive cross
section and, as the incident energy increases, the situation is
reversed.

The shift and reduction of the strength from the distorted
wave models with respect to the RPWIA in Fig. 6 is a conse-
quence of the reduction of the cross section that occurs at low
TN , shown in Fig. 7. This reduction at low nucleon kinetic
energies is effectively shifting the full cross section shown
in Fig. 6 to higher energy transfers. It is in turn due to two
effects: (i) Pauli blocking, or in other words the orthogonality
between initial and final state, which is important only when
pN (TN ) is smaller than about 300 MeV (50 MeV); and (ii)
the distortion or FSI, which causes that the momentum of the

nucleon inside the nucleus is smeared out and is not the same
as the asymptotic momentum of the nucleon [32].

The three models tend to overlap as TN grows, where the
distortion effect diminishes. At low TN (<100 MeV) we find
large differences between the three approaches; this is relevant
when the cross section is large in that TN region, as is the
case of first row in Fig. 7, which corresponds to Fig. 6(a), but
irrelevant when the cross section is small for those TN values.

B. Neutrino CC 1π+ production

We have computed CC νμ-induced 1π+ production on 12C
differential cross section as a function of Q2 to assess the
effect of the full calculation at the low-Q2 region in the neu-
trino sector, where also the axial part of the current operator
contributes. The double differential cross section as a function
of ω and Q2 reads

d2σ

dω dQ2
= π

Eνkμ

× d2σ

dω d cos θμ

. (23)
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FIG. 7. SPP contribution to the 12C(e, e′) semi-inclusive cross section for different kinematics. Plots show RPWIA and ED-RMF (with and
without asymptotic approximation) treatments for the final nucleon. Each row is for a different kinematic, and the energy transfer ω is fixed
for each panel.

The squared four-momentum transfer is given by

Q2 = 2Eν (Eμ − kμ cos θμ) − m2
μ.

The final single differential cross section is obtained by ex-
plicit integration over ω in Eq. (23). Apart from full or
approximated calculations within the RDWIA approach, we
also show the RPWIA to account for the effect of the nucleon
distortion, as in the 12C(e, e′) results.

In Fig. 8 we show the SPP contribution to the single differ-
ential cross section as function of Q2 for different incoming
neutrino energies. We find a reduction in the low-Q2 region.
However, this reduction gets smaller as the incoming energy
increases, because the kinetic energy of the final nucleon TN

is less restricted to low values. In general, we obtain a slight
shift towards higher Q2 values. The neutrino Q2-distribution is
a topic that raises a lot of interest in the neutrino community.

FIG. 8. Single π+ production off 12C in terms of Q2 for two neutrino energies: Eν = 0.6 GeV and Eν = 1 GeV. Blue points represent
ED-RMF without asymptotic approximation and red lines represent ED-RMF with asymptotic approximation. Dashed black lines stand for
RPWIA.
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The MINERνA Collaboration reported a strong deficit of pion
production at low Q2, where a suppression is implemented
ad hoc in that region in order to get agreement with the
data [61]. Note that within our full calculation we have a
reduction specifically in this region, so the effect of the nu-
cleon distortion is incremented with respect to the plane-wave
approach. We expect the pion distortion to reduce the strength
of the cross section even more, in particular, at low Tπ , which
(ignoring nuclear recoil) corresponds to high TN .

IV. CONCLUSIONS

In this work, we have evaluated the impact of using an
approximated treatment of the hadronic current for SPP, in
the context of electron and neutrino scattering off 12C. In
particular, we have compared the results obtained with a
local (or asymptotic approximation) and a nonlocal current
operator. This study is of relevance because the asymptotic ap-
proximation, which makes calculations computationally more
tractable in distorted-wave approaches, has been used in the
past, by our group and others.

For the electromagnetic interaction, we show results for
four different lepton kinematics comparing the RPWIA and
the ED-RMF with and without the asymptotic approximation
in the SPP operator. Nontrivial differences are found between
the three approaches. The most prominent features are that the
two RDWIA approaches provide a reduction of the strength
with respect to the plane-wave picture at low and moderate
energy-momentum transfer, and that the position of the peak
of the cross section for the full model agrees well with the
peak position from RPWIA, while with the asymptotic ap-
proximation one observes a shift towards lower ω values.

For increasing incident energy (and hence increasing
energy-momentum transfer), the three models tends to get
closer to each other, as expected.

While results from only the SPP contribution to the inclu-
sive cross section seem to imply that the full calculation is
closer to the RPWIA than the approximate results, this is not
the case for the SPP contribution to the semi-inclusive cross
section. In this case we see that the approximated and full
RDWIA models, in fact, are close to each other particularly
in shape, with RPWIA the most different one. The difference
at low TN is most apparent.

In the neutrino sector, where for the first time this effect
has been studied on 12C, we find corrections to the differential
cross section similar to the electroproduction case. We see a
reduction at low Q2 and a mild shift towards higher Q2 values
compared to the asymptotic approximation. These changes
are more noticeable as the incoming energy decreases. This
implies a larger difference between RDWIA and RPWIA
treatments for the final nucleon, which shows the importance
of taking into account nuclear effects and FSI.

Overall, we find the impact of this effect to be important
to describe lepton-induced SPP cross section data, either in-
clusive or semi-inclusive. In particular, this effect is more
prominent at low energies.

The distortion and Pauli exclusion principle can only be
correctly addressed in a fully quantum mechanical framework,
we find that these nuclear effects play an important role in

the interpretation of neutrino-nucleus interactions, especially
at low and moderate energy and momentum transfer or, equiv-
alently, at low-Q2.

The next step is to develop the RDWIA formalism for the
final pion, and test the effect together with the other ingredi-
ents of the nuclear matrix elements.
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APPENDIX: ANALYTICAL INTEGRATION
OF ONE AZIMUTH ANGLE

We provide the explicit expressions of a simple change of
variable which allows integrating one phase space azimuth
angle analytically. This is a very useful tool, especially when
the phase space is vast, as in the pion production regime. In
the reference frame where q = (0, 0, q) (denoted as {x̂, ŷ, ẑ}),
the three-momenta of the final nucleon and pion read

p(xyz)
N = pN (sin θN cos φN , sin θN sin φN , cos θN ),

k(xyz)
π = kπ (sin θπ cos φπ, sin θπ sin φπ, cos θπ ).

(A1)

The suitable variable transformation [62,63] will be

φ = φπ + φN

2
, �φ = φN − φπ, (A2)

where φ ∈ (0, 2π ] and �φ ∈ (−2π, 2π ].
The inverse transformation is therefore

φπ = φ − �φ

2
, φN = φ + �φ

2
. (A3)

FIG. 9. Sketch of the domain (shaded area) of the variables be-
fore and after the transformation.
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From Eqs. (A3) and (A1), we obtain

p(xyz)
N = pN

(
sin θN

[
cos φ cos

�φ

2
− sin φ sin

�φ

2

]
, sin θN

[
sin φ cos

�φ

2
+ cos φ sin

�φ

2

]
, cos θN

)
,

k(xyz)
π = kπ

(
sin θπ

[
cos φ cos

�φ

2
+ sin φ sin

�φ

2

]
, sin θπ

[
sin φ cos

�φ

2
− cos φ sin

�φ

2

]
, cos θπ

)
. (A4)

Rotating the whole hadronic system an angle φ along ẑ [this
reference system is denoted as {1̂, 2̂, 3̂}] we get for the three-
momenta of the final hadrons

p(123)
N = pN

(
sin θN cos

�φ

2
, sin θN sin

�φ

2
, cos θN

)
,

k(123)
π = kπ

(
sin θπ cos

�φ

2
, − sin θπ sin

�φ

2
, cos θπ

)
,

(A5)

where neither depend on φ. Finally, the hadronic current in
the original reference frame, expressed in terms of the current
in the new one, reads

J0 = J ′
0,

J1 = cos φ J ′
1 − sin φ J ′

2,

J2 = sin φ J ′
1 + cos φ J ′

2,

J3 = J ′
3,

(A6)

where Jμ ≡ J (xyz)
μ and J ′

μ ≡ J (123)
μ . Following Eq. (A6), it is

straightforward to obtain the hadron tensor in {x̂, ŷ, ẑ} as

a linear combination of the hadron tensor in {1̂, 2̂, 3̂}. The
dependence on φ has factorized and then can be integrated
analytically. For the analytic integration over φ one must take
into account that the Jacobian for the transformation {φπ ∈
(0, 2π ], φN ∈ (0, 2π ]} to {φ ∈ (0, 2π ],�φ ∈ (−2π, 2π ]} is
1 and the integration limits for an integral over φ depend on
�φ, as sketched in Fig. 9.

This is for the particular case of two azimuth angles, as
we have two particles in the final state. However, this can be
trivially extended to an N-particle final state, with N azimuth
angles φ1, . . . , φN , where is is always possible to integrate one
of them analytically. Analogously to Eq. (A2), we will have

φ = 1

N

N∑
i=1

φi, �φ1i = φ1 − φi (A7)

for i = 2, . . . , N . Thus, the new N variables are
φ, �φ12, . . . , �φ1N . Now, the procedure is the same as
in the two-angles case.
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