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Effects of viscosity and scission configuration on the fission dynamics of the excited compound
nucleus 240Pu produced in neutron-induced reactions
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The fission process of the excited compound nucleus 240Pu produced in neutron-induced reactions at incident
energies from thermal to 14 MeV has been simulated by using a stochastic approach based on four-dimensional
Langevin equations. The fission cross section, the total kinetic energy of fission fragments, the mass distribution
of fission fragments, the average prompt neutron multiplicity, the average spin of fission fragments, and the mean
fission time have been calculated for the excited compound nucleus 240Pu. Three collective shape coordinates
plus the projection of total spin of the compound nucleus on the symmetry axis, K , were considered in the
four-dimensional dynamical model. In the dynamical calculations the effect of the neck radius in the scission
configuration on the total kinetic energy of fission fragments of the 240Pu nucleus was examined. In the dynamical
calculations, nuclear dissipation was generated through the chaos weighted wall-and-window friction formula
with a chaoticity coefficient μ. In the calculations, the chaoticity coefficient was considered as a free parameter
and its magnitude was inferred for 240Pu by fitting measured data on the fission cross section. It was shown
that the results of calculations for the fission cross section are in good agreement with the experimental data
by using the magnitude of the chaoticity coefficient μ = 0.4. Furthermore, by reproducing experimental data
on the total kinetic energy of fission fragments for the excited compound nucleus 240Pu, the magnitude of the
neck radius at which rupture occurs was inferred. It was shown that the results of the total kinetic energy of
fission fragments are very sensitive to the value of the neck radius at which rupture occurs. It was also shown
that the results of calculations for the total kinetic energy of fission fragments for 240Pu are in good agreement
with the experimental data by using the magnitude of the radius in the scission configuration equal to 2.2 fm.
Furthermore, the mass distribution of fission fragments and the average prompt neutron multiplicity have also
been calculated for 240Pu by using these appropriate values for the chaoticity coefficient and the neck radius in the
scission configuration. Comparison of the calculated data with the experimental data has shown that the results
of calculations are in good agreement with the experimental data by using these appropriate values. Finally, the
average spin of fission fragments and the mean fission time have also been calculated for 240Pu. It was shown
that the average spin of fission fragments is strongly mass dependent and has a sawtooth shape, and also the
mean fission time decreases rapidly with increasing incident neutron energy.

DOI: 10.1103/PhysRevC.109.024602

I. INTRODUCTION

Although the phenomenon of nuclear fission was discov-
ered 80 years ago, the study of fission is still of general
interest. Furthermore, the dynamical process towards the scis-
sion point is still not completely understood, and knowledge
about the scission configuration is quite lacking. Also, a com-
prehensive model has not yet been presented for a description
of this process. Fission may take place in any of the heavy
nuclei after capture of a neutron. However, thermal neutrons
are able to cause fission only in some isotopes of transuranic
elements whose nuclei contain odd numbers of neutrons, for
example 233U, 235U, and 239Pu. For nuclei containing an even
number of neutrons, fission can only occur if the incident
neutrons have energy above about 106 eV. After a fission
event, fission fragments generally are highly excited, and they
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deexcite by emitting several light particles such as prompt
neutrons, γ rays, and delayed neutrons. It should be men-
tioned that fission fragments yield plays an important role
in many nuclear physics applications such as radioisotope
production for medical applications, development of advanced
reactors, and so on. The nuclear fission of nuclei can be
descripted by statistical or dynamical models (see for example
Refs. [1–15]. The Langevin equations or the Fokker-Planck
equation generally have been used in the dynamical calcula-
tions. However, during the last three decades the Langevin
equations has been used extensively to describe fission of
excited compound nuclei. The Fokker-Plank equation can be
solved only by using approximate methods, while numerical
solution of the Langevin equations is possible nearly without
any approximations. It should be noted that in simulation of
the fission process of a compound nucleus it is very important
to consider the evolution of the projection of total spin of
the compound nucleus on the symmetry axis [16,17]. In the
present research, the four-dimensional (4D) dynamical model
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based on the Langevin equations is used to simulate the fission
process of the excited compound nucleus 240Pu produced in
the n + 239Pu reaction at incident energies from thermal to
14 MeV. The fission cross section, the total kinetic energy of
fission fragments, the mass distribution of fission fragments,
the average prompt neutron multiplicity, the average spin of
fission fragments, and the mean fission time are calculated for
240Pu. It should be stressed that at low excitation energy it is
essential to consider quantum (shell and pairing) effects. For
example, consideration of the shell effects causes production
of a double-humped shape of the mass and charge distribu-
tions of fission fragments. By excluding shell effects, one will
often obtain only a single-humped result. In the calculations,
the shell effects can be considered in calculation of the poten-
tial energy surface.

The main motivation of this work is to investigate the
effects of the neck radius in the scission configuration and the
nuclear dissipation on the fission process of 240Pu.

The present paper has been arranged as follows: the model
and basic equations are described in Sec. II. The results of
calculations are presented in Sec. III. Finally, the concluding
remarks are given in Sec. IV.

II. DETAILS OF THE MODEL AND BASIC EQUATIONS

In the present research, a dynamical model based on the
4D dynamical model is used to simulate the fission process of
240Pu nucleus produced in n + 239Pu reaction. Three collec-
tive shape coordinates plus the projection of total spin of the
compound nucleus to the symmetry axis, K , are considered in
the 4D dynamical model. In the 4D dynamical model, the time
evolution of an excited compound nucleus can be considered
by the coupled Langevin equations. The Langevin equations
can be defined as a system of first-order differential equations
as follows:

q̇i = μi j p j,

ṗi = −1

2
p j pk

∂μ jk

∂qi
− ∂F

∂qi
− γi jμ jk pk + θi jξ j, (1)

in these equations summation is assumed over repeated in-
dices. In Eq. (1) q = (q1, q2, q3) are the collective coordinates
and p = (p1, p2, p3) are the momenta conjugate to them.
The driving potential is given by the Helmholtz free energy
F (q, K ) = V (q, K ) − a(q)T 2, where V (q, K ) is the potential
energy. The deformation dependence of the level density pa-
rameter can be determined as [18]

a(q) = avA + asA
2/3Bs(q), (2)

where Bs is the dimensionless functional of the surface en-
ergy in the liquid-drop model and A is the mass number of
the fissile nucleus. The coefficients av = 0.073 MeV−1 and
as = 0.095 MeV−1 are taken from Ref. [18]. In Eq. (1) γi j

is the friction tensor, mi j (‖μi j‖ = ‖mi j‖−1) is the tensor of
inertia, θi jξ j is a random force, θi j is its amplitude, and ξ j (t )
is a random variable that possesses the following statistical
properties 〈ξi〉 = 0 and 〈ξi(t1)ξ j (t2)〉 = 2δi jδ(t1 − t2).

In the present research the two-center shell model shape
parametrization (TCSM) [19] is used as the collective shape

FIG. 1. Shape parametrizations based on the TCSM for a fission-
ing system.

coordinates. In terms of this parametrization one can describe
both compact shapes and separated fragments. In the TCSM
parametrization, the collective coordinates are (q1, q2, q3) =
(r/R0, η, α), where r is the distance between the centers of the
nascent fragments, R0 is the radius of the spherical compound
nucleus, and α = (A1 − A2)/(A1 + A2) is the mass asymme-
try of the two fragments, where A1 and A2 are the mass
numbers of fragments. The parameter η is the deformation of
the fragments, and can be defined as ηi = 3(ai − bi )/(2ai +
bi ) with i = 1, 2 for each fragment. Parameters ai and bi are
the half lengths of the axes of an ellipse in z and ρ directions
of the cylindrical coordinates, as shown in Fig. 1.

It should be mentioned that, in the present research, it is
assumed that the shapes of the fission fragment tips of the left
and right fragments are the same (η = η1 = η2).

In the present calculations, the simulation of the fission
process of the compound nucleus is considered from the
ground state with the excitation energy E∗. The initial con-
ditions can be generated by the Neumann method with the
generating function

P(q0, p0, I, t = 0) ≈ exp

[
−V (q0, I, K ) + Ecoll(q0, p0)

T

]

× δ(q0 − qgs)
dσ (I )

dI
, (3)

where qgs are the coordinates of the ground state of the com-
pound nucleus. The initial shape of the nucleus is assumed to
be spherical, q0 = qgs = (r/R0 = 0.75, η = 0.0, α = 0.0),
and the momentum distribution is taken to be in equilibrium.
The initial spin for each Langevin trajectory can be sam-
pled by the Monte Carlo method from the following spin
distribution [20]:

dσ (I )

dI
= 2π

k2

2I + 1

1 + exp
( I−Ic

δI

) , (4)

where δI is the diffuseness and Ic is the critical spin. The
parameters δI and Ic can be approximated by the relations
presented in Ref. [20]. Figure 2 shows the spin distribution for
240Pu as a function of spin produced in the n + 239Pu reaction,
for example, for projectile energies Ec.m. = 5, 7, 10 MeV. It
is clear from Fig. 2 that, with increasing projectile energy, the
probability of forming the compound nucleus with higher spin
increases.

It should be mentioned that many authors in their calcu-
lations describing different features of the fission process of
excited nuclei assumed that the nuclei have zero spin about
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FIG. 2. The spin distribution for 240Pu as a function of spin for
projectile energies Ec.m. = 5, 7, 10 MeV .

the symmetry axis. However, this assumption is incorrect. The
authors of Ref. [21] showed that evolution of the K collective
coordinate can be considered as

dK = −γ 2
K I2

2

∂V

∂K
dt + γK Iξ (t )

√
T dt, (5)

where ξ (t ) has the same properties as in Eq. (1) and γK

is a parameter controlling the coupling between the orienta-
tion degree of freedom K and the heat bath. The authors of
Refs. [17,21] based on the works of Døssing and Randrup
[22,23] have shown that γK in the case of a dinucleus can be
determined as

γK = 1

RN r
√

2π3 n0

√
JR|Jeff |J||

J3
⊥

, (6)

where JR = M0r2/4 for a reflection symmetric shape, J|| and
J⊥ are the rigid body moments of inertia about and perpen-
dicular to the symmetry axis, and Jeff is the effective moment
of inertia: Jeff = [J−1

|| − J−1
⊥ ]

−1
. The rigid body moments of

inertia, about and perpendicular to the symmetry axis, can be
determined as in Ref. [24]. RN is the neck radius, r is the
distance between the centers of mass of the nascent fragments,
and n0 = 0.0263 MeVzsfm−4 is the bulk flux in the standard
nuclear matter [22]. It should be mentioned that Eq. (5),
and the Langevin equations, Eq. (1), are connected through
the potential energy. For a dinucleus the magnitude of γK

can be determined according to Eq. (6). On the other hand,
in order to perform numerical integration of the Langevin
equation for the K coordinate one needs to determine the
value of γK for all possible nuclear deformations. The mag-
nitude of γK for mononuclear shapes can be determined by
extrapolating Eq. (6). It should be mentioned that Lestone
and McCalla in Ref. [25] showed that the γk coefficient for
compound nuclei with shapes featuring a neck has a small
value, 0.0077 (MeVzs)−1/2. Furthermore, Nadtochy et al. in
Ref. [12] used the deformation dependent γk in the four-
dimensional dynamical Langevin model and showed that,
for reproducing experimental data on the anisotropy of the
fission fragment angular distribution, the γk coefficient

should increase up to 0.2–0.4 (MeVzs)−1/2 for compact
shapes featuring no neck for the compound nuclei with
ACN

∼= 200 and up to 0.1–0.2 (MeVzs)−1/2 for the heavier
nuclei with ACN

∼= 250.
For a given value of a temperature of a system, the potential

energy at low excitation energy can be calculated on the basis
of the finite-range liquid drop model [26,27] considering shell
correction as follows:

V (q, I, K, T ) = VSH (q, T ) + V LDM (q) + Erot , (7)

where VSH (q, T ) is the shell correction energy that can be
evaluated by the Strutinski method from the single-particle
levels of the two-center shell model [28,29]. The shell cor-
rection can be given as

VSH (q, T ) = Eo
shell(q)�(T ), (8)

where factor �(T ) is the temperature dependence of the shell
correction. Factor �(T ) can be calculated by [30]

�(T ) = exp

(
−aT 2

Ed

)
, (9)

where a is the level density parameter and Ed is the shell
damping energy. The magnitude of Ed = 20 MeV was sug-
gested by Ignatyuk and his coauthors in Ref. [18]. The shell
correction energy at zero temperature reduces to E0

shell. The
shell correction energy at zero temperature can be determined
with the pairing energy and the shell effects in total single-
particle energy as follows:

E0
shell(q, T = 0) =

∑
n,p

[
E (n,p)

shell (q) + E (n,p)
pair (q)

]
, (10)

where E (n,p)
shell (q) and E (n,p)

pair (q) can be calculated in the
Bardeen-Cooper-Schrieffer (BCS) approximation [29,31] and
the Strutinsky prescription [28,31,32].

The rotational part of the potential energy is calculated by

Erot (q, I, K ) = h̄2I (I + 1)

2J⊥(q)
+ h̄2 K2

2Jeff (q)
. (11)

Figure 3 shows the potential energy surface for the com-
pound nucleus 240Pu as a function of the collective coordinates
r/R0 and α (for example) at η = 0.15. It should be mentioned
that Fig. 3 presents the potential energy surface for the com-
pound nucleus 240Pu considering a similar small deformation
for the fission fragments, η1 = η2 = 0.15.

In the present calculations, dissipation is generated through
the chaos weighted wall-and-window friction formula. For
small elongation before neck formation, the chaos weighted
wall formula is used to calculate the friction tensor and after
neck formation used the chaos weighted wall-and-window
friction formula [33],

γi j =
{

μ(q1)γ wall
i j for nuclear shapes featuring no neck,

μ(q1)γ wall
i j + γ win

i j for nuclear shapes featuring a neck .

(12)
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FIG. 3. The potential energy surface as a function of the collec-
tive coordinates r/R0 and α at η = 0.15 for the compound nucleus
240Pu. The numbers at the contour lines represent the potential energy
values in MeV.

The chaoticity μ is a measure of chaos in the single-
particle motion and depends on the shape of the nucleus. The
magnitude of chaoticity μ changes from 0 to 1 as the nucleus
evolves from spherical to a deformed shape. The magnitude of
the chaoticity μ can be determined as in Ref. [34]. The value
μ = 1 corresponds to the standard wall and wall-plus-window
formulas. It should be mentioned that in the present research
for simplicity it is assumed that μ(q) ∼= μ(q1). Figure 4 shows
the chaoticity μ for 240Pu as a function of q1 = r/R0.

In Eq. (12) γ wall
i j and γ win

i j can be given by the relations
presented in Refs. [33,35]. For nuclear shapes featuring no
neck

γ wall
i j = πρm

2
v̄

∫ zmax

zmin

(
∂ρ2

s

∂qi

)(
∂ρ2

s

∂q j

)[
ρ2

s +
(

1

2

∂ρ2
s

∂z

)2
]−1/2

dz,

(13)

FIG. 4. The magnitude of chaoticity μ as a function of r/R0 for
the compound nucleus 240Pu.

and for nuclear shapes featuring a neck

γ wall
i j = πρm

2
v̄

{ ∫ zN

zmin

(
∂ρ2

s

∂qi
+ ∂ρ2

s

∂z

∂D1

∂qi

)

×
(

∂ρ2
s

∂q j
+ ∂ρ2

s

∂z

∂D1

∂q j

) [
ρ2

s +
(

1

2

∂ρ2
s

∂z

)2
]−1/2

dz

+
∫ zmax

zN

(
∂ρ2

s

∂qi
+ ∂ρ2

s

∂z

∂D2

∂qi

)(
∂ρ2

s

∂q j
+ ∂ρ2

s

∂z

∂D2

∂q j

)

×
[
ρ2

s +
(

1

2

∂ρ2
s

∂z

)2
]−1/2

dz

}
, (14)

γ win
i j = 1

2
ρmv̄

{(
∂r

∂qi

∂r

∂q j

)
σ + 32

9

1

σ

∂V1

∂qi

∂V1

∂q j

}
, (15)

where ρm is the mass density of the nucleus, v̄ is the average
nucleon speed inside the nucleus, r is the distance between
centers of mass of future fragments, σ is the area of the
window between two parts of the system, V1 is the volume of
one of the would-be fragments, ρs is the radial coordinate of
the nuclear surface, D1 and D2 are positions of mass centers
of the two parts of the fissioning system relative to the center
of mass of the whole system, zmin and zmax are the left and
right ends of the nuclear shape, and zN is the position of
the neck plane that divides the nucleus into two parts. In
the present calculations the inertia tensor is calculated by the
Werner-Wheeler approximation for the incompressible and
irrotational flow [36] as

mi j = πρm

∫ zmax

zmin

ρ2
s (z)(AiAj + 1

8
A′

iA
′
j )dz, (16)

where ρm is the mass density of the nucleus. In Eq. (16) the
primes denote the differentiation with respect to z and the
expansion coefficients, Aj , are determined from the condition
of incompressibility of a compound nucleus, where the time
derivative of its volume must vanish. Aj (z, q) can be given as

Aj (z, q) = − 1

ρ2
s (z)

∂

∂q j

∫ zmax

z
ρ2

s (z′)dz′. (17)

During a random walk along the trajectory in the collective
coordinate space, the total excitation energy of nucleus can be
determined by conservation of energy:

E∗ = Eint (t ) + Ecoll(q, p) + V (q, I, K, T ) + Eevap(t ), (18)

where Ecoll = 0.5μi j (q)pi p j is the kinetic energy of the nu-
cleus, Eint is the intrinsic excitation energy of the nucleus,
Eevap(t ) is the energy carried away by evaporated particles
by time t and V (q, I, K, T ) is the potential energy of the
compound nucleus.

In the present calculations, the total kinetic energy Ek of
the fission fragments is calculated as the sum of the nuclear
attractive energy Vn of the nascent fragments, the Coulomb
repulsion energy VC of the fragments, and the kinetic energy
Eps, of their relative motion, all of the terms being calculated
at the scission point. Therefore, if the trajectory reaches the
scission point the trajectory is treated as a fission event and
the mass numbers and total kinetic energy of two fission frag-
ments could be obtained. The mean value of the total kinetic
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energy at the scission point can be defined as follows:

〈Ek〉 = 〈VC〉 + 〈Vn〉 + 〈Eps〉. (19)

Furthermore, the mass distributions of fission fragments
can be calculated by the distribution of Y (Ek, M ). The frag-
ment masses are calculated by the formulas

ML = A
∫ zmax

zN
ρ2

s (z, qsc)dz∫ zmax

zmin
ρ2

s (z, qsc)dz
,

MR = A
∫ zN

zmin
ρ2

s (z, qsc)dz∫ zmax

zmin
ρ2

s (z, qsc)dz
, (20)

where A is the mass of the nucleus, ML and MR are the
mass of the left and right fission fragment, qsc is the scission
configuration of the nucleus, zmin and zmax are the left and
right ends of the nuclear surface, and zN is the position of
the neck plane that divides the nucleus into two parts. The
mass distributions of fission fragments can be calculated by
the following formula:

Y (M ) =
∫

Y (Ek, M )dEk . (21)

III. RESULTS AND DISCUSSIONS

A stochastic approach based on the 4D Langevin equations
has been used to describe the fission process of the excited
compound nucleus 240Pu produced in neutron-induced reac-
tions at incident energies from thermal to 14 MeV. The fission
cross section, the total kinetic energy of fission fragments,
the mass distribution of fission fragments, the average prompt
neutron multiplicity, the average spin of fission fragments,
and the mean fission time have been calculated for 240Pu. In
the dynamical calculations the effects of nuclear dissipation
on the fission cross section and the neck radius (at which
rupture occurs) on the total kinetic energy of fission fragments
have been investigated for the fission process of 240Pu. In
the dynamical calculations, nuclear dissipation was generated
through the chaos weighted wall-and-window friction formula
with a chaoticity coefficient μ(q1). It should be mentioned
that in the present research for simplicity it is assumed that
μ(q) ∼= μ(q1). Furthermore, in the dynamical calculations it
was assumed that the magnitude of chaoticity coefficient is
constant, with its magnitude inferred by reproducing exper-
imental data of the fission cross section for 240Pu, and the
results of calculations for both cases were compared with
each other. Figure 5 shows the results of calculations for the
fission cross section as a function of incident neutron energy
calculated for 240Pu considering different values of chaoticity
coefficient. It should be mentioned that the results of calcula-
tions for the fission cross section are not sensitive to the value
of the neck radius at which rupture occurs. This is because
when a compound nucleus descends from its saddle point,
the nucleus with high probability reaches the scission point
and splits. Therefore, for reproducing experimental data of the
fission cross section for 240Pu it was assumed that the fission
occurred at the radius of the neck equal to zero. Then, after de-
termining the appropriate value for the chaoticity coefficient,
the exact value of the neck radius in the scission configuration

FIG. 5. The fission cross section as a function of incident neutron
energy for 240Pu calculated by using different values of chaoticity co-
efficient. The lines are error bars. The open circles are experimental
data [37].

was determined by reproducing the total kinetic energy for the
fission fragments of 240Pu.

It can be seen from Fig. 5 that the experimental data of
the fission cross section for 240Pu can be satisfactorily repro-
duced by using μ = 0.4. It is also clear from Fig. 5 that the
results of calculations at low energies are more sensitive to
the magnitude of the μ coefficient than at higher energies. It
can also be seen from Fig. 5 that, with increasing incident
neutron energy, the fission cross section is decreased. It is due
to the competition between the fission and the neutron emis-
sion of the compound nucleus. When the excitation energy of
the compound nucleus is higher than the neutron separation
energy, the probability of neutron emission is increased and,
with cooling, the compound nucleus probability of fission is
decreased. The total kinetic energy of fission fragments is an
important fission observables as it reveals further informa-
tion on the excitation energy distribution of fission fragments
for the calculation of prompt fission neutron multiplicites. It
should be mentioned that many authors, for the description
of the fission process of excited compound nuclei, assumed
that the fission occurred in a configuration for which the
radius of the neck vanishes. However, scission should occur
before the nucleus reaches this configuration because of the
balance between the Coulomb and nuclear forces during the
dynamical descent from the saddle point. For large necks the
nucleus is stable against neck rupture, because the repulsive
Coulomb force is smaller than the attractive nuclear force.
Then, the attractive nuclear force becomes smaller in mag-
nitude than the repulsive Coulomb force and then the neck
ruptures at a nonzero radius. It should be noted that the sum
of the Coulomb and nuclear interaction energies between the
two portions is initially attractive but becomes repulsive when
the neck reaches a critical size. It should also be noted that
the rupture of the neck at a finite radius plays an important
role in the post-scission dynamics of fission. The size of
the neck when it ruptures may be estimated for a nucleus
by reproducing experimental data of the kinetic energy of
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FIG. 6. The total kinetic energy of fission fragments of 240Pu
produced in the n + 239Pu reaction at incident energies from thermal
to 14 MeV calculated by using different values of neck radius at
which scission occurs. The calculated values are connected by solid
lines to guide the eye. The open circles are experimental data [38].

fission fragments. Figure 6 shows the results of the total
kinetic energy of fission fragments as a function of incident
neutron energy calculated for 240Pu by using different values
of neck radius and by using μ = 0.4. It is clear from Fig. 6
that the kinetic energy of the fission fragments calculated by
using a nonzero radius decreases relative to that calculated
for scission occurring at zero neck radius. In general, the
kinetic energy of the fission fragments is quite sensitive to the
nuclear shapes at the scission point. It is also clear from Fig. 6
how incident neutron energy influences on the values of the
average total kinetic energies of fission fragments of 240Pu. It
can also be seen from Fig. 6 that the results of calculations
are very sensitive to neck radius. It is clear from Fig. 6 that
the experimental data on the kinetic energy of the fission frag-
ments for 240Pu can be satisfactorily reproduced by using the
magnitude of the neck radius at which scission occurs equal to
2.2 fm. In Fig. 6, for a more accurate comparison, the results
of calculations were compared with the results calculated with
Rn = 2.2fm and μ = 0.1 and 1. It is also clear from Fig. 6 that
the average total kinetic energies of fission fragments of 240Pu
decrease with increasing projectile energy.

It should be mentioned that the results of calculations for
the total kinetic energy of fission fragments are also sensitive
to nuclear viscosity. Figure 7 shows the results of calculations
for the total kinetic energy of fission fragments of 240Pu calcu-
lated by using different values of the chaoticity coefficient μ

and by using the value of neck radius at which scission occurs
equal to 2.2 fm. In Fig. 7, for a more accurate comparison,
the results of calculations were compared with the results of
calculations calculated with Rn = 0, 1, and 3 fm and μ = 0.4.
It can be seen from Fig. 7 that the results of calculations
calculated for the total kinetic energy of fission fragments
for 240Pu decreased with increasing viscosity. This decrease
arises from a combination of two effects. With increasing
viscosity the system arrives in the scission configuration with
less kinetic energy, and also with increasing viscosity the
scission configuration is more elongated, which this decreases

FIG. 7. Same as Fig. 6, but the total kinetic energy of fission frag-
ments of 240Pu calculated by using different values of the chaoticity
coefficient μ and by using the value of neck radius at which scission
occurs equal to 2.2 fm. The calculated values are connected by solid
lines to guide the eye. The open circles are experimental data [38].

the Coulomb interaction energy and hence decreases the total
kinetic energy of fission fragments.

In the present investigation, the mass yield distribution of
fission fragments and the average prompt neutron multiplicity
have also been calculated for the compound nucleus 240Pu in
order to evaluate the extracted values of the chaoticity coeffi-
cient μ = 0.4 and the neck radius 2.2 fm. Figures 8–10 show
the results of calculations for the mass yield distribution of
fission fragments and the average prompt neutron multiplicity
for 240Pu.

It should be mentioned that the kinetic energy of thermal
neutrons was assumed to be zero, so the excitation energy of
the 240Pu nucleus considered equals 6.53 MeV.

It can be seen from Fig. 8 that there is a good agreement
between the calculated results and the experimental data for

FIG. 8. The results of the mass yield distribution of fission
fragments of 240Pu with the excitation energy equal to 6.53 MeV
produced in reactions with thermal neutrons. The open circles are
experimental data [39].
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FIG. 9. The average prompt neutron multiplicity as a function of
incident neutron energy for 240Pu produced in the n + 239Pu reaction
calculated by using the value of chaoticity coefficient μ = 0.4 and
the value of neck radius at which scission occurs equal to 2.2 fm.
The lines are error bars. The open circles are experimental data [40].

both symmetric and asymmetric fission regions. Furthermore,
most of the fission events are distributed around the heavy
fragment mass A ≈ 135, where the heavy fragment is close
to spherical shape due to the shell effects around the shell
closure Z = 50 and N = 82. Furthermore, it can be seen from
Fig. 8 that the positions and widths of the peaks are also re-
produced with high accuracy. It can also be seen from Fig. 10
that the prompt neutron distribution has the typical sawtooth
shape. The physical origin of the sawtooth shape in neutron
multiplicity is due to the mean number of fission neutrons
emitted being a function of the fission fragment mass split.
This dependence on the fragment mass split is predominantly
caused by nuclear shell effects and exhibits the well-known
sawtooth distributions. It is also clear from Figs. 8–10 that

FIG. 10. Same as Fig. 9 but for the average prompt neutron
multiplicity as a function of fission fragment mass of 240Pu with
the excitation energy equal to 6.53 MeV produced in reactions with
thermal neutrons. The lines are error bar. The open circles are exper-
imental data [39].

FIG. 11. The results of mass energy correlation of fission frag-
ments for 240Pu produced in 14 MeV n + 239Pu fission. The color
scale on the right side of the figure is the yield of the fission
fragments.

the results of calculations for the mass yield distribution of
fission fragments and the average prompt neutron multiplicity
for 240Pu quantitatively agree with the experimental data by
using the values of the chaoticity coefficient equal to μ = 0.4
and the neck radius in the scission configuration equal to
2.2 fm. In the present investigation, the mass energy correla-
tions of the fission fragments have been calculated in 14 MeV
n + 239Pu fission. Figure 11 shows the results of mass energy
correlation of fission fragments for 240Pu produced in 14 MeV
n + 239Pu fission.

In the present investigation, the average spin of fission
fragments as a function of mass number was calculated for
the compound nucleus 240Pu produced in thermal-neutron-
induced reactions. Figure 12 shows the results of the average
spin of fission fragments for the compound nucleus 240Pu.

It can be seen from Fig. 12 that the average spin of
fission fragments is strongly mass dependent and has a saw-
tooth shape. These results are similar the results obtained in
Ref. [41].

FIG. 12. The average spin of fission fragments as a function of
fission fragment mass for 240Pu produced in thermal-neutron-induced
reactions. The lines are error bars.
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FIG. 13. The results of the mean fission time as a function of
incident neutron energy for 240Pu produced in the n + 239Pu reaction.
The lines are error bar.

Finally, in the present research the mean fission time has
been calculated for the excited compound nucleus 240Pu.
Figure 13 shows the results of the mean fission time as a
function of incident neutron energy for 240Pu produced in the
n + 239Pu reaction. It can be seen from Fig. 13 that the mean
fission time decreases rapidly with increasing incident neutron
energy.

It should be mentioned that Nadtochy et al. in Ref. [12]
used the 4D dynamical model to calculate different experi-
mental data for the excited compound nuclei 199Pb and 248Cf
produced in heavy-ion-induced reactions. In their calculations
in the Langevin equations, they used the modified version of
the one-body dissipation mechanism, with different constant
reduction coefficients ks and also the coordinate-dependent
reduction coefficient ks(q) calculated on the basis of the
chaos-weighted wall formula. The results of their calculations
showed that it is not possible to detect some “universal” ks

value, which could provide good reproduction of all experi-
mental observables for heavy and light fissioning nuclei. They
showed that most of the experimental observables could be
reproduced in 4D calculations with ks close to one for the
199Pb compound nucleus. Furthermore, they showed that for
the heavier compound nucleus 248Cf the variance of the ki-
netic energy distribution could be reproduced with ks around
0.5 or ks(q) obtained from the chaos-weighted wall formula.
Some other works of Nadtochy et al. about the viscosity of
nuclear matter are Refs. [42–49].

It should also be mentioned that the results extracted in the
present research for the relationship between the neck radius
and the TKE are similar to those of the previous study. The
present study shows that the change in neck radius at scission
from 1 to 2.2 fm for 240Pu leads to the change in TKE from
177.9 to 175.3 MeV, the difference being 2.6 MeV. Sierk in
Ref. [50] studied the relationship between the neck radius and
the TKE and found that the change in neck radius at scission
from 1 to 2 fm for 236U leads to the change in TKE from 173.6
to 170.9 MeV, whose difference is 2.7 MeV. Furthermore, the

value of neck radius that is inferred in the present research
is also consistent with the work of Davies et al. in Ref. [51].
Davies et al. in Ref. [51] introduced a degree of freedom to de-
scribe the rupture of the neck in nuclear fission and calculated
the point at which the neck ruptures as the nucleus descends
dynamically from its fission saddle point. This was done by
dividing the system into two portions at its minimum neck
radius and calculating the force required to separate the two
portions while keeping their shapes fixed. This force was ob-
tained by differentiating with respect to separation the sum of
the Coulomb and nuclear interaction energies between the two
portions. They calculated this force along dynamical paths
leading from the fission saddle point for nuclei throughout
the periodic table. The force is initially attractive but becomes
repulsive when the neck reaches a critical size. They showed
that for actinide nuclei the neck radius at which rupture occurs
is about 2 fm.

IV. CONCLUSIONS

In the framework of the 4D Langevin equations, the fission
process of the excited compound nucluse 240Pu, produced in
neutron-induced reactions at incident energies from thermal
to 14 MeV, has been described. The fission cross section, the
total kinetic energy of fission fragments, the mass distribution
of fission fragments, the average prompt neutron multiplicity,
the average spin of fission fragments, and the mean fission
time have been calculated for 240Pu. In the dynamical calcula-
tions the effects of nuclear dissipation and the neck radius at
which rupture occurs on the fission cross section and the total
kinetic energy of fission fragments of 240Pu were investigated.
In the dynamical calculations, nuclear dissipation was gen-
erated through the chaos weighted wall-and-window friction
formula with a chaoticity coefficient μ(q1). Furthermore, in
the dynamical calculations it was assumed that the magnitude
of the chaoticity coefficient is constant and its magnitude
was inferred by reproducing experimental data of the fission
cross section for 240Pu, and the results of calculations for
both cases were compared with each other. It was shown that
the results of calculations for the fission cross section are
in good agreement with the experimental data by using the
magnitude of the chaoticity coefficient μ = 0.4. Furthermore,
by reproducing experimental data on the total kinetic energy
of fission fragments, the magnitude of the neck radius at which
rupture occurs was inferred. It was shown that the results of
calculations for the total kinetic energy of fission fragments
of 240Pu are in good agreement with the experimental data by
using the magnitude of the radius in the scission configuration
equal to 2.2 fm. In the present research, the mass distribution
of fission fragments and the average prompt neutron mul-
tiplicity were also calculated for 240Pu in order to evaluate
the extracted values of the chaoticity coefficient μ and the
neck radius in the scission configuration. It was shown that
the results of calculations for the mass distribution of fission
fragments and the average prompt neutron multiplicity are in
good agreement with the experimental data by using these
appropriate values for the chaoticity coefficient and the radius
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of the scission configuration. Finally, in the present research,
the average spin of fission fragments and the mean fission
time were calculated for 240Pu. It was shown that the average
spin of fission fragments is strongly mass dependent and has
a sawtooth shape, and also the mean fission time decreases
rapidly with increasing incident neutron energy.
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