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Constraining the Woods-Saxon potential in fusion reactions based on the neural network
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The accurate determination of the nuclear interaction potential is essential for predicting fusion cross sec-
tions and understanding the reaction mechanism, which plays an important role in the synthesis of superheavy
elements. In this work, a neural network, which combines with the calculations of the fusion cross sections via
the Hill-Wheeler formula, is developed to optimize the parameters of the Woods-Saxon potential by comparing
the experimental values. The correlations between the parameters of Woods-Saxon potential and the reaction
partners, which can be quantitatively fitted to a sigmoid-like function with the mass numbers, have been
displayed manifestly for the first time. This study could promote the accurate estimation of the nucleus-nucleus
interaction potential in low energy heavy-ion collisions.

DOI: 10.1103/PhysRevC.109.024601

I. INTRODUCTION

In recent decades, the study of heavy-ion fusion reac-
tions has garnered growing interest in the field of nuclear
physics due to their importance for extending the periodic
table of elements, as well as for the understanding of the
interplay between nuclear structure and the reaction dynamics
[1–5]. However, the complexity of these reactions presents
significant challenges for both experimental and theoretical
investigations. One of the key challenges is accurately deter-
mining the nuclear interaction potential, which is crucial for
investigating the reaction mechanism, but remains an arduous
task due to several factors, including the quantum many-body
problem and the form of nuclear force, among other complex
influences [6–9].

As one of most successful phenomenological forms of
the nuclear potential, the Woods-Saxon potential has been
widely used to describe the nuclear interaction in heavy-ion
fusion reactions, especially for the synthesis of superheavy
nuclei. However, the accuracy is limited by the uncertainties
in the parameters. Much effort has been made to constrain
the parameters in recent years [10–13]. Nevertheless, due to
a complex function with multiple and correlated parameters
as well as existing computational limitations, the majority of
studies primarily apply constraints on the parameters for spe-
cific systems, such as focusing solely on 12C or 16O induced
reactions [14,15]. Therefore, it is imperative to accurately and
efficiently constrain and optimize the Woods-Saxon potential
parameters from a global perspective.

Machine learning, being adept at uncovering underlying
patterns from vast amounts of data, as well as accurately
fitting and predicting data, has garnered significant interest
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across various fields. In the realm of nuclear physics, it holds
immense potential for addressing challenges in terms of nu-
clear theories and experiments [16–19]. For example, machine
learning methods have demonstrated successful applications
in predicting nuclear masses [20–23], charge radii [24–26],
half-lives [27–29], the nuclear energy density functional [30],
fission product yields [31,32], radionuclide diffusion [33], as
well as facilitating studies on nuclear reactions [34–45]. In
recent years, although great progress has been made in ap-
plying machine learning methods to address issues in nuclear
physics, it is worthwhile to note that most of those studies are
data-driven approaches. Data in a real process are governed
by physical laws, thus, it is imperative to integrate the funda-
mental principles of physics into machine learning methods,
enabling them to be guided by the laws of physics rather than
relying solely on data-driven approaches.

In this work, we draw inspiration from the physics-
informed neural network (PINN), aiming to incorporate
physical information into the neural network. We will explore
the capability of the neural network to constrain the param-
eters of the Woods-Saxon potential model by comparing the
calculations of fusion cross sections using the Hill-Wheeler
formula with the corresponding experimental values. Sub-
sequently, we will explicitly demonstrate the correlations
between the parameters and colliding partners. The outcomes
of this investigation will be highly significant in enhancing our
comprehension of heavy ion fusion reactions and will offer a
fresh perspective for exploring nuclear physics conundrums.

II. MODELS AND METHODS

A. Fusion cross section and Woods-Saxon potential

At a given center-of-mass energy, the fusion cross sec-
tion σfusion(Ec.m.) can be expressed as the sum of the cross
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section at each partial wave J:

σfusion(Ec.m.) = π h̄2

2μEc.m.

Jmax∑
J=0

(2J + 1)T (Ec.m., J ), (1)

where μ is the reduced mass, T is the penetration proba-
bility, and J is the incident angular momentum. Note that
we have specifically selected relatively light combinations of
target and projectile, where the occurrence of quasifission is
relatively minimal. The Hill-Wheeler formula [46], by con-
sidering the efficient iterative capabilities of neural networks,
proves to be a highly effective approximation for numerical
solutions, especially in the fusion cross sections above the
Coulomb barrier [47]. It is a well-known analytical expres-
sion for the penetration probability at definite center-of-mass
energy Ec.m. and angular momentum J:

THW(Ec.m., J )

=
{

1 + exp

[
2π

h̄ω(J )

(
h̄2J (J + 1)

2μR2
B(J )

+ B − Ec.m.

)]}−1

,

(2)
where B denotes the barrier height for head-on collision.
RB(J ) and h̄ω(J ) correspond to the position and curvature
of the barrier under the Jth partial wave, respectively. The
barrier curvature h̄ω(J ) can be calculated using the following
formula:

h̄ω(J ) =
√

− h̄2

μ

∂2

∂R2
V (R, J )

∣∣∣∣∣∣
R=RB(J )

. (3)

The interaction potential V (R, J ) consists of a long-range
Coulomb potential, a short-range nuclear potential, and a cen-
trifugal potential, which can be expressed as follows:

V (R, J ) = VC(R) + VN(R) + VR(R, J ). (4)

The fusion cross sections at the sub-barrier, especially the
deep sub-barrier region, strongly depend on the coupling of

the nuclear structures. We would like to emphasize that in or-
der to minimize the uncertainties and focus on the parameters
of Woods-Saxon potential, only the fusion reactions occurring
above the barrier are investigated. The Coulomb potential and
centrifugal potential can be expressed by the forms

VC(R) = ZPZTe2

R
,

VR(R, J ) = h̄2J (J + 1)

2μR2
. (5)

The Woods-Saxon nuclear potential can be expressed as [48]

VN(R) = −V0

1 + exp [(R − RP − RT)/a]
, (6)

with

Ri = r0iA
1/3
i , i = P, T, (7)

where the depth V0, the radius parameter r0, and the dif-
fuseness parameter a are the major parameters of the
Woods-Saxon potential. By changing the parameters of the
Woods-Saxon potential, we can modify the position, height
as well as curvature of the potential barrier, which ultimately
affects the prediction of the fusion cross sections. Therefore,
we can evaluate the optimization results of the parameters by
comparing the predicted cross sections via neural networks
with experimental values.

B. The neural network connected with the calculations
of the fusion cross sections

In this work, we perform calculations of fusion cross
sections and train the neural network by comparing it with
experimental data, as illustrated in Fig. 1. Initially, Z (proton
number) and A (mass number) of the projectile and target nu-
clei as the input features are fed into a neural network, which
then generates three parameters corresponding to the Woods-
Saxon potential. Moreover, the nuclear interaction potential

FIG. 1. The architecture of the neural network used in this work. It combines neural networks and the process of the calculation of fusion
cross sections via the Hill-Wheeler formula.
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at various angular momenta and the associated input param-
eters required for the Hill-Wheeler formula are obtained. By
summing the capture probability over all angular momenta,
the corresponding fusion cross sections can be derived. By
comparing the fusion cross section calculated using the Hill-
Wheeler formula with parameters V0, r0, and a obtained from
neural networks to the experimental values, we can establish
a loss function, as expressed below:

L(i) =
{∑

e

[
log10

(
σ

(i)
NN(e)

) − log10

(
σ (i)

exp(e)
)]}2

, (8)

where e represents the Ec.m. associated with the experimental
value in the ith projectile-target combination. It is important to
note that, for each set of parameters of the Woods-Saxon po-
tential, a fusion excitation function is calculated and compared
with all experimental values associated with the projectile-
target combination. Consequently, the resulting loss is not
solely determined by each individual energy, but rather by
considering the combined outcomes of all the Ec.m. with the
specific system. Obtaining the loss allows for the training of
the neural network, which will be discussed in the subsequent
context.

Foremost, it is crucial to clarify that L(i) is not attributed
to the parameters of Woods-Saxon potential, but rather to the
fusion cross sections. Moreover, there is no explicit functional
association between the fusion cross sections and the param-
eters of the Woods-Saxon potential, so that it is not feasible
to directly obtain the loss of three parameters using a back-
propagation algorithm. However, the qualitative association
can be analyzed and the existence of a positive correlation
between them has been established in advance. Therefore,
we can attribute the loss of the parameters of the Woods-
Saxon potential to the loss of fusion cross sections and assign
suitable weight coefficients in a straightforward manner, as
expressed below:

L(i)( j) = α( j)L(i), j = V0, r0, a. (9)

The weight coefficients, by taking into account the empirical
ranges, were assigned as 1, 0.001, and 0.01 for V0, r0, and a,
respectively. It is worthwhile to emphasize that the weight co-
efficients weakly influence the behavior of correlations found
in this work. After obtaining the loss of the parameters, the
backpropagation algorithm can be employed for training the
neural network.

The multioutput neural network consists of three neural
networks, wherein each network comprises three hidden lay-
ers with 32, 64, and 128 neurons, respectively. “Tanh” and
“Adam” were selected as the activation function and opti-
mizer. The learning rate α started at 10−4 and gradually
decreases to 10−6 during the training process. Furthermore, a
total of 343 reactions from the online dataset [49] were chosen
for this study, where ZPZT � 1600 and there were at least
three experimental data points above the Coulomb barrier. To
select the data, the Coulomb barrier can be estimated by the
latest fitting formula [50] as

VB = ZPZTe2

0.9782
(
A1/3

P + A1/3
T

) + 4.2833
. (10)

FIG. 2. The loss curves of three combinations of the training
and validation sets as functions of the epoch (training time). Solid,
dashed, and dotted line denote the training, validation, and testing
sets, respectively.

Thirty projectile-target combinations of the dataset were
randomly selected as the testing set and validation set, respec-
tively. Thus, the remaining 283 combinations were utilized as
the training set and the batch size was set to 70 during training.

The loss curves of the training set, validation set, and
testing set, by training on 283 combinations through multi-
ple optimizations and structural adjustments, are displayed
in Fig. 2. The loss function can be defined as the average
value of the individual loss function L(i) computed for each
projectile-target combination:

Loss = 1

N

N∑
i

L(i). (11)

The loss for the validation and testing sets initially decreases
and then plateaus or slightly increases, whereas the loss for
the training set continuously decreases with the increase of
epoch. Hence, a truncation, to prevent overfitting and to obtain
the extrapolation ability in the neural network, was employed
at epoch = 500. Furthermore, one can find that the loss for the
training set is higher than that for the validation set, as shown
in Fig. 2(a). It does not necessarily imply underfitting, since
the loss on the validation set has already plateaued. We further
trained two neural networks using random combinations of
training and validation sets, and the corresponding loss curves
are shown in Figs. 2(b) and 2(c), where the loss for the training
set is lower than that for the validation set. This discrepancy is
mainly due to the impact of data sampling on the training and
validation sets, since the fusion cross sections of certain sys-
tems are challenging to precisely express via the Hill-Wheeler
formula. However, this effect is not significant for subsequent
correlation analysis.

III. RESULTS AND DISCUSSIONS

The extrapolation ability of the neural network can be
demonstrated by its predictions on fusion cross sections in the
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FIG. 3. The experimental and predicted fusion excitation functions for the testing set. The fusion cross sections obtained from neural
network and other theoretical models explained in Table I are shown with different line types, while the squares denote experimental data. The
parameters constrained by the neural network are also displayed.

testing set, which has not been through the training process.
The neural network predictions thus have been compared with
the experimental data, as shown in Fig. 3.

One can see that the extrapolation capability of the neural
network is reliable, as the predicted cross section values (σNN)
are in good agreement with the experimental data for most
of the reaction systems. However, in light projectile-target

combinations, there are some discrepancies between neural
network predictions and experimental data. This is primarily
due to the strong structural effects that exist in such systems,
which can lead to the possibility of cluster formation.

Furthermore, we employed two additional cross sec-
tion calculation methods to evaluate the neural network’s
extrapolation ability and its constraint on parameters of the

024601-4



CONSTRAINING THE WOODS-SAXON POTENTIAL IN … PHYSICAL REVIEW C 109, 024601 (2024)

TABLE I. Calculation methods of fusion cross sections. Model
and Parameter denote the theoretical model for calculating tunneling
probability and the sources of Woods-Saxon potential parameters.
Loss denotes the deviations between the model’s results and the ex-
perimental values in the testing set, which are obtained from Eqs. (8)
and (11).

Model Parameter Loss

σNN Hill-Wheeler neural network 1.26
σNN-Fit Hill-Wheeler Eqs. (12), (13), (14) 1.38
σWKB WKB approximation neural network 1.33
σWang Hill-Wheeler Ref. [47] 4.47

Woods-Saxon potential, which are the σWKB and the σWang

shown in Table I. The Wentzel-Kramers-Brillouin (WKB)
approximation [51] is a classical method for calculating tun-
neling probability, which is widely used in studies on fusion
or alpha decay. In addition, σWang is also used for evalua-
tion with the same calculation of the tunneling probability
using Eq. (2) but with different parameters obtained from
Ref. [47], with V0 = 80 MeV, r0 = 1.16 fm, a = {1.17[1 +
0.53(A−1/3

P + A−1/3
T )]}−1 fm. The fusion cross sections ob-

tained from these two additional models on the testing set
are also shown in Fig. 3 along with the corresponding losses
detailed in Table I. By comparing σNN and σWang, it is evident
that, without the constraints imposed by the neural network
and relying solely on fixed parameter forms, the model fails
to accurately replicate the experimental values, leading to
a substantial increase in loss. This directly highlights the

constraining capability of the neural network on the param-
eters. Additionally, when we incorporate the learned potential
from the neural network into the WKB calculation, results
(σWKB) that closely resemble those obtained from the Hill-
Wheeler formula are obtained. This observation signifies the
neural network’s robust generalization ability. The abilities to
extrapolate and generalize exhibited by the neural network
have been confirmed; we can thus explore the correlation
between potential parameters and the reaction partners.

Our aim is to explore the underlying correlations of the
parameters of the Woods-Saxon potential with the reaction
systems. We show the parameters of the Woods-Saxon poten-
tial constrained by the neural network in Fig. 4. The scatter
plots for the parameters of mass number, proton number,
as well as Coulomb parameter [χ = ZPZT/(A1/3

P + A1/3
T )] are

shown. The strong correlations indicate that the Woods-Saxon
potential parameters could be constrained and characterized
by these quantities. It can be seen that all of these param-
eters fall within a reasonable range. The radius parameter
r0 displays a rapid increase from 1.14 fm to approximately
1.18 fm, followed by a slower convergence to around 1.19
fm as the mass number A and proton number Z increase.
Additionally, the depth parameter V0 exhibits a discernible
trend of increasing with increasing A, Z , and χ , with values
falling within the range of roughly 77–83 MeV. The surface
diffuseness parameter a shows an even more pronounced
correlation, with a rapid increase followed by a slower rise
as A, Z , and χ increase, within a range of approximately
0.4–0.8 fm. Note that the distributions of V0 and a exhibit
a certain degree of diffuseness, primarily because these two

FIG. 4. Scatter plots display the correlation between the horizontal and vertical labeled quantities. Each scatter point denotes one projectile-
target combination.
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parameters are shared by the entire combination and are not
solely determined by either the projectile or the target nucleus.
The Coulomb parameter is a measure of the direct correlation
between the projectile-target combination, and there exists a
strong linear correlation with the Coulomb barrier [50,52],
which directly affects the fusion cross sections and makes it
highly relevant to the constrained V0 and a. Indeed, there is
not a single unique set of Woods-Saxon parameters capable
of fully describing the experimental values. The strength of
the neural network lies in its capacity to identify more direct
correlations between the reaction partners and the intricate
parameter space.

The above trends and ranges between the three parameters
of the Woods-Saxon potential and A, Z , and χ are considered
reasonable in physics [10,15,53]. The Woods-Saxon potential
describes the nuclear force potential in the nucleus-nucleus
interaction, and the nuclear force is a short-range strong in-
teraction attraction. Among them, V0 controls the strength of
the nuclear force, which increases with A in the region of
light partner. However, the correlation between V0 and heavy
collision partners is weak. This is because for large A the value
of the potential is approximately flat in the center and the vari-
ation is weak. Currently, the available experimental data are
mostly from reactions with stable projectiles and targets. Due
to the curvature of the β stable line, the spread of the neutron
skin is shown with increasing isospin. Consequently, the trend
that the parameters a and r0 increase with increasing mass and
charge number for both light and heavy partners can be seen.

Based on the qualitative constraints mentioned above, we
expected to obtain a more specific, intuitive, and analytical
quantitative expression. As a result, the strongly correlated
parameters a and r0 were fitted with the mass numbers of
projectile-target combinations using a sigmoid-like function,
while the relatively weak correlation of V0 was also fitted
with the proton numbers and the mass numbers into a linear
function, as shown in Fig. 5. One can see that the weak
correlation between V0 and the reaction partners, as shown
in Fig. 4, leads to insufficient fitting accuracy. However, the
good performance of fitting using a sigmoid-like function
can be easily observed in Fig. 5(b), where the predicted a is
plotted versus the fitting results. The fitting results are better
in regions where a is larger, which is consistent with the
broadening of a observed in Fig. 4. The fitting accuracy for
r0 is higher in Fig. 5(c), mainly due to r0 depending only
on the individual projectile or target nucleus instead of the
combination. The figure displays the fitted parameters and
coefficient of determination (R2), which provide an indication
of the goodness of fit. The R2 for a and r0 are greater than 0.96,
which suggests that the fitting is highly effective. The final
quantitative constraints on those parameters can be expressed
as follows:

V0 = b1ZP + b2AP + b3ZT + b4AT + b5, (12)

where b1 = 0.4341 MeV, b2 = −0.1449 MeV, b3 = −0.2446
MeV, b4 = 0.0955 MeV, and b5 = 78.6446 MeV;

a = c1

c2 + ec3AP + ec4AT
, (13)

FIG. 5. Upper (middle) panel: the predicted V0 (a) from neural
network versus the fitted V0 (a). Each scatter point denotes one
projectile-target combination. Lower panel: the predicted r0 from
the neural network (dots) and the fitted r0 (solid line) as functions
of mass number. Each scatter point denotes a projectile or target
nucleus. The fitting formula and corresponding coefficients, as well
as the coefficient of determination, are also displayed.
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where c1 = 1.0259 fm, c2 = 1.3603, c3 = −0.0877, and
c4 = −0.0352;

r0i = d1

d2 + ed3Ai
, i = P, T, (14)

where d1 = 19.7344 fm, d2 = 16.5655, and d3 = −0.0343.
ZP(T) and AP(T) denote the proton numbers and mass numbers
of light (heavy) partner, respectively.

Similarly, we incorporated the fitted parameters mentioned
above into the Woods-Saxon potential for cross-section calcu-
lations via the Hill-Wheeler formula. The performance on the
testing set is presented as σNN-Fit in Fig. 3. One can observe
that the curves of σNN and σNN-Fit overlap almost completely
for most reaction partners, and the loss of σNN-Fit only in-
creases slightly, despite the insufficient fitting of V0.

IV. CONCLUSIONS

We have successfully incorporated the calculations of fu-
sion cross sections via the Hill-Wheeler formula into a neural
network and constructed the neural network framework to op-
timize the parameters of the Woods-Saxon potential in a more
accurate and efficient way. Upon comparison with experimen-
tal fusion cross sections, the neural network demonstrated
impressive predictive performance on the testing set, and

effectively constrained the three parameters of the Woods-
Saxon potential. The extrapolation and generalization abilities
of neural network are demonstrated by comparing the fu-
sion cross section calculated using the WKB method and
other potential parameter forms. Furthermore, the constrained
values of a and r0 exhibit a strong correlation with the
projectile-target combinations, which are accurately fitted by
a sigmoid-like function for the first time. Those functions can
be conveniently used to model heavy-ion fusion reactions.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China under Grant No. 12075327; Fundamen-
tal Research Funds for the Central Universities, Sun Yat-sen
University under Grant No. 23lgbj003; The Open Project of
Guangxi Key Laboratory of Nuclear Physics and Nuclear
Technology under Grant No. NLK2022-01; Guangdong Ma-
jor Project of Basic and Applied Basic Research under Grant
No. 2021B0301030006; Central Government Guidance Funds
for Local Scientific and Technological Development, China
(No. Guike ZY22096024); Director’s Foundation of Depart-
ment of Nuclear Physics, China Institute of Atomic Energy
(12SZJJ-202305); and National Natural Science Foundation
of China (12375130).

[1] L. Canto, P. Gomes, R. Donangelo, and M. S. Hussein, Phys.
Rep. 424, 1 (2006).

[2] L. Canto, P. Gomes, R. Donangelo, J. Lubian, and M. S.
Hussein, Phys. Rep. 596, 1 (2015).

[3] B. B. Back, H. Esbensen, C. L. Jiang, and K. E. Rehm, Rev.
Mod. Phys. 86, 317 (2014).

[4] C. L. Jiang, K. E. Rehm, B. B. Back, and R. V. F. Janssens,
Phys. Rev. C 75, 015803 (2007).

[5] A. V. Karpov and V. V. Saiko, Phys. Rev. C 96, 024618 (2017).
[6] A. S. Umar, C. Simenel, and K. Godbey, Phys. Rev. C 104,

034619 (2021).
[7] A. Mukherjee, D. J. Hinde, M. Dasgupta, K. Hagino, J. O.

Newton, and R. D. Butt, Phys. Rev. C 75, 044608 (2007).
[8] M. Bhuyan, R. Kumar, S. Rana, D. Jain, S. K. Patra, and B. V.

Carlson, Phys. Rev. C 101, 044603 (2020).
[9] S. A. Alavi and V. Dehghani, Phys. Rev. C 95, 054602 (2017).

[10] N. Wang, K. Zhao, W. Scheid, and X. Wu, Phys. Rev. C 77,
014603 (2008).

[11] T. Jun-Long, W. Ning, and L. Zhu-Xia, Chin. Phys. Lett. 24,
905 (2007).

[12] J. Dudek and T. Werner, J. Phys. G 4, 1543 (1978).
[13] K. Y. Zhang, C. Pan, and S. Q. Zhang, Phys. Rev. C 106, 024302

(2022).
[14] T.-P. Luo, P.-W. Wen, C.-J. Lin, L. Yang, H.-M. Jia, F. Yang,

D.-H. Huang, C. Chang, M.-H. Zhang, and Y. Yang, Chin. Phys.
C 46, 064105 (2022).

[15] M. Evers, M. Dasgupta, D. J. Hinde, L. R. Gasques, M. L.
Brown, R. Rafiei, and R. G. Thomas, Phys. Rev. C 78, 034614
(2008).

[16] W. He, Q. Li, Y. Ma, Z. Niu, J. Pei, and Z. Yingxun, Sci. China
Phys. Mech. Astron. 66, 282001 (2023).

[17] Y. Wang and Q. Li, Front. Phys. 18, 64402 (2023).

[18] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N.
Tishby, L. Vogt-Maranto, and L. Zdeborová, Rev. Mod. Phys.
91, 045002 (2019).

[19] A. Boehnlein, M. Diefenthaler, N. Sato, M. Schram, V. Ziegler,
C. Fanelli, M. Hjorth-Jensen, T. Horn, M. P. Kuchera, D. Lee
et al., Rev. Mod. Phys. 94, 031003 (2022).

[20] Z.-P. Gao, Y.-J. Wang, H.-L. Lü, Q.-F. Li, C.-W. Shen, and L.
Liu, Nucl. Sci. Tech. 32, 109 (2021).

[21] Z. Niu and H. Liang, Phys. Lett. B 778, 48 (2018).
[22] X. Wu, Y. Lu, and P. Zhao, Phys. Lett. B 834, 137394 (2022).
[23] X.-C. Ming, H.-F. Zhang, R.-R. Xu, X.-D. Sun, Y. Tian, and

Z.-G. Ge, Nucl. Sci. Tech. 33, 48 (2022).
[24] D. Wu, C. L. Bai, H. Sagawa, and H. Q. Zhang, Phys. Rev. C

102, 054323 (2020).
[25] X.-X. Dong, R. An, J.-X. Lu, and L.-S. Geng, Phys. Rev. C 105,

014308 (2022).
[26] T.-S. Shang, J. Li, and Z.-M. Niu, Nucl. Sci. Tech. 33, 153

(2022).
[27] Z. M. Niu, H. Z. Liang, B. H. Sun, W. H. Long, and Y. F. Niu,

Phys. Rev. C 99, 064307 (2019).
[28] C.-Q. Li, C.-N. Tong, H.-J. Du, and L.-G. Pang, Phys. Rev. C

105, 064306 (2022).
[29] Y.-F. Gao, B.-S. Cai, and C.-X. Yuan, Nucl. SciTech. 34, 9

(2023).
[30] X. H. Wu, Z. X. Ren, and P. W. Zhao, Phys. Rev. C 105,

L031303 (2022).
[31] Z.-A. Wang, J. Pei, Y. Liu, and Y. Qiang, Phys. Rev. Lett. 123,

122501 (2019).
[32] Z. A. Wang, J. C. Pei, Y. J. Chen, C. Y. Qiao, F. R. Xu, Z. G.

Ge, and N. C. Shu, Phys. Rev. C 106, L021304 (2022).
[33] Z. Feng, Z. Gao, Y. Wang, T. Wu, and Q. Li, Appl. Clay Sci.

243, 107076 (2023).

024601-7

https://doi.org/10.1016/j.physrep.2005.10.006
https://doi.org/10.1016/j.physrep.2015.08.001
https://doi.org/10.1103/RevModPhys.86.317
https://doi.org/10.1103/PhysRevC.75.015803
https://doi.org/10.1103/PhysRevC.96.024618
https://doi.org/10.1103/PhysRevC.104.034619
https://doi.org/10.1103/PhysRevC.75.044608
https://doi.org/10.1103/PhysRevC.101.044603
https://doi.org/10.1103/PhysRevC.95.054602
https://doi.org/10.1103/PhysRevC.77.014603
https://doi.org/10.1088/0256-307X/24/4/016
https://doi.org/10.1088/0305-4616/4/10/006
https://doi.org/10.1103/PhysRevC.106.024302
https://doi.org/10.1088/1674-1137/ac5587
https://doi.org/10.1103/PhysRevC.78.034614
https://doi.org/10.1007/s11433-023-2116-0
https://doi.org/10.1007/s11467-023-1313-3
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1103/RevModPhys.94.031003
https://doi.org/10.1007/s41365-021-00956-1
https://doi.org/10.1016/j.physletb.2018.01.002
https://doi.org/10.1016/j.physletb.2022.137394
https://doi.org/10.1007/s41365-022-01031-z
https://doi.org/10.1103/PhysRevC.102.054323
https://doi.org/10.1103/PhysRevC.105.014308
https://doi.org/10.1007/s41365-022-01140-9
https://doi.org/10.1103/PhysRevC.99.064307
https://doi.org/10.1103/PhysRevC.105.064306
https://doi.org/10.1007/s41365-022-01153-4
https://doi.org/10.1103/PhysRevC.105.L031303
https://doi.org/10.1103/PhysRevLett.123.122501
https://doi.org/10.1103/PhysRevC.106.L021304
https://doi.org/10.1016/j.clay.2023.107076


ZEPENG GAO et al. PHYSICAL REVIEW C 109, 024601 (2024)

[34] F. Li, Y. Wang, Z. Gao, P. Li, H. Lü, Q. Li, C. Y.
Tsang, and M. B. Tsang, Phys. Rev. C 104, 034608
(2021).

[35] G. Nijs, W. van der Schee, U. Gürsoy, and R. Snellings, Phys.
Rev. C 103, 054909 (2021).

[36] C.-W. Ma, D. Peng, H.-L. Wei, Z.-M. Niu, Y.-T. Wang, and R.
Wada, Chin. Phys. C 44, 014104 (2020).

[37] Q.-F. Song, L. Zhu, and J. Su, Chin. Phys. C 46, 074108
(2022).

[38] C.-W. Ma, X.-B. Wei, X.-X. Chen, D. Peng, Y.-T. Wang, J.
Pu, K.-X. Cheng, Y.-F. Guo, and H.-L. Wei, Chin. Phys. C 46,
074104 (2022).

[39] Y. Wang, Z. Gao, H. Lü, and Q. Li, Phys. Lett. B 835, 137508
(2022).

[40] Z. Li, Z. Gao, L. Liu, Y. Wang, L. Zhu, and Q. Li,
arXiv:2310.04700.

[41] X. Wang, L. Zhu, and J. Su, Chin. Phys. C 45, 124103 (2021).
[42] Y. Wang, F. Li, Q. Li, H. Lü, and K. Zhou, Phys. Lett. B 822,

136669 (2021).

[43] Y.-D. Song, R. Wang, Y.-G. Ma, X.-G. Deng, and H.-L. Liu,
Phys. Lett. B 814, 136084 (2021).

[44] F. Li, Y. Wang, H. Lü, P. Li, Q. Li, and F. Liu, J. Phys. G: Nucl.
Part. Phys. 47, 115104 (2020).

[45] J. He, W.-B. He, Y.-G. Ma, and S. Zhang, Phys. Rev. C 104,
044902 (2021).

[46] D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).
[47] B. Wang, K. Wen, W.-J. Zhao, E.-G. Zhao, and S.-G. Zhou, At.

Data Nucl. Data Tables 114, 281 (2017).
[48] M. Singh, Sukhvinder, and R. Kharab, Nucl. Phys. A 897, 179

(2013).
[49] http://nrv.jinr.ru/nrv/webnrv/fusion/reactions.php.
[50] P. W. Wen, C. J. Lin, H. M. Jia, L. Yang, F. Yang, D. H. Huang,

T. P. Luo, C. Chang, M. H. Zhang, and N. R. Ma, Phys. Rev. C
105, 034606 (2022).

[51] S. C. Miller, Jr. and R. Good, Jr., Phys. Rev. 91, 174 (1953).
[52] L. Zhu, Phys. Rev. Res. 5, L022030 (2023).
[53] M. S. Gautam, R. P. Chahal, S. Duhan, and H. Khatri, Phys. Scr.

97, 045305 (2022).

024601-8

https://doi.org/10.1103/PhysRevC.104.034608
https://doi.org/10.1103/PhysRevC.103.054909
https://doi.org/10.1088/1674-1137/44/1/014104
https://doi.org/10.1088/1674-1137/ac6249
https://doi.org/10.1088/1674-1137/ac5efb
https://doi.org/10.1016/j.physletb.2022.137508
https://arxiv.org/abs/2310.04700
https://doi.org/10.1088/1674-1137/ac23d5
https://doi.org/10.1016/j.physletb.2021.136669
https://doi.org/10.1016/j.physletb.2021.136084
https://doi.org/10.1088/1361-6471/abb1f9
https://doi.org/10.1103/PhysRevC.104.044902
https://doi.org/10.1103/PhysRev.89.1102
https://doi.org/10.1016/j.adt.2016.06.003
https://doi.org/10.1016/j.nuclphysa.2012.11.007
http://nrv.jinr.ru/nrv/webnrv/fusion/reactions.php
https://doi.org/10.1103/PhysRevC.105.034606
https://doi.org/10.1103/PhysRev.91.174
https://doi.org/10.1103/PhysRevResearch.5.L022030
https://doi.org/10.1088/1402-4896/ac5d72

