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Solving the Lipkin model using quantum computers with two qubits only with a hybrid
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The possibility of using the generator coordinate method (GCM) using hybrid quantum-classical algorithms
with reduced quantum resources is discussed. The task of preparing the basis states and calculating the various
kernels involved in the GCM is assigned to the quantum computer, while the remaining tasks, such as finding
the eigenvalues of a many-body problem, are delegated to classical computers for post-processing the generated
kernels. This strategy reduces the quantum resources required to treat a quantum many-body problem. We apply
the method to the Lipkin model. Using the permutation symmetry of the Hamiltonian, we show that, ultimately,
only two qubits is enough to solve the problem regardless of the particle number. The classical computing post-
processing leading to the full energy spectrum can be made using standard generalized eigenvalues techniques by
diagonalizing the so-called Hill-Wheeler equation. As an alternative to this technique, we also explored how the
quantum state deflation method can be adapted to the GCM problem. In this method, variational principles are
iteratively designed to access the different excited states with increasing energies. The methodology proposed
here is successfully applied to the Lipkin model with a minimal size of two qubits for the quantum register. The
performances of the two classical post-processing approaches with respect to the statistical noise induced by the
finite number of measurements and quantum devices noise are analyzed. Very satisfactory results for the full
energy spectra are obtained once noise corrections techniques are employed.
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I. INTRODUCTION

In the contemporary landscape of computational science,
quantum computing has emerged as a burgeoning field charac-
terized by its potential to address problems that elude classical
computational methodologies. Many-body interacting sys-
tems are particularly adapted for testing quantum computers
[1–6] due to the fact that quantum computers themselves are
often built from quantum many-body interacting systems [7].

Presently, intensive international efforts are concentrated
on two pivotal fronts: first, the development of quantum al-
gorithms tailored to solve specific many-body problems, and
second, the validation of these algorithms, most often on
rather schematic models. To quote some of the test Hamiltoni-
ans that are relevant in the context of nuclear physics and for
which quantum algorithms have been developed, we mention
the Lipkin-Meshkov-Glick (LMG) Hamiltonian (sometimes
referred to as the Lipkin model) [8–14] and its extension
known as the Agassi model [15], or the pairing/Richardson
Hamiltonian [16–21]. These models, while based on simpli-
fying assumptions compared to the complexity of the nuclear
many-body problem, serve as invaluable test beds due to
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their ease of implementation on classical computers. Over the
years, scientists have honed their physical intuition by explor-
ing these models, yet they occasionally encompass complex-
ities that prove challenging to translate into quantum compu-
tational frameworks. In parallel to the advances in quantum
computation, these models are also shedding illuminating
insights from a quantum information perspective [22–24],
which could also be interesting in the more general context
of the entanglement properties in nuclear physics [25–28].

In this study, we explore the possibility of using the gen-
erator coordinate method (GCM) in the context of quantum
computing. The GCM approach is nowadays widely used
on classical computers, with some successes in the nuclear
physics context [29–33]. The various types of applications of
the GCM theory, ranging from obtaining ground or excited
state properties or the possibility to describe the dynamical
path towards fission, vividly showcase the versatility and great
potential inherent to this approach. As far as we know, the
possible interest of using a GCM-based approach on quantum
computers has only been discussed very recently in Ref. [34],
where some advantages of using the GCM-based approach,
including the reduction in the circuit depth compared to cur-
rently used techniques, have been pointed out.

We further discuss here the possibility of developing a
GCM-inspired hybrid quantum-classical algorithm to study
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the energy spectrum of a many-body Hamiltonian. The GCM
approach leads to a generalized eigenvalue problem formu-
lated in a nonorthogonal set of many-body states, i.e., the
so-called Hill-Wheeler equation [35]. A natural strategy for
sharing the tasks between classical and quantum processor
units (called hereafter CPU and QPU, respectively), is to
allocate solely to the quantum computer the estimation of the
different matrix elements entering the Hill-Wheeler equation,
while eigenvalues are obtained on the classical computer us-
ing the QPU inputs. Our focus narrows down to the Lipkin
model, a recent cornerstone in benchmarking quantum algo-
rithms, particularly within the domain of nuclear physics. We
show that due to the permutation invariance of this model
Hamiltonian [36–38], together with the use of the generalized
Wick theorem [30], all kernels can be estimated with a min-
imal number of two qubits, a significant reduction compared
to other quantum algorithms proposed so far. We analyze two
possible techniques to perform the classical post-processing.
Specifically, we either use the standard diagonalization tech-
nique or the deflation approach [39] that does not rely on any
diagonalization. Both techniques have advantages and possi-
ble caveats when used on quantities estimated from quantum
measurements. The efficiency of the two post-processing with
respect to statistical errors are analyzed in detail.

Our preliminary results on the Lipkin model framework ex-
hibit promising outcomes, underscoring the potential efficacy
of this approach in the quantum computational domain.

II. GENERATOR COORDINATE METHOD APPLIED ON
QUANTUM COMPUTERS

A. Brief introduction to the GCM approach
with generator coordinate

The GCM approach is rather well documented [29,31], and
we only give here the key ingredients. This method consists in
approximating eigenstates of a many-body problem written in
the form

|�〉 =
∫

q
f (q)|�(q)〉dq, (1)

where |�(q)〉 is a set of nonorthogonal many-body states
depending on a few collective coordinates {q = (q1, . . . , qc)}.
Different techniques can be used to generate the subsets
{|�(q)〉}. These states will be referred to as generating states
below. In some cases, like in the context of symmetry restora-
tion, the states are generated through a predefined Thouless
transformation, and the mixing parameters f (q) are fixed
[29,30]. In this case, the integral form (1) corresponds to a pro-
jector to a good symmetry sector. The advantage of using such
a form for post-processing to enforce symmetries in quantum
computing has already been pointed out in several works
[17,21,40–43]. In some other cases, relevant, for instance
in the exploration of phase coexistence or large amplitude
collective adiabatic motion, the states are generated using
constrained mean-field methods, where a potential energy
landscape is built up by imposing a set of constraints {qi}i=1,c

on selected one-body operators {Q̂i}i=1,c, i.e., such that qi =
〈�(q)|Q̂i|�(q)〉. While other options are rarely explored, we
see that the GCM approach offers enormous flexibility in

choosing the subsets of states. For eigenvalue problems, the
GCM equations to be solved are obtained using the Rayleigh-
Ritz variational principle [30], and can be written generically
as ∫

q′
dq′[H(q, q′) − EN (q, q′)] f (q′) = 0, (2)

where H(q, q′) and N (q, q′) are the Hamiltonian and norm
kernels, respectively, defined as

H(q, q′) = 〈�(q)|Ĥ |�(q′)〉
N (q, q′) = 〈�(q)|�(q′) (3)

The appearance of the norm kernels is because the generated
states |�(q)〉 are not orthogonal from each other. The solution
of the generalized eigenvalue equation, known as the Hill-
Wheeler equation, is usually achieved using a finite number
of generated states Nst. Such a solution is standardly made
today on a classical computer and consists in (i) diagonalizing
the norm matrix Nq,q′ ≡ N (q, q′). This step gives ultimately
a new set of orthogonal states associated with a set of norm
eigenvalues {ξn}n=1,Nst ; (ii) part of the eigenstates having their
eigenvalues lower than a certain threshold ε are not further
considered in the following steps to remove the eventual re-
dundancy contained in the nonorthogonal basis; and (iii) solve
the eigenvalue problems in this new, possibly truncated, basis,
to obtain approximate eigenvalues and eigenstates by diag-
onalizing the Hamiltonian in this basis. Since this approach
relies heavily on diagonalization solvers, we will refer to it as
GCM-Diag below.

B. Hybrid quantum-classical algorithm for the GCM

One of the advantages of the GCM approach is to use
a subset of states, with several states Nst, that is usually
much smaller than the total Hilbert space size necessary to
consider for solving exactly the problem. The quality of the
approximate energy spectra obtained heavily depends on the
proper optimization of the states used in the decomposition
(1). Provided that Nst remains small enough, and that kernels
are estimated with sufficient precision, Eq. (2) can be solved
without specific difficulty on a classical computer. In most,
if not all, applications to nuclear physics of the GCM today,
the generated states are restricted to quasiparticle vacua. One
reason is that the corresponding mean-field energies, i.e., the
diagonal kernels can be obtained using the Wick theorem in
terms of the generalized density matrix. This greatly facilitates
the minimization of these energies under the generator co-
ordinates constraints through, for instance, efficient gradient
descent methods. A second reason is that for two different
quasiparticle vacua, thanks to the generalized Wick theorem
[44], the off-diagonal elements of the kernels (3) can also
be estimated without too much difficulty. This simplification
stems from the specific Lie group algebra inherent to trans-
forming one state into another (see Appendix E of Ref. [29]).

These simplifications in estimating the kernels break down
when the generating states |�(q)〉 are not anymore indepen-
dent quasiparticle states and, as far as we know, this option
has not been explored in classical computers, probably due
to the increase in complexity. Quantum computers offer the
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perspective to (i) explore a wide class of quantum ansätz and
(ii) within the context of noisy quantum computers, great
progress is being made in optimizing these ansätze, using,
for instance, variational quantum eigensolver (VQE)-based
techniques [45] (see also Ref. [7] and references therein).
Having the long-term goal to apply the GCM approach using
generated states beyond the independent quasiparticle picture,
the following hybrid quantum-classical methods can be pro-
posed:

(1) A circuit that depends on a set of parameters θ =
{θ1, . . . , θM} and associated to a unitary transformation
U (θ) is first selected to prepare the different states that
are used later for the configuration mixing in Eq. (2),
where now θ replaces the collective coordinates q, i.e.,
we now have the generating states defined as

|�(θ)〉 ≡ U (θ)
q−1⊗
j=0

|0 j〉 (4)

on a certain number of qubits q. Here, |0 j〉 and |1 j〉
denote the two states associated the jth qubit. The
entanglement properties and expressivity of the ansätz
will depend on the choice of the U (θ).

(2) Eventually, as in the usual GCM, the energy is min-
imized under a set of constraints. This can be done
independently for each state by using the VQE ap-
proach with the cost function

C(θ) = 〈H〉θ −
c∑

k=1
ξk (〈Qk〉θ − qk ), (5)

where the compact notation 〈.〉θ ≡ 〈�(θ)|.|�(θ)〉. The
ξk plays the role of the Lagrange multipliers that
enforce the different constraints. By modifying the val-
ues for the set of parameters {qk}k=1,c, one can explore
different regions of the collective energy landscape and
generate a subset of states {|�(θα )〉}α=1,Nst .

(3) For each couple (θα, θβ )α,β=1,Nst , a new circuit is used
employing standard quantum algorithms to estimate
the two kernels N (θα, θβ ) and H(θα, θβ ). Further dis-
cussions on this aspect are given in Sec. III.

(4) Finally, once the Nst (Nst + 1) matrix elements have
been obtained, the Hamiltonian and overlap matrices
are treated on a classical computer to deduce an ap-
proximate energy spectrum and eventually associated
eigenvectors. For this task, the diagonalization proce-
dure discussed previously can be used. An alternative
post-processing will be introduced in Sec. III F.

As a first pilot application, we show below how this strat-
egy can be implemented in the specific case of the Lipkin
model. In this context, we still stick to the traditional GCM
implementation where the generated states are simple Slater
determinants because, in this model, there is no need to use
a more complex quantum ansatz, even to solve the problem
exactly. We note in passing that no specific advantage is ex-
pected of using quantum computers with respect to solving
this model case fully on a classical computer. Nevertheless,
such early-stage applications are very useful both to identify
possible future caveats when using quantum computers for

configuration mixing and to illustrate that the GCM-guided
methods can outperform recent approaches recently proposed
to solve the Lipkin model, especially regarding the required
quantum resources.

III. APPLICATION TO THE LIPKIN MODEL

A. Basic aspects of the LMG model and its qubit encoding

As an illustration of the hybrid protocol discussed in the
previous section, we test the method in the LMG model [36].
This model consists of a set of N two-level systems. Let us
introduce the notation {|0α〉, |1α〉}, respectively, with ener-
gies {−ε/2, ε/2} for the two single-particle states in a given
two-level system with α = 1, N . Introducing the associated
creation operator a†

0/1,α , the LMG Hamiltonian reads

H = εJz + V

2
(J+J+ + J−J−) ≡ H1b + H2b (6)

with the definition of the total spin operators (Jx, Jy, Jz ) (to-
gether with J± = Jx ± iJy):

Jz = 1

2

∑
α

(a†
1,αa1,α − a†

0,αa0,α ),

J+ =
∑

α

a†
1,αa0,α, J− = J†

+.

We assume here that the number of particles is equal to the
number of two-level systems, in which case, each two-level
system has exactly one particle. An important symmetry of the
problem is its invariance with respect to swapping any two in-
dices (α, β ) labeling two different two levels. This invariance,
referred to as permutation invariance below, implies that the
many-body eigenstates are also eigenstates of the total spin
J2. Thanks to this property, the many-body problem can be
solved on a classical computer in a reduced basis of (N + 1)
states |J, M〉 formed by the common eigenstates of J2 and Jz.
Ultimately, a (N + 1) × (N + 1) matrix should be diagonal-
ized. The numerical effort can eventually be reduced by noting
that the odd- and even-parity blocks form two independent
sub-blocks [36–38].

In pioneering attempts to solve the LMG problem on a
digital quantum computer, three types of encoding have been
proposed: (i) the brute force Jordan-Wigner [46,47] transfor-
mation (JWT) [10]; (ii) the direct SU(2) encoding of each
two-level [8]; and (iii) the compact encoding based on first
quantization, where the M values label the |J, M〉 states [9].
The different encodings differ significantly in terms of the
resulting Hamiltonian in the computational basis, leading re-
spectively to (i) q = 2N , (ii) q = N , and (iii) q = �log2 N�
[11,12]. The last encoding, which is the only one using the
permutation invariance of the problem, evidently outperforms
the other ones in terms of quantum register size. Compared
to other encodings, it also leads to compact unitary (tridi-
agonal) matrices that might lead to a significant number of
gates and/or, eventually the need to add ancillary qubits to
implement them.

Here, we follow the encoding (ii) and will show that one
can still take advantage of the permutation invariance in our
scheme, even if it is not enforced in the first place. We define
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the Pauli operators associated with the two-level α as

Xα = |1α〉〈0α| + |0α〉〈1α|
Yα = i|1α〉〈0α| − i|0α〉〈1α|
Zα = |0α〉〈0α| − |1α〉〈1α| (7)

and complement it by the qubit identity Iα . With this, the
total spin components (Jx, Jy, Jz ) simply identify with the sum
of the corresponding Pauli matrices divided by 2. Using the
natural SU(2) encoding, the LMG Hamiltonian writes in terms
of Pauli strings as

H = ε

2

N∑
α=1

Zα + V

4

N∑
α �=β

(XαXβ − YαYβ ), (8)

and should a priori be solved in a quantum register of size
q = N qubits. We show below that the GCM-based approach
solves this problem with much fewer qubits in practice.

B. Coherent generating states

We know from classical computing application of the
GCM [29,48–50] that a natural choice for describing models
like the LMG model is the SU(2) coherent states [51]. These
states form an overcomplete basis for this problem, and using
them as generating states is expected to converge to the exact
result when sufficient states are considered. Coherent states
are usually defined using two angles. In the present work, we
consider a simplified version of these states using a single
angle, assuming that generating states are a function of a
single collective coordinate θ and are defined as

|�(θ )〉 = eiθJy

q−1⊗
α=0

|0α〉 ≡ U (θ )|0〉, (9)

where we introduce the notation |0〉 = ⊗q−1
α=0 |0α〉. This SU(2)

→ SO(2) reduction stems from the fact that the eigenvectors
of Hermitian operators can be taken real. Hence, there is
no need to introduce a complex phase. States generated in
this way remain simple states that could be written as tensor
products with

|�(θ )〉 =
q−1⊗
α=0

[
Rα

Y (θ )|0α〉], (10)

where Rα
Y (θ ) denotes the standard one qubit Y rotation acting

on the α qubit. We also see from this expression that each
coherent state is individually permutation invariant. Note also,
that the state (10) corresponds in the many-body context to
Slater determinants |�(θ )〉 = ∏

α c†
α (θ )|−〉, where |−〉 is the

Fock space particle vacuum and c†
α (θ ) is obtained from the

original (a†
0,α, a†

1,α ) by a simple 2 × 2 Bogoliubov transfor-
mation (not shown here).

For the LMG case, using the one-parameter dependent
generating states as discussed here, there is no need to op-
timize the states before the GCM-guided procedure. Here,
we directly consider a grid in θ space. Specifically, we con-
sider a set of L equally spaced values of θ , denoted by θl =
−π (1 − δ(L)) + l�θ with �θ = 2π (1 − δ(L))/(L − 1). The

factor δ(L) = 1/L is a simple prescription to avoid θ0 = θL−1,
which would make the corresponding trial states identical.
Even though the states given by Eq. (9) do not have a well-
defined parity, using a regular grid centered on θ = 0 makes
it possible to respect this symmetry at the level of many-body
observables through the linear combinations

|�(θ )〉± = |�(θ )〉 ± |�(−θ )〉√
2

. (11)

In the following, we will simply use the notation |�l〉 =
|�(θl )〉 ≡ Ul |0〉, and write the GCM ansätz (1) assuming a
discretized form as

|�〉 =
L−1∑
l=0

fl |�l〉. (12)

In the specific LMG model, we know that the ansätz above
can describe the exact solution provided that L � (N + 1).

C. Reducing the quantum resources for kernels using
permutation symmetry

Let us consider a general observable O, that we write as a
linear combination of unitaries such that O = ∑

k gkVk , where
Vk is a product of Pauli matrices acting on the set of qubits.
The expectation value of O with the ansätz (12) is given by

〈�|O|�〉 =
∑
l,l ′,k

f ∗
l fl ′gk〈�l |Vk|�l ′ 〉. (13)

Using the strategy employed in the VQE, each matrix element
〈�l |Vk|�l ′ 〉 can be estimated using a separate circuit. Taking
advantage of the relation

〈�l |Vk|�l ′ 〉 = 〈0|U †
l VkUl ′ |0〉 ≡ 〈Vk〉ll ′ , (14)

the real and imaginary parts of these quantities can be ob-
tained using standard Hadamard tests [52] at the price of
adding a single ancillary qubit. Implementing the operation Ul

given by Eq. (9) is rather straightforward for the Lipkin model
since it consists in q independent Y rotation of each qubit. For
a more general situation, discussions on the cost and practical
aspects to prepare Slater determinants or more generally of
quasiparticle states can be found in [53] and [54].

The (q + 1) register needed to encode the LMG problem
in the SU(2) encoding, although it scales linearly with the
number N of two-levels, still prevents from using the SU(2)
for large N values on quantum computers. In [8], only appli-
cations up to N = 2 have been possible on real devices. Even
today, using the most compact encoding [11,12] has allowed
to perform applications up to N = 8 using q = 3 qubits.

In the quest to apply the GCM-guided method, we re-
alized that the explicit encoding of the problem within the
SU(2) scheme on (q + 1) qubits for the LMG is not neces-
sary. Indeed, starting from the expression of the Hamiltonian
(8), and using the permutation invariance of each individual
generating state, the quantities 〈Iα〉ll ′ , 〈Zα〉ll ′ , 〈XαXβ〉ll ′ , or
〈YαYβ〉ll ′ are independent on the choice of the qubit α or on the
pairs of qubits (α, β ), respectively. This reduces the number
of observable expectation values to only 4 for each pair of
states (l, l ′). Then, using the simple tensorial nature of the
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FIG. 1. Quantum circuits using the Hadamard (a) and modified
Hadamard (b) tests, respectively, employed to extract the real and the
imaginary part of the expectation values of pll ′ with p ∈ (i, x, y, z)
associated to the operator P = (I, X,Y, Z ). The real and imaginary
parts are recovered from the difference of probabilities p0 and p1 to
measure 0 or 1, respectively, in the ancillary qubit.

generating state, one can ultimately recast the Hamiltonian
expectation value as

〈H〉ll ′ = εN

2
iN−2
ll ′

[
ill ′zll ′ + χ

2

(
x2

ll ′ − y2
ll ′

)]
, (15)

while for the norm kernel, we simply have

〈I〉ll ′ = iN
ll ′ . (16)

In the Hamiltonian expectation value, we used the parameter
χ = V (N − 1)/ε, usually introduced in the mean-field ap-
proximation of the LMG model. The different quantities pll ′

with p = (i, x, y, z) are kernels obtained from two states that
are expressed on a single qubit register. Specifically, we have
for these states |φl〉 = e−iθlY/2|0〉 ≡ u(θl )|0〉 and

pll ′ = 〈0|u†(θl )Pu(θl ′ )|0〉 (17)

with P = (I, X,Y, Z ). The real and imaginary parts of the
different one-body kernels pll ′ can be obtained using the
Hadamard tests shown in Fig. 1 that only requires two qubits
and with only three CNOT gates.

In summary, we have just shown that the use of the GCM
on a quantum computer, together with employing the per-
mutation invariance of the problem and the fact that the
generating states are simple tensor product states, leads to
a tremendous reduction of the quantum resources needed to
express the GCM kernels, independently of the number N of
the two-level considered. This holds even if we use a fermion-
to-qubit encoding that does not explicitly use the permutation
invariance symmetry. Note that the compact encoding of
Refs. [11,12] explicitly taking advantage of this symmetry to
reduce the quantum resources requires more qubits. In this
case, the qubit number scales as log2(N + 1)�. This number
is reduced to q = 2 here.

D. Estimation of the kernels with two qubits

The circuits from which the real and imaginary parts of pll ′ ,
based on the Hadamard test, are given in Fig. 1.

We show in Fig. 2, illustrations of the real parts of the
matrix elements ill ′ , xll ′ , yll ′ , and zll ′ obtained with the circuit
of Fig. 1 using a finite number of shots Nsh. Similar esti-
mates can be obtained for the imaginary parts (not shown).
In the following, the different shots are labeled by the integer

FIG. 2. Real parts of the quantities (a) il ′l , (b) xl ′ l , (c) yl ′ l , and
(d) zl ′ l as a function of θl for θl ′ = π/3. In each panel, the exact
values are reported with red solid lines, while the average values
obtained from Nsh = 100 shots measurements are shown with open
black circles. The shaded blue area represents the standard deviation
that is proportional to 1/

√
Nsh. The results have been obtained by

simulating a noiseless fault-tolerant quantum computer using the
IBM-Qiskit package [58].

λ = 1, Nsh and we denote generically the specific value of
one of the kernels p(λ)

ll ′ for the event λ. The reported values
correspond to the average over the total number of shots,
defined as (for compactness, we simply use below the notation
p(λ)

ll ′ = p(λ)):

p(λ) = 1

Nsh

∑
λ

p(λ). (18)

These averages are subject to a global standard deviation
scaling as 1/

√
Nsh. We also report in the figure (shaded area)

the usual standard deviation that is defined as

σp(Nsh ) = 1√
Nsh

√∑
λ

[p(λ)]2 − p(λ)
2
. (19)

We see in Fig. 2 that even a small number of shots gives
a rather good estimate of the different one-qubit kernels with
limited deviations.

E. Application of the standard GCM diagonalization solver

Once the different one qubit kernels reported in Fig. 2 are
obtained for each couple of angles (θl , θl ′ ), one can deduce
the norm and Hamiltonian many-body kernels from Eqs. (16)
and (15), respectively, for any number N of two-levels. Note,
however, that an error on the one-qubit kernel will induce an
increasing error on the many-body kernels as N increases. In
addition, the size of the Hilbert space relevant for the permu-
tation invariance is equal to (N + 1) and, therefore, changes
with N . Accordingly, for a fixed number of generating states
L, with the equidistant prescription, we expect to be able to
solve exactly the problem for N such that L � (N + 1). If
L < (N + 1), only approximate solutions will be obtained that
will depend on the retained set of angles {θl}l=0,L−1.
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FIG. 3. Exact (solid lines) versus approximate energies (sym-
bols) for the LMG model as a function of χ for the case N = 4.
In (a), (c), and (e) are shown the results obtained using the hybrid
method with the GCM-Diag technique using 102, 103, and 104 shots
in the estimation of each one-body kernels. In (b), (d), and (b) are
the results obtained from the same set of shots but using the deflation
method instead of the diagonalization. The energy is given here in
units of ε, where ε is defined in Eq. (8). The same convention will be
used for all figures displayed in this article.

The GCM-Diag method, which is the one standardly used
on classical computers, consists in solving the Hill-Wheeler
equation (2) that takes the discretized form here, for all l:∑

l ′
Hll ′ fl ′ = E

∑
l ′

fl ′Nll ′ . (20)

Today, such an equation is always solved on a classical
computer using a brute-force diagonalization procedure that
consists of first diagonalizing N to transform the problem
into a standard eigenvalue problem in a new orthonormal
basis and then diagonalizing the Hamiltonian in this basis.
This method is well documented and has been discussed, for
instance, in the quantum computing context (see, for instance,
Refs. [19,55–57]) as a practical way to solve iterative many-
body problems using a quantum-classical technique based on
a quantum state expansion picture.

We show in panels (a), (c), and (e) of Figs. 3 and 4, some re-
sults obtained from the brute-force diagonalization technique
using increasing numbers of shots from top to bottom panels.

FIG. 4. Same as Fig. 3 for the N = 8 case. Note that, in this case,
a better precision on the one-body kernels is necessary compared to
the N = 4 case to achieve a similar reproduction of the eigenvalues.
For this reason, slightly higher numbers of shots are used to obtain
the figure: 104, 105, and 106 shots for panels (a),(b), (c),(d), and
(e),(f), respectively.

The values L = 5 and L = 9 are used, respectively, for N = 4
and N = 8, such that in the limit of an infinite number of
events, we expect to get all eigenstates of the problem. We
see that, provided that enough shots are used to get one-body
kernels with good precision, the results of the GCM-Diag
reproduce the exact eigenvalues of the Hamiltonian. From this
study, we see that the hybrid strategy based on the estimate
of many-body kernels using solely two qubits, followed by
classical post-processing where many-body kernels are then
reconstructed and then a brute force GCM scheme is used, is
validated.

Still, from our extensive studies during this work, we have
observed that very small errors on the one-body kernels lead
to large errors in the many-body kernels that increase with N .
This is illustrated by the fact that a higher number of shots,
i.e., higher precision on the one-body kernels, was necessary
to obtain results shown in Fig. 4 to achieve a similar precision
on the eigenenergies compared to Fig. 3.

One critical aspect that is also the source of difficulty in
standard classical computing simulation of GCM stems from
the inversion of the overlap matrix. Proper information of the
information content of the non-orthogonal basis relies on the
use of a threshold ε for its eigenvalue, denoted previously
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as {ξn}n=1,Nst . A typical threshold used in general is of the
order of 10−3–10−5. We anticipate that a precision on the
eigenvalues at this level will be extremely difficult to achieve
in noisy quantum computers.

To avoid the necessity to invert the norm kernel, we also
explored the quantum deflation technique that gives access to
approximate eigenstates without the norm matrix inversion.
This technique is discussed below.

F. Combining the GCM and quantum state deflation

As an alternative to the GCM diagonalization technique,
we have explored the possibility of performing the classical
post-processing using the deflation technique of Ref. [39],
that (i) we slightly adapt here to the specific case where the
trial state vectors are written as a function of a subset of
nonorthogonal states, and (ii) we pay specific attention to the
fact that we should avoid the inversion of the overlap matrix.
Note that the deflation method was already employed recently
to access low-lying states in the Lipkin model in Ref. [14].

The variational quantum deflation (VQD) technique is an
iterative procedure to generate eigenstates with increasing
values of energies. The GCM problem is considered in this
work, and this technique is applied as follows:

(1) The quantum state deflation is initiated using a VQE
technique using the trial state vector given by Eq. (12).
Specifically, we use the following cost function that is
minimized:

C0 = 〈�|H |�〉 − λ0[〈�|�〉 − 1]2, (21)

where λ0 is a Lagrange multiplier used to constrain
the trial state norm to be one. In this expression, the
expectation values of the energy and norms are com-
puted from the many-body kernels that are themselves
deduced from the one-body kernels obtain from the
quantum simulation. After this step, we end up with
an approximate ground state denoted by |�(0)〉 and
associated with the mixing coefficients { fl (0)}l=0,L−1.

(2) Approximate eigenstates with increasing energies are
then built using the following iterative scheme. Let us
assume that we already obtained a set of approxima-
tions for the k = 0, K − 1 lowest eigenstates, denoted
by {|�(k)〉}, each associated to a set of mixing co-
efficients { fl (k)}l=0,L−1. The next state |�(K + 1)〉 is
obtain by minimizing the cost function

CK = 〈�(K )|H |�(K )〉
− λK [〈�(K )|�(K ))〉 − 1]2

−
∑

j=0,K−1

βK ( j)|〈�( j)|�(K )〉|2, (22)

where we again recognize the Lagrange multiplier
added to normalize the state, while, in addition, a set
of j = 0, K − 1 new Lagrange multipliers is added
to force the constraint 〈�( j)|�(K )〉 = 0 for j < K .
Again, the cost function CK is minimized assuming the
trial ansätz of Eq. (12), leading to the set of optimal
mixing coefficients { fl (K )}l=0,L−1. The procedure is
then iterated until the desired number of states Nst is

reached. Note that in practice Nst cannot be higher than
the rank of the overlap matrix itself.

The above scheme is referred to as GCM-VQD below.
We show in panels (b), (d), and (f) of Figs. 3 and 4

results obtained with the deflation method as an alternative
to the diagonalization solver. Note that the same one-body
kernels are used in both cases. It is worth mentioning that
since the same generator states and the same Hamiltonian
matrix elements are used, we expect that both methods strictly
lead to the same results within the accuracy of the ap-
proach. One difference between the deflation approach and
the diagonalization is that the minimization of the variational
principle is made through a specific optimizer. Here, we used
the limited-memory Broyden-Fletcher-Goldfarb-Shanno op-
timizer [59,60], implemented in the SciPy library. To avoid
divergences in the optimization process, it is necessary to
bind the value of the mixing coefficients fl . In practice, we
constrain them to be within the bounds −2 � fl � 2, as we
found this to be more numerically stable than the restrictions
| fl | � 1 due to the use of a nonorthogonal basis set. We also
used the COBYLA method, with, in general, slightly inferior
results. As shown in [39], the Lagrange multipliers {βK ( j)} do
not need to be adjusted through the procedure, as long as an
estimate for the energy difference between eigenstates is avail-
able. Here, we use βK ( j) = 10N , which fulfills that condition
for all the studied values of the coupling constants. Another
possible issue with the deflation method is that eventual er-
rors of low-lying states automatically impact higher energy
states due to the iterative variational principle strategy. We
observed in practice that the VQD approach might have dif-
ficulties converging, especially in the weak coupling regime,
if a small number of shots is used for the one-body kernels.
Nevertheless, provided that one-body kernels are obtained
with sufficient precision, we see that the results converge
towards exact results in a similar way as the GCM-Diag case.
More generally, the precision of the two approaches on the
eigenvalues are generally similar. This is illustrated in Fig. 5
where we show the quantity

FK = 1

|Eg.s.|K

√√√√ K∑
α=1

(Eα − Eα )2, (23)

where {Eα} are the set of approximate energies obtained either
by diagonalization or state deflation while {Eα} denote the
exact energies. Eg.s. denotes the ground state energy. We see
in Fig. 5, that the diagonalization gives slightly better results
also compared to the QSD when a small number of shots are
used. However, it should be kept in mind that the use of 102

shots leads to very bad results in both cases.

IV. TESTS ON NOISY QUANTUM
COMPUTER EMULATORS

In this section, we test the quantum GCM approach re-
sistance to the quantum device noise. To this end, we use
the Lagos back-end emulator provided by the IBM Quantum
platform [58]. The key parameters of the back-end are given
in Table I.
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FIG. 5. FK given by Eq. (23) obtained by GCM-Diag (solid
lines) and GCM-VQD (dashed lines) for N = 8 and for (a) χ = 0.2,
(b) χ = 1, and (c) χ = 2. The round and square symbols corre-
spond to K = N + 1 (full spectrum) and K = 1 (ground state only),
respectively.

TABLE I. Mean values of the main physical parameters of the
Lagos back-end.

T1 (µs) T2 (µs) Readout error CNOT error

84.23 28.45 1.44×10−2 8.79×10−3

FIG. 6. Error in the real parts of the quantities (a) il ′ l , (b) xl ′ l ,
(c) yl ′ l , and (d) zl ′l as a function of θl ± θl ′ , without error mitigation
(blue circles) and after zero-noise extrapolation and scaling (green
squares). Each point represents the average from Nsh = 105 measure-
ments. The horizontal red lines indicate the zero error limit.

We show in Fig. 6 the deviation of the one-body kernels
obtained from the quantum simulations compared to the exact
results (solid lines in Fig. 2). Except for the yll ′ kernels, for
which the noisy results rather well match the exact case, we
see some deviations for the other kernels that could be of
the order of 6–7 % of the expected values. Note that Fig. 6
has been obtained using 105 shots for each points (compared
to 100 shots in Fig. 2), ensuring negligible statistical errors
compared to the errors induced by the quantum device’s
imperfections. An error of a few percent on the one-body
kernels, since it propagates in the many-body kernels, has a
significant impact on the results obtained using the quantum
GCM calculation. Correcting the error even by a factor of two
can reduce the error on the many-body kernels by almost one
order of magnitude for N = 4. This is illustrated in Fig. 7.
In this figure, we see that even with the presence of noise,
the ground state and first excited states are rather close to
the exact energies. However, the reproduction of the excited
state’s energies rapidly degrades with increasing excitation
energy, whatever is the coupling strength. The corrections on
the one-body kernels strongly improve the results, in particu-
lar for the excited states. The quantitative absolute deviation of
the calculated energies for the ground state and for all states
is shown in Fig. 8. From this, the quantum GCM approach
is quite efficient for low-lying states, and can also reproduce
the low-lying states with good precision, provided the error
one one-body kernels is small enough. For the ground state
and after noise mitigation, an error of less than 2% for all
two-body coupling strength is observed.

To complement the present application in the presence
of noise, we incorporated some standard noise mitigation
techniques. Specifically, we used the standard zero-noise ex-
trapolation technique (ZNE) [61,62], which we implement by
repeating the circuits 1 and their inverse k = 0, 1, 2 times. In
the GCM application, the circuit depth is much smaller than
the error rate of the different gates, and the total execution
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FIG. 7. Energies obtained for the LMG model with N = 4 as a
function of the coupling strength χ with the quantum GCM-Diag
approach using the kernels deduced from noisy simulations without
(open circles) and with (filled circles) error corrections. The error
corrections contain here both the ZNE and scaling approach dis-
cussed in the text. The solid lines correspond to the exact energies.
Each one-body kernel is computed using 105 measurements.

time of the circuit remains much smaller than the mean relax-
ation (T1 = 84.23 µs) and dephasing (T2 = 28.45 µs) times.
The circuit error is thus essentially proportional to the total
depth, and we extrapolate to zero noise using simply a linear
fit.

In addition to the ZNE technique, a second technique is
employed to correct the error, which will be referred to below
as the scaling method. In the LMG model, the task of the
quantum computer is minimal and reduces to perform simple

FIG. 8. FK for the ground state energy (blue) and for the full
spectrum (orange). The open circles points correspond to results
without error corrections, and the filled one to the results with
ZNE+scaling corrections. All points correspond to the GCM-Diag.
Application of the GCM-VQD (not shown) method leads to results
that are equivalent to the diagonalization approach.

unary rotation for which we know some specific properties
should hold. Among them, we should have the exact equalities
〈I〉 = 〈Z〉 = 1 for θl = θ ′

l = 0, and 〈X 〉 = i〈Y 〉 = 1 for θl =
−θ ′

l = π/2. Due to noise, these equalities are only approxi-
mately fulfilled. A simple method to improve the calculation
is to rescale the noisy results such that these constraints
are exactly fulfilled. Corrected one-body kernels are reported
in Fig. 6, while eigenstates energies after the ZNE+scaling
procedure are shown as open circles in Fig. 7. Finally, the
absolute error on the low-lying state after noise correction
is shown in Fig. 8. The ZNE+scaling correction procedure
systematically reduces the error by about a factor of two for
the one-body kernels, and ultimately strongly improves the
energies of the many-body eigenstates.

V. CONCLUSION

Guided by the GCM approach standardly used in nuclear
physics in classical computing, a hybrid quantum-classical
method is proposed to obtain the ground state and excited
state of a many-body Hamiltonian. In our strategy, the only
task attributed to the quantum computer is the computa-
tion of the Hamiltonian and norm many-body kernels, while
the eigenenergies are deduced from them by classical post-
processing. The strategy is illustrated in the LMG model case,
which has recently become a milestone for quantum com-
puting in nuclear physics. Two techniques are used for the
post-processing: the direct diagonalization and the deflation
method. Both methods give comparable results that match the
exact solution, provided that enough generator states are used
and that the kernels are estimated with enough accuracy. The
present work demonstrates that the GCM-guided approach
works properly. Most importantly, we illustrate with the LMG
model that, using the inherent symmetries of the Hamiltonian
to estimate the kernels, the proposed strategy can lead to a
significant reduction of the quantum resources. Specifically,
two qubits are needed together with a very small number of
operations, outperforming all methods that have been pro-
posed so far to solve the LMG model.

In the LMG model, besides the proof of principle that
the approach works, we do not expect a specific advantage
in using quantum computers compared to a fully classical
computing treatment. Still, we have learned from this simple
example that, using the GCM technique, one can greatly re-
duce the quantum resources needed to estimate the kernels by
using the symmetry of the problem. The LMG model is also
simple enough that we do not need to optimize the generator
states. In a more complex situation, the full strategy will
generate the states through an optimization process, such as
using the VQE approach. Such VQE based on parameterized
states has become one of the most efficient tools on noisy
quantum computers.

We also stress that the GCM approach, being independent
of the specific class of ansätz used to prepare the trial states,
can be used very straightforwardly on top of any single-
reference quantum algorithm at a moderate increase of the
circuit complexity.

Finally, we would like to mention the great versatility of
the GCM-based technique. In the present work, we used the
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standard strategy to perform GCM that is based on using
simple quasiparticle states. One motivation to use these states
stems from the possibility of taking advantage of the general-
ized Wick theorem, which greatly simplifies the computation
of kernels on a classical computer. Using more complex states
that incorporate more correlations significantly increases the
cost of estimating the kernels on classical computers. We an-
ticipate that quantum computers will allow estimating kernels
for wider classes of many-body states and extend the current
applicability of GCM approaches.

ACKNOWLEDGMENTS

We thank G. Hupin, E. A. Ruiz Guzman, and J. Zhang for
the discussions during this work. This project has received
financial support from the CNRS through the AIQI-IN2P3
project and the P2IO LabEx (Grant No. ANR-10-LABX-
0038). This work is part of HQI initiative [63] and is supported
by France 2030 under the French National Research Agency
Award No. “ANR-22-PNQC-0002”. We acknowledge the use
of IBM Q cloud as well as the use of the Qiskit software
package [58] for performing the quantum simulations.

[1] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik,
The theory of variational hybrid quantum-classical algorithms,
New J. Phys. 18, 023023 (2016).

[2] Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson,
M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre, N. P. D.
Sawaya, S. Sim, L. Veis, and A. Aspuru-Guzik, Quantum chem-
istry in the age of quantum computing, Chem. Rev. 119, 10856
(2019).

[3] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X.
Yuan, Quantum computational chemistry, Rev. Mod. Phys. 92,
015003 (2020).

[4] B. Bauer, S. Bravyi, M. Motta, and G. Kin-LicChan, Quantum
algorithms for quantum chemistry and quantum materials sci-
ence, Chem. Rev. 120, 12685 (2020).

[5] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-
Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T.
Menke, W.-K. Mok, S. Sim, L.-C. Kwek, and A. Aspuru-Guzik,
Noisy intermediate-scale quantum algorithms, Rev. Mod. Phys.
94, 015004 (2022).

[6] S. Endo, Z. Cai, S. C. Benjamin, and X. Yuan, Hybrid quantum-
classical algorithms and quantum error mitigation, J. Phys. Soc.
Jpn. 90, 032001 (2021).

[7] T. Ayral, P. Besserve, D. Lacroix, and A. Ruiz Guzman, Quan-
tum computing with and for many-body physics, Eur. Phys. J.
A 59, 227 (2023).

[8] M. J. Cervia, A. B. Balantekin, S. N. Coppersmith, C. W.
Johnson, P. J. Love, C. Poole, K. Robbins, and M. Saffman,
Lipkin model on a quantum computer Phys. Rev. C 104, 024305
(2021)

[9] K. Robbins and P. J. Love, Benchmarking near-term quan-
tum devices with the variational quantum eigensolver and
the Lipkin-Meshkov-Glick model, Phys. Rev. A 104, 022412
(2021).

[10] A. M. Romero, J. Engel, H. L. Tang, and S. E. Economou,
Solving nuclear structure problems with the adaptive variational
quantum algorithm, Phys. Rev. C 105, 064317 (2022).

[11] M. Q. Hlatshwayo, Y. Zhang, H. Wibowo, R. LaRose, D.
Lacroix, and E. Litvinova, Simulating excited states of the Lip-
kin model on a quantum computer, Phys. Rev. C 106, 024319
(2022).

[12] M. Q. Hlatshwayo, J. Novak, and E. Litvinova, Quantum benefit
of the quantum equation of motion for the strongly coupled
many-body problem, Phys. Rev. C 109, 014306 (2024).

[13] C. E. P. Robin, M. J. Savage, Quantum simulations in effec-
tive model spaces (I): Hamiltonian learning-VQE using digital
quantum computers and application to the Lipkin-Meshkov-
Glick model, Phys. Rev. C 108, 024313 (2023).

[14] M. Grossi, O. Kiss, F. De Luca, C. Zollo, I. Gremese, and
A. Mandarino, Finite-size criticality in fully connected spin
models on superconducting quantum hardware, Phys. Rev. E
107, 024113 (2023).

[15] P. Pérez-Fernández, J.-M. Arias, J.-E. García-Ramos, and L.
Lamata, A digital quantum simulation of the Agassi model,
Phys. Lett. B 829, 137133 (2022).

[16] D. Lacroix, Symmetry-assisted preparation of entangled many-
body states on a quantum computer, Phys. Rev. Lett. 125,
230502 (2020).

[17] A. Khamoshi, T. Henderson, and G. Scuseria, Correlating AGP
on a quantum computer, Quantum Sci. Technol. 6, 014004
(2021).

[18] E. A. Ruiz Guzman and D. Lacroix, Calculation of generating
function in many-body systems with quantum computers: Tech-
nical challenges and use in hybrid quantum classical methods,
arXiv:2104.08181.

[19] E. A. Ruiz Guzman and D. Lacroix, Accessing ground-state and
excited-state energies in a many-body system after symmetry
restoration using quantum computers, Phys. Rev. C 105, 024324
(2022).

[20] E. A. R. Guzman and D. Lacroix, Restoring broken symmetries
using quantum search “oracles”, Phys. Rev. C 107, 034310
(2023).

[21] D. Lacroix, E. A. Ruiz Guzman, and P. Siwach, Sym-
metry breaking/symmetry preserving circuits and symmetry
restoration on quantum computers, Eur. Phys. J. A 59, 3
(2023).

[22] J. Faba, V. Martín, and L. Robledo, Correlation energy and
quantum correlations in a solvable model, Phys. Rev. A 104,
032428 (2021).

[23] J. Faba, V. Martín, and L. Robledo, Analysis of quantum cor-
relations within the ground state of a three-level Lipkin model,
Phys. Rev. A 105, 062449 (2022).

[24] S. M. Hengstenberg, C. E. P. Robin, and M. J. Savage, Multi-
body entanglement and information rearrangement in nuclear
many-body systems, Eur. Phys. J. A 59, 231 (2023).

[25] C. Robin, M. J. Savage, and N. Pillet, Entanglement rearrange-
ment in self-consistent nuclear structure calculations, Phys.
Rev. C 103, 034325 (2021).

[26] C. W. Johnson and O. C. Gorton, Proton-neutron entanglement
in the nuclear shell model, J. Phys. G: Nucl. Part. Phys. 50,
045110 (2023).

[27] A. Pérez-Obiol, S. Masot-Llima, A. M. Romero, J. Menéndez,
A. Rios, A. García-Sàez, and B. Juliá-Díaz, Quantum entan-
glement patterns in the structure of atomic nuclei within the
nuclear shell model, Eur. Phys. J. A 59, 240 (2023).

024327-10

https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.1021/acs.chemrev.9b00829
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.7566/JPSJ.90.032001
https://doi.org/10.1140/epja/s10050-023-01141-1
https://doi.org/10.1103/PhysRevC.104.024305
https://doi.org/10.1103/PhysRevA.104.022412
https://doi.org/10.1103/PhysRevC.105.064317
https://doi.org/10.1103/PhysRevC.106.024319
https://doi.org/10.1103/PhysRevC.109.014306
https://doi.org/10.1103/PhysRevC.108.024313
https://doi.org/10.1103/PhysRevE.107.024113
https://doi.org/10.1016/j.physletb.2022.137133
https://doi.org/10.1103/PhysRevLett.125.230502
https://doi.org/10.1088/2058-9565/abc1bb
https://arxiv.org/abs/2104.08181
https://doi.org/10.1103/PhysRevC.105.024324
https://doi.org/10.1103/PhysRevC.107.034310
https://doi.org/10.1140/epja/s10050-022-00911-7
https://doi.org/10.1103/PhysRevA.104.032428
https://doi.org/10.1103/PhysRevA.105.062449
https://doi.org/10.1140/epja/s10050-023-01145-x
https://doi.org/10.1103/PhysRevC.103.034325
https://doi.org/10.1088/1361-6471/acbece
https://doi.org/10.1140/epja/s10050-023-01151-z


SOLVING THE LIPKIN MODEL USING QUANTUM … PHYSICAL REVIEW C 109, 024327 (2024)

[28] C. Gu, Z. H. Sun, G. Hagen, and T. Papenbrock, Entanglement
entropy of nuclear systems, Phys. Rev. C 108, 054309 (2023).

[29] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer-Verlag, New York, 1980).

[30] J. P. Blaizot and G. Ripka, Quantum Theory of Finite Systems
(MIT Press, Cambridge, MA, 1986).

[31] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Self-consistent
mean-field models for nuclear structure, Rev. Mod. Phys. 75,
121 (2003).

[32] L. M. Robledo, T. R. Rodríguez, and R. R. Rodríguez-Guzmán,
Mean field and beyond description of nuclear structure with the
Gogny force a review, J. Phys. G: Nucl. Part. Phys. 46, 013001
(2019).

[33] J. A. Sheikh, J. Dobaczewski, P. Ring, L. M. Robledo, and C.
Yannouleas, Symmetry restoration in mean-field approaches,
J. Phys. G: Nucl. Part. Phys. 48, 123001 (2021).

[34] M. Zheng, B. Peng, N. Wiebe, A. Li, X. Yang, and K. Kowalski,
Quantum algorithms for generator coordinate methods, Phys.
Rev. Res. 5, 023200 (2023).

[35] D. L. Hill and J. A. Wheeler, Nuclear constitution and the inter-
pretation of fission phenomena, Phys. Rev. 89, 1102 (1953).

[36] H. J. Lipkin, N. Meshkov, and A. J. Glick, Validity of many-
body approximation methods for a solvable model: (I) Exact
solutions and perturbation theory, Nucl. Phys. 62, 188 (1965).

[37] N. Meshkov, A. Glick, and H. Lipkin, Validity of many-body
approximation methods for a solvable model: (II). Linearization
procedures, Nucl. Phys. 62, 199 (1965).

[38] A. Glick, H. Lipkin, and N. Meshkov, Validity of many-body
approximation methods for a solvable model: (III). Diagram
summations, Nucl. Phys. 62, 211 (1965).

[39] O. Higgott, D. Wang, and S. Brierley, Variational quantum
computation of excited states, Quantum 3, 156 (2019).

[40] K. Seki and S. Yunoki, Spatial, spin, and charge symmetry
projections for a Fermi-Hubbard model on a quantum computer,
Phys. Rev. A 105, 032419 (2022).

[41] T. Tsuchimochi, Y. Mori, and S. L. Ten-no, Spin-projection for
quantum computation: A low-depth approach to strong correla-
tion, Phys. Rev. Res. 2, 043142 (2020).

[42] T. Tsuchimochi, M. Taii, T. Nishimaki, and S. L. Ten-no,
Adaptive construction of shallower quantum circuits with quan-
tum spin projection for fermionic systems, Phys. Rev. Res. 4,
033100 (2022).

[43] E. A. Ruiz Guzman and D. Lacroix, Restoring sym-
metries in quantum computing using Classical Shadows,
arXiv:2311.04571.

[44] R. Balian and E. Brézin, Nonunitary Bogoliubov transforma-
tions and extension of Wick’s theorem, Nuovo Cimento B 64,
37 (1969).

[45] A. Peruzzo et al., A variational eigenvalue solver on a photonic
quantum processor, Nat. Commun. 5, 4213 (2014).

[46] P. Jordan and E. Wigner, Über das Paulische Äquivalenzverbot,
Z. Phys. 47, 631 (1928).

[47] E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an
antiferromagnetic chain, Ann. Phys. 16, 407 (1961).

[48] G. Holzwarth, Four approaches to the function of inertia in a
solvable model, Nucl. Phys. A 207, 545 (1973).

[49] L. M. Robledo, Characterization of octupole correlations in the
Lipkin model Phys. Rev. C 46, 238 (1992).

[50] A. P. Severyukhin, M. Bender, and P.-H. Heenen, Beyond mean
field study of excited states: Analysis within the Lipkin model
Phys. Rev. C 74, 024311 (2006).

[51] W.-M. Zhang, D. H. Feng, and R. Gilmore, Coherent states:
Theory and some applications, Rev. Mod. Phys. 62, 867 (1990).

[52] M. A. Nielsen and I. L. Chuang, Quantum Information and
Quantum Computation (Cambridge University Press, Cam-
bridge, 2000).

[53] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends, S. Boixo, M. Broughton, B. B. Buckley, D. A. Buell
et al., Hartree-Fock on a superconducting qubit quantum com-
puter, Science 369, 1084 (2020).

[54] P.-L. Dallaire-Demers, J. Romero, L. Veis, S. Sim, and A.
Aspuru- Guzik, Low-depth circuit ansätz for preparing corre-
lated fermionic states on a quantum computer, Quantum Sci.
Technol. 4, 045005 (2018).

[55] N. H. Stair, R. Huang, and F. A. Evangelista, A multireference
quantum Krylov algorithm for strongly correlated electrons,
J. Chem. Theory Comput. 16, 2236 (2020).

[56] K. Bharti and T. Haug, Iterative quantum-assisted eigensolver,
Phys. Rev. A 104, L050401 (2021).

[57] K. Bharti and T. Haug, Quantum-assisted simulator, Phys. Rev.
A 104, 042418 (2021).

[58] Qiskit Development Team, Qiskit: An open-source framework
for quantum computing (2021).

[59] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A limited memory
algorithm for bound constrained optimization, SIAM J. Sci.
Comput. 16, 1190 (1995).

[60] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, Algorithm 778: L-
BFGS-B: Fortran subroutines for large-scale bound-constrained
optimization, ACM Trans. Math. Softw. 23, 550 (1997).

[61] Y. Li and S. C. Benjamin, Efficient variational quantum simu-
lator incorporating active error minimization, Phys. Rev. X 7,
021050 (2017).

[62] K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation
for short-depth quantum circuits, Phys. Rev. Lett. 119, 180509
(2017).

[63] https://www.hqi.fr/.

024327-11

https://doi.org/10.1103/PhysRevC.108.054309
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1088/1361-6471/aadebd
https://doi.org/10.1088/1361-6471/ac288a
https://doi.org/10.1103/PhysRevResearch.5.023200
https://doi.org/10.1103/PhysRev.89.1102
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1016/0029-5582(65)90863-1
https://doi.org/10.1016/0029-5582(65)90864-3
https://doi.org/10.22331/q-2019-07-01-156
https://doi.org/10.1103/PhysRevA.105.032419
https://doi.org/10.1103/PhysRevResearch.2.043142
https://doi.org/10.1103/PhysRevResearch.4.033100
https://arxiv.org/abs/2311.04571
https://doi.org/10.1007/BF02710281
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1007/BF01331938
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0375-9474(73)90861-0
https://doi.org/10.1103/PhysRevC.46.238
https://doi.org/10.1103/PhysRevC.74.024311
https://doi.org/10.1103/RevModPhys.62.867
https://doi.org/10.1126/science.abb9811
https://doi.org/10.1088/2058-9565/ab3951
https://doi.org/10.1021/acs.jctc.9b01125
https://doi.org/10.1103/PhysRevA.104.L050401
https://doi.org/10.1103/PhysRevA.104.042418
https://doi.org/10.1137/0916069
https://doi.org/10.1145/279232.279236
https://doi.org/10.1103/PhysRevX.7.021050
https://doi.org/10.1103/PhysRevLett.119.180509
https://www.hqi.fr/

