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Based on the beyond-mean-field Skyrme-Hartree-Fock model, we investigate the energy spectra and possible
cluster structure in 12C and its � hypernucleus 13

�C. The up-to-date Skyrme-type N� interaction SLL4 and
the reduced NN interaction SGII are employed. Low-lying energy spectra of 12C, including the lowest five 0+

states, are predicted and discussed in detail, and found in good agreement with experimental results. The electric
quadrupole transition rates and the monopole matrix elements between the 0+ states are also examined. Although
typical cluster structures for the 0+

2 and 0+
3 states are absent, a linear-chain-like 3α structure is found for the 0+

4

state. An energy spectrum including both the positive- and negative-parity levels is also given and structures of
the corresponding hypernuclear states are discussed in detail. Impurity effects of a �s or �p hyperon on the
nuclear core states of 13

�C are demonstrated by the change of collective wave functions.

DOI: 10.1103/PhysRevC.109.024324

I. INTRODUCTION

It is well known that 12C is a typical nucleus in which
several kinds of intrinsic structures exist and compete with
each other, including the shell structure, triangle-like 3α struc-
ture, and linear 3α structure [1,2]. Thus it has for a long time
been drawing attention from both experiments and theoretical
investigations. Besides, in the hypernuclear sector, 13

�C is ob-
served and the interactions between a � hyperon and various
core states of 12C are also an interesting topic [3,4].

In experiments, besides the ground state of 12C with a
shell structure, the 0+

2 ‘Hoyle state’ has been predicted and
observed for a long time [5,6] and is generally regarded as a
triangle-like 3α cluster state [7]. In recent years, the 0+

3 and
0+

4 states were also observed at around 10 MeV with respect
to the ground state [8]. The 0+

3 state was predicted to have a
higher nodal structure than the Hoyle state, while the 0+

4 state
was expected to have a linear-like 3α structure [7,9,10]. In the
past 40 years, observations of the corresponding hypernucleus
13
�C have also achieved great progress, and its energy spec-
trum including both positive- and negative-parity states was
well established [11,12], which allows to study in detail the
impurity effects caused by a s- or p-orbital � hyperon onto
the core states of 12C.

Quite a few theoretical studies have made efforts to under-
stand the structures of quantum states in 12C, especially the
α-cluster structures. For example, some studies were based
on models or assumptions, including limiting cases like linear

*xrzhou@phy.ecnu.edu.cn

chains [13,14], equilateral triangles [15], and a Bose-Einstein
condensate [16]. Also ab initio calculations have been per-
formed, investigating the structure and rotations of the Hoyle
state in 12C [17]. Special attention should be paid to the few-
body cluster models [10,16,18,19] and the antisymmetrized
molecular dynamics (AMD) method [7,20], both of which
successfully reproduced the energy spectra of 12C and also
13
�C. Regarding 13

�C, several theoretical studies focus on how
the structure of 12C is affected by the � hyperon. These
models include the shell model [21], four-body cluster model
[18,19], AMD [20], and the α-condensate model [22].

In recent years, nuclear mean-field (MF) energy-density
functionals (EDFs) [23–27] and beyond-MF approaches
[28–31] were extended to hypernuclei. One advantage of a
hypernuclear EDF is that it is less hindered by computational
burdens and allows to study medium or heavy hypernuclei.
Another advantage is that the (beyond-)MF approaches treat
nucleons and hyperons on the same footing, and α clusters
are not assumed a priori. Recent research [32,33] showed that
the beyond-MF models are able to provide good descriptions
of shell and cluster structure of a hypernucleus. Furthermore,
the angular momentum projection (AMP) techniques and gen-
erator coordinate method (GCM) in these models restore the
rotational symmetry and enable the mixing of different con-
figurations, which provides a comprehensive reproduction of
hypernuclear energy spectra. In this current work, a Skyrme-
type EDF of NN and N� interactions will be employed in the
beyond-MF approach to describe low-lying states of 12C and
13
�C, and to analyze the rearrangement effects of a � 1s or 1p
hyperon on the core states.

This paper is organized as follows. Section II reviews
briefly the formalism of the beyond-SHF model. Section III
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presents the results and discussions, and in Sec. IV we sum-
marize the work.

II. THEORETICAL FRAMEWORK

The hypernuclear states are given by a superposition of
projected MF wave functions onto exact angular momentum
J: ∣∣�JM

α

〉 =
∑

β

F J
α (β )P̂J

MK

∣∣�(N�)(β )
〉
, (1)

where F J
α (β ) is a weight function, and P̂J

MK is the AMP
operator with K = Kcore + K� representing the projection of
angular momentum Jπ onto the intrinsic z axis.

The hypernuclear MF wave function obtained from a SHF
calculation with a quadrupole constraint is given by∣∣�(N�)(β )

〉 = |�N (β )〉 ⊗ |��〉 , (2)

where |�N (β )〉 and |��〉 are intrinsic wave functions of the
nuclear core and of the � hyperon, respectively. More specif-
ically, the hyperon wave function for single-� hypernuclei is

|��〉 = ϕs(�) (3)

and

|�N (β )〉 =
∏
k>0

(uk + vka+
k a+

k̄
)|HF〉 (4)

is a Bardeen-Cooper-Schrieffer (BCS) state obtained from
the nuclear SHF + BCS calculation with density-dependent
δ interaction [34], constrained to an axially deformed shape
given by the deformation parameter β, which is proportional
to the quadrupole moment,

β = 4π

3AcR2
c

〈�N (β )|r2Y20|�N (β )〉 , (5)

where Ac is the mass number of the core nucleus, and Rc ≡
1.2A1/3

c fm.
To obtain the eigenstate |�JM

α 〉, each weight F J
α (β ) in

Eq. (1) is determined by the Hill-Wheeler-Griffin equa-
tion [35],∑

β ′

[
H ′J

KK (β, β ′) − EJ
αNJ

KK (β, β ′)
]
F J

α (β ′) = 0 , (6)

in which the corrected Hamiltonian and norm elements are
given by

H ′J
KK ′ (β, β ′) = 〈�(N�)(β ′)|Ĥ ′P̂J

KK ′ |�(N�)(β )〉 , (7)

NJ
KK ′ (β, β ′) = 〈�(N�)(β ′)|P̂J

KK ′ |�(N�)(β )〉. (8)

The corrected Hamiltonian Ĥ ′ is defined as

Ĥ ′ = Ĥ − λp(N̂p − Z ) − λn(N̂n − N ) , (9)

where the Hamiltonian Ĥ is determined by the hypernuclear
EDF, and the last two terms account for the fact that the
projected wave function does not provide the correct number
of particles on average [36]. The projected energy curve onto

a specific angular momentum is derived as

EJK (β ) = H ′J
KK (β, β )

NJ
KK (β, β )

. (10)

Since the projected states do not form an orthogonal ba-
sis, F J

α (β ) are nonorthogonal functions [37], and orthogonal
collective wave functions are constructed as

gJ
α (β ) =

∑
β ′

[R 1
2 ]J (β, β ′)F J

α (β ′) , (11)

which are weights of the natural states in the collective sub-
space [35], and where

[R 1
2 ]J (β, β ′) =

∑
k

√
nkwk (β )w∗

k (β ′) (12)

with the eigenfunctions wk and eigenvalues nk of the norm
operator, Eq. (8), in the projected space. The average defor-
mation

β̄J
α =

∑
β

∣∣gJ
α (β )

∣∣2
β (13)

reflects the shape of the dominant configurations in the ground
or excited state and indicates the band structure [38].

Given the weight function F J
α (β ), the root-mean-square

(rms) radius is defined as

RJα
rms =

√∑
ββ ′

F J
α (β ′)∗F J

α (β )〈�(N�)(β ′)|r2P̂J
KK |�(N�)(β )〉

(14)
with r2 = 1

A

∑
k r2

k , and the reduced E2 transition rate is de-
rived as

B(E2, J+
α → J ′+

α′ ) = 1

2J + 1
|〈J ′+

α′ ||Q̂2||J+
α 〉|2 , (15)

where the reduced matrix element is

〈J ′+
α′ ||Q̂2||J+

α 〉 = √
2J ′+1

∑
Mμββ ′

F J ′
α′ (β ′)

∗
F J

α (β ) CJ ′K ′
JM2μ

× 〈�(N�)(β ′)|Q̂2μP̂J
MK |�(N�)(β )〉 , (16)

in which CJ ′K ′
JM2μ denotes the Clebsh-Gordon coefficients, and

Q̂2μ = ∑
k ekr2

kY2μ(ϕk, θk ) is the electric quadrupole transi-
tion operator [39], where ek is the charge of the kth nucleon
and rk is its position relative to the center of mass of the
nucleus. Bare charges are used in this calculation, i.e., ep = e
and en = e� = 0.

Electric monopole (E0) transitions are calculated from the
off-diagonal matrix elements of the E0 operator. The corre-
sponding diagonal matrix elements are directly related to the
rms charge radii that provide signatures of shape changes in
nuclei. The E0 operator can be expressed in terms of single-
nucleon degrees of freedom as T̂ (E0) = ∑

k ekr2
k [40,41]. The

absolute E0 transition strength is defined as

ρ2(E0, J+
α′ → J+

α ) =
∣∣∣∣∣ 〈J

+
α′ |T̂ (E0)|J+

α 〉
eR2

c

∣∣∣∣∣
2

, (17)

where Rc ≡ 1.2A1/3
c fm is the nuclear radius and J = 0, 1/2

for nuclei and hypernuclei, respectively. In the AMP + GCM
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framework, the E0 matrix element is

〈J+
α′ |T̂ (E0)|J+

α 〉 =
∑
ββ ′

F J
α′ (β ′)∗F J

α (β )

× 〈
�(N�)(β ′)

∣∣T̂ (E0)P̂J
KK

∣∣�(N�)(β )
〉
.

(18)

Regarding the interactions employed in this work, we adopt
the NN Skyrme force SGII [42], in which the NN spin-orbit
(s.o.) interaction is reduced to 70% [43,44] in order to re-
produce the oblate shape of 12C in the MF calculation. The
strength of the density-dependent pairing interaction is V =
−410 MeV fm3 for both protons and neutrons, and a smooth
pairing energy cutoff of 5 MeV above the Fermi level is used
[43,45].

For the �N interaction, we use the SLL4 Skyrme force
[26,27], which provides the best overall fit of all current
single-� hypernuclear data. The corresponding energy-
density functional is of the form

ε� = τ�

2m�

+ a0ρ�ρN + a3ρ�ρ2
N

+ a1(ρ�τN + ρNτ�) − a2(ρ��ρN + ρN�ρ�)/2

− a4(ρ�∇ · JN + ρN∇ · J�) , (19)

where the last term is the �N s.o. part. For conve-
nience we repeat here the parameter values [27]: a0,1,2,3 =
[−322.0, 15.75, 19.63, 715.0] (in appropriate units for ρ

given in fm−3 and ε in MeV fm−3), whereas the small s.o.
term is neglected in this work.

III. RESULTS AND DISCUSSION

Figure 1 shows the potential energy surfaces (PESs) of 12C
and 13

�C, comparing results of MF calculations (thin curves)
and AMP onto specific Jπ (thick curves). It is seen that the
MF PES of 12C (thin solid black curve) has a minimum en-
ergy of 92.6 MeV at the quadrupole deformation β ≈ −0.36,
which agrees well with the observed data 92.16 MeV [46].
The projected PES of 12C with Jπ = 0+ (solid thick black
curve) is calculated according to Eq. (10), and has two obvious
minima with E = −97.1 MeV and E = −95.8 MeV that are,
respectively, oblately (β = −0.58) and prolately (β = 0.58)
deformed.

The effect of the added � in 13
�C is basically a downward

shift of the PES by about 12 MeV in both MF and AMP
(red curves). The MF energy minimum is now located at
β = −0.31 with energy −104.3 MeV, whereas in AMP the
two energy minima are at β = −0.53 and 0.58 with energies
of −108.7 and −107.7 MeV. The deformation corresponding
to the minima is slightly reduced by the � hyperon, which is
well known as shrinkage effect [31,47–51].

The energies EJ
α , Eq. (6), and average deformations β̄,

Eq. (13), of the various 0+ and 1/2+ states are also indicated
in the plot and listed in Table I, and will be discussed in detail
in the following. Here, we just note that the 12C ground-state
energy in AMP is −E (0+

1 ) = 97.6 MeV, substantially larger
than the experimental value 92.16 MeV [46]. The energy gain

FIG. 1. The potential energy surfaces (PESs) of MF (thin curves)
and AMP states (thick curves): 0+ states for 12C (solid black curves),
1/2+ for 13

�C (dashed red curves). The markers indicate the energy,
Eq. (6), and average deformation, Eq. (13), of the excited states 0+

α

and 1/2+
α , α = 1, . . . , 5.

is caused by the restoration of rotational symmetry and the
shape fluctuation effect that arises from configuration mixing.

The removal energy of the � 1s state is B� =
E (0+

1 ) − E (1/2+
1 ) = 11.6 MeV, in fair agreement with ex-

perimental values 11.7 ± 0.12 MeV (emulsion) [52], 12.0 ±
0.2 (π+, K+) [3,53], 11.0 ± 0.4 (K−, π−) [54,55], which un-
fortunately do not agree very well.

TABLE I. The excitation energies E , rms charge radii Rc, and
average deformations β̄ of the 0+, 2+, 4+ states of 12C and the 1/2+,
3/2+, 5/2+, 7/2+, 9/2+ states of �(1s) 13

�C.

12C 13
�C

E [MeV] Rc [fm] β̄ E [MeV] Rc [fm] β̄

0+
1 0 2.60 −0.17 1/2+

1 −11.64 2.57 −0.12
0+

2 7.62 2.58 −0.19 1/2+
2 −3.47 2.56 −0.03

0+
3 8.84 2.60 0.82 1/2+

3 −2.53 2.57 0.62
0+

4 13.17 3.32 2.72 1/2+
4 4.19 3.19 2.34

0+
5 15.17 2.86 1.59 1/2+

5 5.07 2.92 1.80

2+
1 3.57 2.62 −0.52 (3, 5)/2+

1 −7.76 2.58 −0.48
4+

1 12.60 2.63 −0.59 (7, 9)/2+
1 1.67 2.60 −0.57
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FIG. 2. Energy levels of 12C(0+) (left columns) and 13
�C(1/2+)

(right columns). The broad resonance state 0+
4 at 10.3 ± 3 MeV [46]

in the first column is in the second column decomposed into 0+
3

and 0+
4 states at 9.04 ± 1.45 and 10.56 ± 1.42 MeV, respectively

[8]. Experimental 13
�C(1/2+

1 ) results are from Refs. [52,53,55]. The
thresholds of various decay channels are also indicated.

A. 12C states

In the first three columns of Fig. 2, we show again the
0+ states obtained with the SHF + AMP + GCM approach,
in comparison with experimental data [8,46]. The excitation
energy of the 0+

2 Hoyle state is 7.62 MeV, which perfectly
agrees with the experimental value of 7.65 MeV. The result
for the 0+

3 state is 8.84 MeV, reasonably close to the ex-
perimental values of 9.93 MeV [46] and 9.04 MeV [8]. But
the theoretical 0+

4 state at 13.17 MeV differs substantially
from the experimental values of 10.56 ± 1.42 MeV [8] and
10.3 ± 3 MeV [46], while the 0+

5 state at 15.17 MeV is lower
than the experimental value by 2.5 MeV. However, also the
often-used cluster models THSR [56,57] and OCM [58–60]
have difficulty in describing the excitation energy of 0+

3,4 and
differ for 0+

4 by approximately 2 MeV.
In order to understand better the (cluster) structure of these

states, we plot their nuclear density distributions in Fig. 3.
The ground state of 12C has a shell-model-like structure. The
gas-like structure of three α clusters in the 0+

2 Hoyle state
[16,61,62] is absent in this work. Accordingly, also the 0+

3
state is without cluster structure, which is considered to have
a composition similar to that of the Hoyle state, and to be
excited from that with a large monopolar transition strength
[22]. On the other hand, the 0+

4 state features a very obvious
linear-chain-like structure of three α clusters, as in other theo-
retical approaches [7,9,10]. The 0+

5 state forms a prolate shape
without apparent cluster structure. In the future, improved
modeling, such as the idea given in Ref. [63], may provide
both 0+

2 and 0+
3 cluster structures.

Thus, for the 0+
2,3 states the SHF + AMP + GCM method

predicts excitation energies in good agreement with ex-
periment, but does not evidence typical cluster structures,
and their calculated rms radii are much smaller than those

FIG. 3. Two-dimensional nuclear-matter density distributions of the first five 0+ states in 12C (top row) and of the corresponding 1/2+

states in 13
�C (bottom row). The average quadrupole deformation β̄ and the charge radius Rc (in fm) are also indicated in the lower left and

right corners, respectively.
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calculated by THSR [9] and OCM [22], namely 2.58 and
2.60 fm, compared to 3.7/4.2 fm (THSR) and 4.7/5.6 fm
(OCM), respectively. Their radii are also smaller than those
of the 0+

4 and 0+
5 states, 3.32 and 2.86 fm. These results are

also listed in Table I.
We discuss now the differences between the results of this

work and those of other (cluster) models.
First, regarding that the Hoyle state might be modeled as a

dilute self-bound gas of three bosonic α particles, similar to a
Bose-Einstein condensate [10], it is impossible to accurately
characterize the density distribution of such a structure in a
system that only considers quadrupole deformation. It might
be possible to improve the modeling of this state by extending
the space of CGM reference states and including possible
octupole, etc., deformation of the nucleus.

Second, some studies have discussed the possibility of
relativistic and nonrelativistic density functional theories to
describe cluster structures [64–66], and point out that this is
closely related to the depth of the MF potential. They also
suggest that the relativistic density functional, due to its deep
potential field, yields a more pronounced cluster structure than
the SHF with a shallow average potential field. Therefore, it
is possible that a relativistic beyond-MF method may also
result in a more pronounced cluster structure of the Hoyle
state.

Third, antisymmetrized quasicluster model (AQCM) re-
sults, which include s.o. interactions between α clusters,
indicate that those interactions can drive the breaking of α

clusters and lower the 0+
1 -state energy of 12C [67]. The dis-

tance between α clusters in that state is significantly reduced
by 0.5 fm to 1.0 fm compared to the pure cluster model.
Since the SHF + AMP + GCM method used in this work
self-consistently includes s.o. interactions between nucleons,
it is reasonable to also obtain α-cluster breaking in the 0+

1
state of 12C and to explain why the rms radius calculated by
OCM is larger than in this work. However, Ref. [67] does
not investigate whether cluster destruction occurs also in the
Hoyle state.

Moreover, the AQCM also shows that the s.o. interaction
does not destroy the cluster structure in 8Be [67]. Also in
Ref. [32], using the same SHF + AMP + GCM method as
this work, the cluster structure of 8Be is not broken. Therefore,
the results of SHF + AMP + GCM and AQCM are consistent
in some aspects.

B. States of the configuration 12C ⊗�s

Figure 2 shows the first five 1/2+ states based on the
configuration 12C ⊗�s, of which the 1/2+

1,2,3 states are bound
states, while 1/2+

4,5 are unbound, i.e., resonances above the
12C(0+

1 ) + � threshold. Comparing the energy levels of 12C
and 13

�C in Fig. 2 and the corresponding density distributions
in Fig. 3 one concludes that the structure of the first five 1/2+
states is similar to that of the corresponding 0+ states. This
similarity is due to the fact that the s-orbit � is spherically
distributed (or mildly deformed) and thus does not change the
shape of the nuclear core dramatically.

This is also demonstrated in Fig. 4 by the weights of
the natural states in the collective subspace, Eq. (11). Again

FIG. 4. Weights of the natural states in the collective sub-
space, gJ=0

α , Eq. (11), for the first five GCM states of 12C(0+) and
13
�C(1/2+).

the weights of the 1/2+ states are similar to those of the
corresponding 0+ states. This is different from the results of
THSR [57], where each of the first four 1/2+ states of 13

�C is
a mixture of several 0+ states of 12C.

Table I lists the rms charge radii of the first five 0+ states
of 12C and the first five 1/2+ states of 13

�C. The radii of 0+
4

and 1/2+
4 are significantly larger than those of the other states,

consistent with the nuclear density distributions shown in
Fig. 3. One also observes the well-known shrinkage effect of
the � [31,47–51], where the added 1s � causes a contraction
of the density distribution and a reduction of the deformation.
This contributes to driving the breaking of the cluster structure
in the hypernucleus, which is consistent with the conclusion
of the AQCM [67].

In Table II we list the E2 transition probabilities within the
ground bands of 12C and 13

�C. Due to the splitting of angular
momentum into J ± 1/2, each of the B(E2) values of the core
nucleus has two counterparts in the hypernucleus, which are
both listed. The addition of one � reduces slightly the B(E2)
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TABLE II. Transition rates B(E2), Eq. (15), (in units of e2fm4)
and the ratios �B, Eq. (20). Experimental value [46] in brackets.

12C 13
�C

Ji → Jf B(E2) Ji → Jf B(E2) �B

2+
1 → 0+

1 11.5 (7.6) 3/2+
1 → 1/2+

1 10.7 0.93
5/2+

1 → 1/2+
1 10.7 0.93

4+
1 → 2+

1 17.8 7/2+
1 → 3/2+

1 15.1 0.85
9/2+

1 → 5/2+
1 16.8 0.94

values and this shrinkage effect is characterized by [28]

�B = B
(
E2, J+

i → J+
f ; 13

�C
)

B
(
E2, J+

i → J+
f ; 12C

) , (20)

also listed in the table. The E2 transition probabilities are
proportional to R4

c and to β2 [31]. Both the shrinkage of
the nuclear size indicated by Rc and the reduction of the
quadrupole deformation β̄, shown in Table I and Fig. 3, thus
contribute to the overall reduction of B(E2).

It is also interesting to examine, in Table III, the monopole
matrix elements between the 0+ states, Eq. (17), i.e., the
off-diagonal matrix elements of the E0 operator. They act as
a spectroscopic fingerprint for the presence of shape mixing
in a region of nuclei [40]. The transition strength between
some states is very small, ≈10−4, which indicates a very
weak correlation. The strongest E0 transitions are 0+

2 → 0+
1

(1/2+
2 → 1/2+

1 ) and 0+
5 → 0+

4 (1/2+
5 → 1/2+

4 ). This reflects
the great similarity between these excited pair states, which
can also be noted from the density distributions in Fig. 3 and
from the weights of the natural states in the collective sub-
space given in Fig. 4. In Ref. [68] the 0+

3 state was predicted
as a breathing mode, excited by a strong monopole transition
from the 0+

2 Hoyle state. This cluster feature is absent in this
work, where the 0+

3 → 0+
2 strength is fairly small instead.

C. States of the configuration 12C ⊗�p

Besides the positive-parity states based on the config-
uration 12C ⊗�s, negative-parity states are also observed
and attributed to the configuration 12C ⊗�p [12]. Figure 5

TABLE III. ρ2(E0, J+
αi

→ J+
α f

) values between 12C 0+
α states and

13
�C 1/2+

α states.

αi → α f
12C(0+) 13

�C(1/2+)

2 → 1 1.77 × 10−1 1.34 × 10−1

3 → 1 1.15 × 10−3 1.70 × 10−2

4 → 1 4.66 × 10−5 7.40 × 10−4

5 → 1 5.34 × 10−4 1.76 × 10−3

3 → 2 3.54 × 10−4 2.05 × 10−4

4 → 2 3.28 × 10−4 8.61 × 10−3

5 → 2 6.27 × 10−3 7.01 × 10−3

4 → 3 1.02 × 10−2 1.23 × 10−2

5 → 3 4.12 × 10−2 1.59 × 10−2

5 → 4 3.12 × 10−1 9.07 × 10−2

FIG. 5. The energy levels of 12C (left side) and 13
�C (right side),

comparing experimental and theoretical values. Colors indicate the
predominant core configurations.

shows the predicted energy spectra of 13
�C including both

positive- and negative-parity bands. The three negative-parity
bands correspond to the configurations 12C ⊗�[110 1/2],
12C ⊗�[101 1/2], and 12C ⊗�[101 3/2], where Nilsson no-
tations indicate the � orbits. There are two pairs of states
with Jπ = (3/2−, 1/2−). The first pair, (3/2−

3 , 1/2−
2 ), lo-

cated at 12.8 MeV, is the band head of the configuration
12C ⊗�[110 1/2]. The second pair, (3/2−

1 , 1/2−
1 ), of bound

states at ≈10.6 MeV, is very close to the observed s.o. doublet
[12]. Those two states are band heads of the configurations
12C ⊗�[101 3/2] and 12C ⊗�[101 1/2], respectively. How-
ever, the predicted order of the states is opposite to the
observed one [30].

A hypernuclear state of 13
�C could approximately be re-

garded as a 12C core coupled with a single � or as a mixture
of several such configurations. However, in current model
it is difficult to quantitatively calculate the contribution of
each core state to a certain hypernuclear state, contrary to the
H-THSR model [57], for example. To analyze the constitution
of the low-lying hypernuclear states given in Fig. 5, we show
their collective wave functions gJ

α (β ) in Fig. 6. First, for
the 12C core, Fig. 6 shows that the oblate components play
dominant roles in the collective wave functions of all three
0+

1 , 2+
1 , 4+

1 states. This is also testified in Fig. 7, which shows
the corresponding nuclear density distributions of 12C, and
indicates that all three states are oblately deformed.

Then, based on these three nuclear core states, we de-
duce the constituents of the hypernuclear states as follows.
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FIG. 6. Collective wave functions of the (hyper)nuclear states
shown in Fig. 5.

Figure 6 shows gJ
α of the energy levels corresponding to the

12C ⊗�[110 1/2], 12C ⊗�[101 1/2], and 12C ⊗�[101 3/2]
configurations, as in Fig. 5.

For the [101 3/2] channel, only 12C ⊗�p3/2 can play a
role in the three energy levels 3/2−

1 , 5/2−
1 , 7/2−

1 , because
the quantum number K = 3/2 excludes a 12C ⊗�p1/2 con-
tribution. The gJ

α of the 3/2−
1 level indicates a mixture of

12C(0+
1 ) ⊗ �p3/2 and 12C(2+

1 ) ⊗ �p3/2, while the configura-
tion 12C(4+

1 ) ⊗ �p3/2 is excluded due to the rules of angular
momentum coupling. This is also supported by the results
shown in Fig. 7, where one can see that β̄ = −0.45 for the
3/2−

1 state, which is between the values of the 0+
1 and 2+

1
states of 12C. On the other hand, the gJ

α of the 5/2−
1 and 7/2−

1
levels are nearly identical to the one of 12C(2+

1 ), and thus
mainly based on a single configuration 12C(2+

1 ) ⊗ �p3/2. This
is emphasized by the same (red) color in Fig. 5.

Regarding the [101 1/2] states 1/2−
1 , 3/2−

2 , 5/2−
2 , 7/2−

2 ,
one can see that gJ

α of the 1/2−
1 level is nearly identical to

the one of [101 3/2] 3/2−
1 . But for this channel, both configu-

rations 12C ⊗�p3/2 and 12C ⊗�p1/2 are possible, and thus the
latter contribution causes the slightly different energies of the
[101 1/2] 1/2−

1 and [101 3/2] 3/2−
1 states. For the 3/2−

2 state,
three configurations 12C(0+

1 ) ⊗ �p3/2, 12C(2+
1 ) ⊗ �p3/2, and

12C(2+
1 ) ⊗ �p1/2 are possible. One can see that the gJ

α of the
3/2−

2 state is closer to the one of 12C(2+
1 ) than the one of the

1/2−
1 state, and therefore, the configurations 12C(2+

1 ) ⊗ �p

play more important roles in the 3/2−
2 state. As the 5/2−

1 and

7/2−
1 states, also the 5/2−

2 and 7/2−
2 are mainly based on a

single configuration 12C(2+
1 ) ⊗ �p.

The wave functions of all [101 1/2] and [101 3/2] states
feature predominantly oblate configurations. This is not the
case for the 1/2−

2 , 3/2−
3 , 5/2−

3 , 7/2−
3 levels built upon a �

[110 1/2] orbital, which is prolately deformed and stretches
also the nuclear core into prolate shape, as shown for the 1/2−

2
state in Fig. 7. Thus the original core states of 12C are broken,
and it is impossible to find analog hypernuclear states in this
channel. The frequent oscillation of gJ

α in Fig. 6 (top panel)
also indicates the complex constitution of these hypernuclear
states. It is shown that gJ

α of 1/2−
2 and 3/2−

3 and those of
5/2−

3 and 7/2−
3 , as well as their excitation energies in Fig. 5,

are nearly identical, which indicates that these pairs of states
(1/2−

2 and 3/2−
3 , 5/2−

3 and 7/2−
3 ) have very similar nuclear

cores. Due to their distorted cores, their energies are all higher
than those with the same J in Fig. 5.

IV. SUMMARY

Based on the beyond-SHF model with realistic NN and
N� Skyrme interactions, low-lying excited states of 12C and
13
�C were predicted. The structures of the lowest five Jπ = 0+
nuclear-core states, and the impurity effects of �s and �p

orbitals in the hypernuclear states of 13
�C were examined in

detail.
For 12C, the predicted 0+

1,2,3 states are in good agreement
with the observed ones, while the 0+

4,5 states deviate from the
experimental values by a few MeV, as also in cluster-model
calculations. In our framework, although typical cluster struc-
tures for 0+

2 and 0+
3 are absent, a linear-chain-like 3α structure

for 0+
4 was found.

For 13
�C, the predicted binding energy of the �s hyperon

fits the experimental 1/2+ value perfectly. The shrinkage ef-
fect of the hyperon is also reproduced by the reduction of E2
transition values. We also found that the shrinkage effect of a
�s hyperon is not strong enough to damage the structures of
the first five 0+ states in the core nucleus, in contrast with the
H-THSR results [57].

Negative-parity energy levels of 13
�C corresponding to a

�p hyperon were also examined. The observed 1/2−
1 and

3/2−
1 energy levels of the s.o. doublet were predicted as

the band heads of the configurations 12C ⊗�[101 1/2] and
12C ⊗�[101 3/2], respectively, with nuclear cores that may
be regarded as mixtures of the 0+

1 and 2+
1 states of 12C. Unlike

the �s hyperon, the [110 1/2] �p orbital causes a severe
deformation change of the core nucleus, with a corresponding
upshift of the hypernuclear levels.

In the future, explicit incorporation of cluster features into
the SHF + AMP + GCM approach would be desirable to im-
prove the joint description of all (hyper)nuclear excitation
levels. Also the N� s.o. force should be included consistently
for a more realistic description of related properties.
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FIG. 7. Same as Fig. 3, but for the 0+
1 , 2+

1 , 4+
1 states of 12C (top row), and for the band-head states of the three hypernuclear �p

configurations in Fig. 5 (bottom row).
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[41] Z. P. Li, T. Nikšić, D. Vretenar, and J. Meng, Phys. Rev. C 80,
061301(R) (2009).

[42] Y. Zhang, H. Sagawa, D. Yoshino, K. Hagino, and J. Meng,
Prog. Theor. Phys. 120, 129 (2008).

[43] M. T. Win, K. Hagino, and T. Koike, Phys. Rev. C 83, 014301
(2011).

[44] H. Sagawa, X. R. Zhou, X. Z. Zhang, and T. Suzuki, Phys. Rev.
C 70, 054316 (2004).

[45] J. Terasaki, P. H. Heenen, H. Flocard, and P. Bonche, Nucl.
Phys. A 600, 371 (1996).

[46] National Nuclear Data Center, https://www.nndc.bnl.gov/
nudat3/.
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