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Evolution of the giant monopole resonance with triaxial deformation
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Background: The isoscalar giant monopole resonance (ISGMR) splits into two peaks in prolately deformed
nuclei. When a nucleus is triaxially deformed, a peak appears in the middle between the two peaks.
Purpose: We investigate the mechanism of the appearance of the middle peak in the ISGMR in triaxial nuclei.
Method: We perform the constrained Skyrme-Hartree-Fock-Bogoliubov (CHFB) calculation for arbitrary tri-
axial shapes in 100Mo. We calculate the strength functions of the isoscalar monopole (ISM) and IS quadrupole
modes on the CHFB states. Furthermore, we investigate vibrations of matter distributions in x, y, and z directions
induced by the external ISM field, with the z axis being the longest axis of the triaxial shape.
Results: The middle peak in the ISM strength evolves from the triaxial degree γ = 0◦ to 60◦. This is because the
difference between the vibration in the x direction and that in the y direction is evident with an increase in γ , and
the quadrupole K = 2 component of the induced density of the ISM at the middle peak increases as γ increases,
where K denotes the z component of the angular momentum. This property is also obtained in the unperturbed
ISM strength without the residual fields.
Conclusions: The mixing between the monopole and quadrupole modes is primarily determined by the ground-
state deformation. Therefore, the ISM strength of the middle peak becomes strong as the triaxial degree in the
ground state increases.
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I. INTRODUCTION

Understanding complex behaviors of atomic nuclei lies at
the heart of low-energy nuclear physics. One of the central
themes in this domain is the investigation of the collec-
tive modes exhibited in responses to nuclei. These collective
modes play a pivotal role in elucidating the underlying
structures and dynamics of nuclei, thereby providing crucial
insights into their fundamental properties, such as nuclear
shapes and deformations.

Giant resonances are a fundamental collective mode of
excitation in nuclei [1]. It is well known that the isoscalar
giant monopole resonance (ISGMR) splits into two peaks in
prolately deformed nuclei [2]. This was first observed in the
well-deformed 154Sm nucleus [3]. Prior to this observation,
the possible emergence of the two-peak structure in the IS-
GMR strengths in deformed nuclei had been a subject of
discussion [4]. Subsequently, it was found that the energy
of the lower peak in the isoscalar monopole (ISM) strengths
coincides with that of the K = 0 component of the isoscalar
quadrupole (ISQ) strengths in prolately deformed nuclei,
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where K denotes the z component of the angular momentum.
Recent calculations based on the Hartree-Fock-Bogoliubov
(HFB) method plus quasiparticle random-phase approxima-
tion (QRPA) in deformed nuclei confirmed this coincidence
in energy [5–9].

Experimental identification of static triaxial deformations
in nuclei can be achieved through various means, such as
the observation of chiral doublet bands [10] and the wob-
bling mode, which was recently reported in 163Lu [11]. In
the low-lying spectra, the presence of the 2+

2 state and the γ

vibration provides evidence of a certain degree of triaxiality
in nuclei. As a beyond mean-field method, the generator-
coordinate method [12–16] and the collective Hamiltonian
method [17–21] have included the triaxial degree of freedom
as a collective coordinate and produced a better reproduction
of experimental low-lying spectra. Besides that, it has been
proposed that high-energy heavy-ion collisions can be used to
extract information on triaxiality [22].

Recently, Shi and Stevenson [23] investigated the ISGMR
in 100Mo with the time-dependent density functional the-
ory (TDDFT) + Bardeen-Cooper-Schrieffer (BCS) method
with the Skyrme energy density functionals (EDFs). Then,
they found that the calculation incorporating a triaxial shape
(β ≈ 0.28 and γ = 20◦–30◦) with the SkM∗ EDF oppor-
tunely reproduced the experimentally observed ISGMR at the
Research Center for Nuclear Physics (RCNP), Osaka Univer-
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sity [24]. Notably, the inclusion of finite triaxiality resulted
in an increase in the ISM strength within the energy range
of E = 14–15 MeV, making an additional peak between the
two existing peaks and providing a closer match to the experi-
mental data within that energy range. This observation serves
as evidence of a static triaxial deformation (γ = 20◦–30◦)
in 100Mo. The authors further investigated variations in the
isoscalar quadrupole moments over time subsequent to the
ISM boost. They conjectured that the appearance of the mid-
dle peak is due to a coupling between the ISM and ISQ K = 2
modes and anticipated that, at triaxial shapes in the ground
state, the external ISM field induces different vibrations in the
three principal axes.

The operator of the ISM, r2 = x2 + y2 + z2, is isotropic.
Nevertheless, the reason why the ISM external field induces
anisotropic oscillations in deformed nuclei remains unclear.
This study aims to explore the mechanism behind the emer-
gence of the middle peak in the ISM strength and to elucidate
the origin of anisotropic oscillations triggered by the isotropic
ISM field in triaxially deformed nuclei. We perform the HFB
+ QRPA calculation to obtain the response function of the
ISM for arbitrary triaxial shapes in 100Mo. For the QRPA
calculations, the finite amplitude method (FAM) [25] is used
to provide the response function in a numerically feasible way.
Then, we analyze the vibrations of matter distributions in the
x, y, and z directions to delve into the underlying mechanisms
contributing to the anisotropic oscillations induced by the ISM
field.

The article is organized as follows. Section II describes
the method of HFB + FAM-QRPA. In Sec. III, results of the
ISM strengths in triaxial shapes and the analysis are presented.
Finally, Sec. IV summarizes the present article.

II. METHOD

We briefly recapitulate the formulation of the constrained
HFB (CHFB) + FAM-QRPA approach, and the details can be
found in Refs. [7,25–28].

The FAM equation in the quasiparticle basis is given as

(Eμ + Eν − ω)Xμν (ω) + δH20
μν (ω) = −F 20

μν , (1a)

(Eμ + Eν + ω)Yμν (ω) + δH02
μν (ω) = −F 02

μν , (1b)

where Eμ are the quasiparticle energies, X and Y are the
FAM amplitudes at a given frequency ω, and δH20(02) and
F 20(02) are the two-quasiparticle components of an induced
Hamiltonian and an external field F̂ , respectively. The FAM
equation (1) can be solved iteratively at each ω by replacing
ω with complex frequencies ω → ω + i�/2, where the imag-
inary part � corresponds to a smearing width.

From the converged Xμν (ω; F̂ ) and Yμν (ω; F̂ ) amplitudes
induced by the external field F̂ , the FAM response function,
the change of quantity associated with another field F̂ ′ in the
response to the perturbation F̂ , is defined as

RF̂ ′F̂ (ω) =
∑
μ<ν

[
F ′20∗

μν Xμν (ω; F̂ ) + F ′02∗
μν Yμν (ω; F̂ )

]
. (2)

Setting F̂ = F̂ ′, the strength function is given as

S(F̂ ; ω) = − 1

π
Im RF̂F̂ (ω). (3)

As an external field operator F̂ , we employ the one-body
isoscalar monopole and quadrupole operators expressed as

f00 =
A∑

i=1

r2
i , f2K =

A∑
i=1

r2
i Y2K (r̂i ). (4)

We define the quadrupole operators with the x-signature quan-
tum number of rx = ±1 as Q(+)

20 = f20 and Q(±)
2K = ( f2K ±

f2−K )/
√

2 for K > 0. These quadrupole operators can also be
expressed in terms of Cartesian coordinates as

Q(+)
20 =

A∑
i=1

√
5

16π

(
2z2

i − x2
i − y2

i

)
, (5)

Q(+)
22 =

A∑
i=1

√
15

16π

(
x2

i − y2
i

)
. (6)

We define the quadrupole deformation parameters β and γ

as

β =
√

5

16π

4π

3R2A

√
〈Q(+)

20 〉2 + 〈Q(+)
22 〉2

, (7)

γ = arctan

(
〈Q(+)

22 〉
〈Q(+)

20 〉

)
, (8)

where R = 1.2A1/3 fm and A is the mass number. To inves-
tigate the evolution of the giant monopole resonance with
triaxial deformation, we vary the triaxiality γ from γ = 0◦
to 60◦, where γ = 0◦ (γ = 60◦) corresponds to the axially
symmetric prolate (oblate) shape with the z axis (y axis) being
a symmetry axis. In the region of 0◦ � γ � 60◦, the z and y
axes are the longest and shortest axes, respectively.

To prepare triaxial CHFB states, we solve the Skyrme
CHFB equations with the two-basis method [29,30] in a
three-dimensional Cartesian mesh. The single-particle wave
functions in the Hartree-Fock (HF) basis are chosen as eigen-
states of parity, z signature, and y-time simplex [31–33].
With this choice, nuclear shapes are obtained with x = 0,
y = 0, and z = 0 plane symmetries and the model space is
reduced to 1/8 of the full box. We use a (13.2 fm)3 box
in x > 0, y > 0, and z > 0 with a mesh spacing of 0.8 fm.
The single-particle basis consists of 1400 neutron and 1120
proton HF-basis states, which approximately correspond to
the maximum quasiparticle energy of 60 MeV. The constraint
quantities are the isoscalar quadrupole moments with K = 0
and K = 2, Q(+)

20 and Q(+)
22 . We employ the SkM∗ EDF [34]

and the contact volume-type pairing with a pairing window
of 20 MeV above and below the Fermi energy in the HF
basis as described in Refs. [31,33,35]. The pairing strengths
are adjusted to reproduce the empirical neutron and proton
gaps in 106Pd, and the resultant values are 240 MeV fm3

and 285 MeV fm3 for neutrons and protons, respectively. We
confirmed that a change of the pairing strength of 5% does not
affect the conclusions of this article.
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FIG. 1. Potential energy surface in the β-γ plane obtained by the
CHFB calculation with the SkM∗ EDF in 100Mo.

We perform the FAM-QRPA calculations at the CHFB
states by using our 3D FAM-QRPA code developed in
Ref. [27]. The full quasiparticle basis states that are included
in solving the CHFB equation are used to solve the FAM
equation (1). We solve the FAM equation at each ω up to
ω = 40 MeV with a spacing of 0.25 MeV and with a smearing
width of �/2 = 0.5 MeV.

III. RESULTS AND DISCUSSION

Figure 1 shows the potential energy surface (PES) in the
β-γ plane at β < 0.4 obtained by the CHFB calculation in
100Mo. The PES shows the energy minimum at the spherical
shape and a flat behavior along both the β and γ directions
at β � 0.3. This behavior is consistent with that found in
Ref. [23].

Given the γ -soft property of the PES in 100Mo, our next
step involves investigating the evolution of the ISGMR as
the triaxiality parameter, γ , increases in 100Mo. To accom-
plish this, we generate CHFB states at a fixed β = 0.28 with
varying γ values and subsequently conduct FAM-QRPA cal-
culations based on these prepared CHFB states. Figure 2(a)
displays the ISM strength obtained by systematically altering
γ in the FAM calculation on the CHFB states with β = 0.28
in 100Mo. With γ = 0, we observe two prominent peaks at
ω ≈ 13 MeV and at ω ≈ 18 MeV. As the value of γ increases,
an additional peak emerges around ω = 15 MeV, positioned
between the existing lower and higher peaks. Furthermore, the
strength of this middle peak exhibits a noticeable increase.

To understand the evolution of the middle peak with
increasing γ , Fig. 2(b) presents the K = 0 and K = 2 com-
ponents of the ISQ strength obtained by varying γ . The peak
energy and its shape of the ISQ K = 0 strength do not much
depend on γ , while the peak energy of the ISQ K = 2 strength
decreases and its width becomes broader as γ increases. No-
tably, the peak energy of the ISQ K = 2 strength aligns with
that of the middle peak in the ISM strength. This finding
corroborates the results from a previous study [23], which
demonstrated the appearance of an additional peak or plateau
in the ISM strength at β = 0.28, γ = 20◦ and 30◦ in 100Mo

FIG. 2. (a) ISM strength and (b) ISQ strength as a function of ω

for different γ in 100Mo with β = 0.28.

using the SkM∗ EDF. Our results indicate that this coincidence
persists for γ > 30◦ as well.

To quantitatively observe the evolution of the middle peak
in the ISM strength, we utilize the fraction of the energy-
weighted sum rule (EWSR) value for the middle peak. We
define the energy interval, denoted as E1 and E2, for the
middle peak as follows: E1 is set to be the average of the mean
energies of the ISQ K = 0 and K = 2 strengths, and E2 is the
average of the mean energy of the ISQ K = 2 strength and
the peak energy of the higher component in the ISM strength.
Here, we determined the mean energy of the ISQ K = 0 and
K = 2 using the expression:

Emean = m1

m0
, (9)

where mk is the kth moment of the strength function, defined
as

mk =
∫ ω2

ω1

dω ωkS(ω), (10)

where ω1 = 10 MeV and ω2 = 23 MeV determine the energy
region of the giant resonance in this nucleus. The peak energy
of the higher component in the ISM strength is determined
by a Lorentzian fit. Figure 3 shows the fraction of the EWSR
value for the middle peak in the ISM strength as a function of
γ . It is clearly shown that the fraction of the EWSR value
for the middle peak increases as γ increases up to 60◦. A
similar behavior was obtained in a triaxial harmonic oscillator
potential model in Ref. [36], where the ISGMR strength at the
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FIG. 3. Fraction of the EWSR value for the middle peak in the
ISM strength as a function of γ .

middle peak monotonically increases as γ increases from 0◦
to 60◦.

We have obtained the emergence of the middle peak
in the ISM strength and the agreement between the energy of
the middle peak in the ISM strength and the peak energy of the
ISQ K = 2 strength. The authors of Ref. [23] concluded that
the appearance of the middle peak is attributed to a coupling
between the ISM and ISQ K = 2 modes and anticipated that,
at triaxial shapes with nonzero 〈Q(+)

22 〉, namely 〈x2〉 
= 〈y2〉,
in the ground state, the external ISM field induces different
vibrations in the x and y directions.

To see what really happens, we investigate vibrations of
matter distributions in x, y, and z directions using an external
ISM field that is isotropic. We calculate the FAM response
function of F̂ ′ = x2, y2, or z2 and the ISM field (F̂ = r̂2).
Figure 4 shows the imaginary part of these response functions
of the operators F̂ and F̂ ′,

SF̂ ′F̂ (ω) = − 1

π
Im RF̂ ′F̂ (ω), (11)

denoted as ISM → x2, ISM → y2, and ISM → z2, respec-
tively, for different γ . It is noticed that the imaginary part of
the response function (11) can be negative at particular values
of ω since the product of the two-quasiparticle components of
F̂ and those of F̂ ′ can be negative. Note again that a shape
with 〈z2〉 � 〈x2〉 � 〈y2〉 is obtained at 0◦ � γ � 60◦ in our
convention. At γ = 0◦, the response of ISM → x2 is identical
to that of ISM → y2 because of the axially symmetric shape.
At ω ≈ 13.5 MeV, corresponding to the low peak in the ISM
strength, the response of the ISM → z2 is significantly higher
than those of ISM → x2 and ISM → y2. When the axial
symmetry is broken, a discernible difference between those
of ISM → x2 and ISM → y2 emerges, leading to a finite ISQ
K = 2 strength, which is proportional to x2 − y2, induced by
the ISM field. Furthermore, the peak energy of ISM → x2 be-
comes lower, and its response at ω ≈ 15 MeV, corresponding
to the middle peak energy in the ISM strength, becomes higher
while the response at ω ≈ 18 MeV decreases as γ increases
from 0◦ to 60◦. For ISM → z2, the response at ω ≈ 15 MeV
becomes higher while the response at ω ≈ 13.5 MeV becomes
lower when γ increases from 0◦ to 60◦. At γ = 60◦, the

FIG. 4. Response functions of ISM → x2 (a), ISM → y2 (b), and
ISM → z2 (c) for different γ in 100Mo with β = 0.28.

response of the ISM → x2 is identical to that of ISM → z2 due
to the axially symmetric shape with the y being the symmetry
axis.

The response function in Eq. (11) is related to the Fourier
transform of vibrations of matter distributions in x, y, and
z directions induced by the ISM field. At γ = 0◦, since the
response of ISM → x2 and that of ISM → y2 are the same,
the vibration of matter distributions in the x direction and that
in the y direction are the same. Since the response of ISM
→ z2 and that of ISM → x2 and ISM → y2 are different, the
vibration of matter distributions in the z direction and that in
the x and y directions are different in γ = 0◦. As γ increases,
the vibrations of matter distributions in x, y, and z direc-
tions become different. Eventually, at γ = 60◦, the responses
of ISM → x2 and ISM → z2 become identical, indicating
that the vibration of matter distributions in x and that in z
become identical. The external multipole fields FL that we
have employed are rotational-invariant. The breaking of the
spherical symmetry in the ground state density manifests the
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FIG. 5. Induced densities for the ISQ K = 2 field at ω = 16 MeV
on the z = 0 plane at γ = 0◦ (a) and γ = 30◦ (b), and for the ISM
field at ω = 16 MeV on the y = 0 (c) and z = 0 (d) planes and
induced densities without the residual ISM field at ω = 20 MeV
on the y = 0 (e) and z = 0 (f) planes at γ = 30◦ in 100Mo. The
dashed line indicates the contour of the isoscalar density ρ =
0.08 fm−3 obtained by the CHFB calculation at γ = 30◦, except for
(a) at γ = 0◦.

asymmetry of the strengths in FL with respect to x, y, and z
directions.

To understand how the ISM field induces a significant
contribution of quadrupole vibrations, it is useful to analyze
the spacial property of the induced density of the collective
states. The induced density at a frequency ω in the FAM is
obtained with the FAM X and Y amplitudes as

δρ(r; ω) =
∑

i j

φi(r)[UX (ω)V T + V ∗Y T (ω)U †]i jφ
∗
j (r),

(12)

where U and V are the Bogoliubov transformation matrices
and φi(r) are the HF basis wave functions. Figures 5(c) and
5(d) show the imaginary part of the induced density on the
y = 0 and z = 0 planes, respectively, by the ISM field at ω =
16 MeV, which approximately corresponds to the energy of
the middle peak in the ISM strength, at γ = 30◦, β = 0.28 in
100Mo. The dashed line indicates the contour of the isoscalar
density ρ = 0.08 fm−3 of this nucleus obtained by the CHFB
calculation. The induced density on the y = 0 plane (c) shows
that the density becomes higher inside the nucleus and lower
at the nuclear surface, and shows almost an isotropic nature.
On the other hand, the induced density on the z = 0 plane
(d) shows an anisotropic nature. The induced density has a
node along the x direction and becomes higher at smaller x
and lower at larger x. This spacial property of the induced
density resembles that in the K = 2 field of the quadrupole
vibration mode, which is shown in Fig. 5(b). For comparison,

FIG. 6. L = 2, K = 2 component of the induced density by the
ISM field for different γ . The nuclear radius is indicated in the arrow.
The L = 0 component of the induced density at γ = 30◦ is plotted
by the dotted line.

the induced density for the ISQ K = 2 at γ = 0◦ is shown in
(a), which has a node along x = y.

We go through the property of the induced density at the
middle peak. We show in Fig. 6 the L = 2, K = 2 component
of the induced density of the ISM field for different γ obtained
by the multipole expansion of the induced density of the ISM
field. To see the surface property of the induced density, we
plot the induced density multiplied by r2 in the figure. The
L = 2, K = 2 component of the induced density vanishes for
the axially symmetric case (γ = 0◦). The magnitude of the
L = 2, K = 2 component at the surface becomes larger for
larger γ . For comparison, we plot the L = 0 component of the
induced density at γ = 30◦ as the dotted line. Its magnitude at
the surface region is comparable to that in the L = 2, K = 2
component at γ = 20◦, 30◦, 40◦, and 60◦. This clearly shows
a strong mixing of the L = 2, K = 2 component of the ISM
strength at the middle peak energy.

To ascertain whether the origin of the L = 2, K = 2 com-
ponent of the ISM strength stems from either dynamical
effect or static effect, we also look into the ISM strength
without the residual fields in the FAM calculation, namely
the unperturbed strength. Figure 7 shows the unperturbed
ISM and ISQ strengths at different γ . The occurrence of the
middle peak in the unperturbed ISM strength at finite γ is
seen at ω ≈ 20 MeV. Furthermore, the middle peak in the
unperturbed ISM strength and the peak in the unperturbed
ISQ K = 2 strength coincide in energy. These properties are
preserved when the residual effects are taken into account,
which we have seen in Fig. 2. A similar feature has been
pointed out in the case of the isovector monopole excitations
in axially deformed nuclei [37]. In addition to this, as shown in
Figs. 5(e) and 5(f), the spacial property of the induced density
without the residual fields is almost the same as that with
the residual fields shown in Figs. 5(c) and 5(d). From this
analysis, the triaxial deformation in the ground state density
induces significant contribution of L = 2, K = 2 component
to the ISM strength.
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FIG. 7. Same as Fig. 2, but for the unperturbed strength.

IV. SUMMARY

We have investigated the mechanism underlying the emer-
gence of the middle peak in the ISM strengths in deformed
nuclei breaking the axial symmetry. We performed the CHFB

+ FAM-QRPA calculations to obtain the ISM and ISQ
strengths in the 100Mo nucleus, where the triaxial deformation
has been pointed out to appear. The evolution of the middle
peak in the ISM strength is clearly shown in the analysis
of the fraction of the EWSR value. We also investigated the
vibrations of matter distributions in the x, y, and z directions
by the ISM field and found that the origin of the middle peak
in the ISM strength is due to different vibrations of matter
distributions in the x and y directions with γ > 0◦. The in-
duced density of the ISM field possesses an enhanced L = 2,
K = 2 component with γ > 0◦ at the middle-peak energy.
Additionally, we have conducted similar calculations for the
case without the residual ISM field and found the occurrence
of the middle peak in the unperturbed ISM strength as well
as the mixing of the L = 2, K = 2 component to the ISM
strength at the middle peak energy. The mixing between the
monopole and quadrupole modes is given by the ground state
deformation. Therefore, the ISM strength of the middle peak
becomes strong as γ increases.
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