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We investigate the stability and softness of nuclei against quadrupole, octupole, and hexadecapole deforma-
tion. By applying the spherical Skyrme-force Hartree-Fock Bardeen-Cooper-Schrieffer quasiparticle random
phase approximation, we diagnose ground-state deformation when imaginary solutions are obtained, i.e., the
spherical ground state collapses. We also calculate the multipole polarizability in spherical nuclei with no
collapse, as a measure of softness. This numerically light and theoretically sound method is found able to
capture deformation patterns across the nuclide chart. The connection between the intrinsic shape of nuclei
and the dynamics of their low-lying collective states is established and the role of shell structure is discussed.
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I. INTRODUCTION

New experimental techniques and theoretical methods con-
tinue to advance our understanding of nuclear deformation, in
stable and exotic nuclei. Notably, the hydrodynamic model de-
scription of relativistic heavy-ion collisions is currently being
used to infer deformation in nuclei. Specifically, the elliptic
flow v2 and the triangular flow v3, which are patterns of
particle movement observed in high-energy nuclear collisions,
are used in the study of quadrupole and octupole deformation,
respectively [1,2]. The flow v4 can also be measured, as has
been done at the BNL Relativistic Heavy Ion Collider (RHIC),
and be used to study hexadecapole deformation.

In their ground state, most of the nuclei are not spherical
but quadrupole deformed [3]. A handful of octupole nuclei
were confirmed in the experiment [4]. Very recently, evidence
of hexadecapole deformation in uranium-238 at the RHIC was
reported in Ref. [5]. Observables related to the Jπ = 4+

1 states
of the krypton isotopes and, in particular, on the hexadecapole
degree of freedom were discussed in Ref. [6]. One question
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is whether deformation values extracted through low-energy
observables are consistent with the new data obtained at high
energy. A more general question is whether we can understand
in a systematic way which nuclei tend to develop hexade-
capole deformation.

A number of global theoretical models of nuclear deforma-
tion are available. The finite-range-droplet model (FRDM) [7]
is a microscopic-macroscopic model, while the fully micro-
scopic Skyrme Hartree-Fock (HF) Bardeen-Cooper-Schrieffer
(BCS) [8], Gogny Hartree-Fock-Bogoliubov [9], and de-
formed relativistic Hartree-Bogoliubov theory in continuum
(DRHBc) [10] are based on a mean-field approach and take
as input an effective interaction or Lagrangian. In mean-field
approaches, the onset of deformation can be interpreted to
some extent in terms of shell structure that plays an important
role in the phenomenon of deformation: for example, magic
nuclei are always spherical. From the shell model, it is under-
stood that the accumulating p-n interaction strength leads to
additional configuration mixing and deviations from spherical
symmetry in the ground state [11,12]. The Nilsson model has
been very useful for relating nuclear deformation and shell
structure [13,14].

From a theoretical point of view, to predict whether a
nucleus is likely deformed in its ground state, one typically
performs precise calculations of the density distributions and
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deformation parameters. In this work, we follow a differ-
ent computationally light approach to examine deformation
patterns throughout the nuclide chart. Specifically, we solve
the self-consistent spherical Skyrme HFBCS quasiparticle
random phase approximation (QRPA) to obtain the excited
states and response function in the quadrupole, octupole, and
hexadecapole channels. One can then quantify the softness
against deformation or diagnose static deformation by using
the formal properties of the response function and the random
phase approximation, respectively.

First, when no imaginary solutions are obtained, i.e., the
RPA stability matrix is positive-definite (all eigenvalues are
real), the static polarizability, which we might also call de-
formability, can be used as a measure of stiffness. The static
polarizability is formally determined by the real part of the
response function at vanishing excitation energy, which in turn
is related to the inverse energy-weighted sum rule of the imag-
inary part of the response function via the Kramers-Kronig
relation (see, e.g., [15]). Thus, by calculating the inverse-
energy sum rule in a given channel for a spherical nucleus,
we are in effect calculating the deformability of the nucleus.

Second, if an imaginary solution is obtained, that means
that the spherical HFBCS state assumed to be the ground
state is not actually the lowest-energy Skyrme HFBCS state
[16–19]: If we were to perform HFBCS calculations with
the same Skyrme functional but allowing for deformation,
the ground state solution would show intrinsic deformation.
The point here is that there is no need to perform such
deformed HFBCS calculations: the fact that the (spherical)
HFBCS-QRPA stability matrix is not positive-definite already
indicates that the spherical HFBCS state is unstable against
deformation. In addition, the present approach allows us to
study parity-odd shapes, such as octupole, and identify re-
gions of the nuclear chart where octupole and quadrupole
deformation may coexist, perhaps leading to triaxiality. The
octupole deformation was studied in this way in Ref. [20].

We note that the excitation spectrum of deformed nuclei
can be examined with formulations of QRPA which allow
for deformation, for example, the self-consistent QRPA for
use in axially symmetric nuclei as discussed Ref. [21]. Tri-
axially deformed nuclei are much more difficult to study
microscopically, owing mainly to computational limitations.
However, we stress that the objective of the present work is
not to describe the excitation spectrum but to assess static
deformability.

The paper is organized as follows. In Sec. II, we describe
briefly the HFBCS-QRPA formalism and how it is employed
in the present work. In Sec. III, we present and discuss our re-
sults in the octupole, quadrupole, and hexadecapole channels.
We conclude in Sec. IV.

II. METHOD

The HFBCS-QRPA method is well known and has been
long in use [22,23]. Self-consistent implementations, such as
the one used here, employ the same functional in calculating
the HFBCS ground state and the QRPA residual interac-
tion. First, the HFBCS equations are solved for even-even
atomic nuclei. The resulting HFBCS mean fields and nuclear

densities are inputs to the QRPA calculation. Then in the RPA
or QRPA, the excited states |ν〉 are the result of the operator
O+

ν acting on the correlated ground state |0̃〉 with Jπ = 0+:

|ν〉 = O+
ν |0̃〉. (1)

In general, the operator O+
ν is expressed in terms of the

creation and annihilation of a pair of particle-hole states (α, β)
that are obtained from the HF solution. The total angular
momentum of the pair is (λM ). The RPA equation [23] is
written as

∑

β

[
AαβX (ν)

β + BαβY (ν)
β

] = ωνX (ν)
α ,

∑

β

[
B∗

αβX (ν)
β + A∗

αβY (ν)
β

] = −ωνY (ν)
β . (2)

The matrices A and B are obtained from the HFBCS single-
particle state (α, β) and the residual interaction which is the
antisymmetrized particle-hole interaction [23,24]. The oper-
ator O+

ν that excites the states |ν〉 can be an electromagnetic
field F̂ (r) with the λ-multipole component being defined by

F̂λM (r) = e
A∑

i

rλ
i YλM (r̂i)

1

2
[1 − τz(i)], (3)

in which the sum runs over all nucleons. YλM (r̂i ) is the spher-
ical harmonic function; e is the proton charge; τz is the third
component of the isospin operator. As the ground state is 0+,
the final total angular momentum J is equal to the λ-multipole
component of the operator which is λ = 2, 3, or 4. They
are connected to the quadrupole, octupole, and hexadecapole
moments of the matter distribution that are used to quantify
the intrinsic shape of the nucleus.

The degree of stability or softness of the atomic nucleus
against variations is expressed via the polarizability or de-
formability Cλ (curvature), which is obtained from the inverse
energy-weighted sum rule of the response function [23,25]. In
the (Q)RPA framework, it is calculated from the mλ

−1 moment

Cλ = 2m−1(λ)/A, (4)

m−1(λ) =
∑

n

|〈λn||F̂λ||0̃〉|2E−1
n . (5)

The larger Cλ (W.u./MeV) is, the less stiff the system is
against deformations. For example, in the case of octupole
deformation C3 is around 1 W.u./MeV for 96Ru, which is
not considered especially soft. In contrast, it is 4 W.u./MeV
(even larger) for 96Zr which is an example of octupole softness
nuclei [20].

Our method in the study of nuclear deformation softness
is described as follows. Solving the QRPA equation (2) gives
us the energies ων and the wave functions (X (ν),Y (ν)) of the
excited states, where ν enumerates those states. When the
ground state is stable against the particle-hole perturbations,
the QRPA equation (2) has only real solutions ±ων [16,17]. If,
however, a deformed HFBCS state is energetically preferable
to the spherical one, the QRPA solutions in the relevant multi-
polarity will include imaginary values. We call the occurrence
of such an instability a “collapse” following Ref. [25], where
the octupole-deformed softness of 96Zr was first recognized.
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FIG. 1. Octupole deformation landscape with the SLy5 force ac-
cording to the presence (collapse) or not (no collapse) of imaginary
solutions. Lanthanide and actinide regions are shaded. The dotted
lines indicate the octupole-driving numbers. This figure has been
essentially adopted from Ref. [20].

In Ref. [20] we presented results of spherical QRPA cal-
culations in the octupole channel using various functionals.
For certain nuclei, we found that the results showed special
sensitivity to the functional used, namely the values for C3

varied greatly, with the low-lying collective state at very low
energy and in some cases “collapsed”. Such results indicate
that the nucleus is likely soft or even unstable against specific
deformation. 96Zr is an example of a soft nucleus, while 96Ru
is an example of a stiff nucleus against octupole deformation.
Doubly magic nuclei such as 208Pb are examples of stiff nuclei
to all kinds of deformation. In the next section, we highlight
soft as well as stiff nuclei in the octupole, quadrupole, and
hexadecapole channels.

We applied the self-consistent HFBCS-QRPA calcula-
tion using the computer program presented in Refs. [24,26].
Skyrme forces SLy5 [27] and SkM∗ [28] are used. We com-
puted the energies of first excited states E (2+

1 ), E (3−
1 ), and

E (4+
1 ) for all even-even nuclei with experimental data avail-

able in the NuDat database [29]. All used parameters are
described in detail in Refs. [24,26]. When the spherical cal-
culation for a given atomic nucleus has an imaginary solution,
we conclude that the spherical ground state is predicted un-
stable against the QRPA operator (quadrupole, octupole, or
hexadecapole), in other words, the nucleus is predicted static
deformed. In the case of the quadrupole operator, as expected,
we find the majority of nuclei to be deformed. When all QRPA
solutions are real, we use the multipole polarizability as a
comparative measure of softness. Softness against deforma-
tion can be concluded also when the first excited state is found
at real but very low energy and highly collective. When, for
example, the transition strength in W.u. exceeds half the mass
number, i.e., enhancement), we can quite confidently classify
the nucleus as soft.

III. RESULTS AND DISCUSSION

A. Octupole deformation softness

We begin with the octupole deformation, which is of neg-
ative parity and much less studied than even-parity shapes.

FIG. 2. Light nuclei with strong enhanced octupole transition
strength, B(E3) > 0.5A W.u., calculated with the SLy5 force. The
dotted lines indicate the octupole-driving numbers.

Generally, negative-parity nuclear shapes are of interest in
searches for physics beyond the standard model of particle
physics [30,31] (see [4,32] for reviews). Motivated by the re-
sults of recent heavy-ion experiments, which indicate octupole
softness in 96Zr [1,33], we examined potential static octupole
deformation softness across the nuclear chart in Ref. [20].

The results were consistent with the concept of octupole
magic numbers: The development of 3− octupole deformation
softness requires the presence of a particle and a hole state of
opposite parity but in close proximity and with angular mo-
menta such that they can couple to total angular momentum
number 3. Such particle-hole pairs are very specific and owe
their existence to the spin-orbit splitting [20,25]. For example,
octupole deformation areas are found in the lanthanide and
actinide regions where the 1h11/2 or 1i13/2 hole orbitals come
energetically close to opposite-parity particle states 2d5/2 and
2 f7/2, respectively.

In Fig. 1 that essentially adopted from Ref. [20], we recall
the resulting landscape for octupole deformation softness.
The calculation was done only for nuclei for which experi-
mental data are available for the energy and strength of the
3−

1 transition to the ground state. The blue circles in Fig. 1
indicate nuclei where we find “collapse” in the SLy5 spherical
QRPA calculation, i.e., the presence of an imaginary solution,
indicating instability of the spherical shape against octupole
deformation in this model. More generally, it indicates soft-
ness against octupole deformation [20]. Also in Ref. [20],
it was pointed out that no “collapse” was obtained in light
nuclei. However, there were cases where enhanced B(E3)
transition strength was found at low energy and correspond-
ingly high polarizability. A high polarizability indicates strong
octupole correlations and a degree of softness. According
to Ref. [20], nuclei with enhanced transition strength are
highlighted in Fig. 2. Not only the “collapse” but also the
enhancement of the transition strength are signatures of nu-
clear deformation softness.

In addition, the transition from octupole deformation to
octupole vibrations has been suggested within two different
models (see Refs. [34–37]), with 226Ra and 226Th near the ac-
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FIG. 3. Quadrupole deformation landscape with the SLy5 force
according to the presence (collapse) or not (no collapse) of imaginary
solutions. The midshell deformed regions are highlighted by circle or
circular segments. The magic numbers are shown in dotted lines.

tinide region appearing to be close to the transition point. The
experimental identification of stable octupole deformation in
224Ra [38] supports these predictions.

In the following, we analyze the quadrupole and hexade-
capole deformation analogously.

B. Quadrupole deformation softness

Next, we demonstrate how the present approach works
in the case of the well-established quadrupole deformation.
Quadrupole deformation is very common throughout the nu-
clear chart and has been the most extensively studied shape
[7,10]. Experimental data for the first excited quadrupole
state, 2+

1 , have also been systematically documented [39]. Its
properties are closely related to shell structure, for example,
a high energy is associated with magicity. Systematic QRPA
calculations using SLy4 and SkM∗ force for the 2+

1 state
in spherical nuclei were carefully discussed in Ref. [40]. In
that work, 155 (SLy4) and 178 (SkM∗) spherical nuclei were
selected and studied.

As already explained, in this work we solve the spherical
QRPA equations for all nuclei for which relevant data exist,
regardless of sphericity: If no imaginary solution is obtained,
which means that the model does not predict quadrupole de-
formation, the energy and strength of the 2+

1 state, and the
quadrupole polarizability can be used as measures of the nu-
cleus’s softness against quadrupole deformation; if we obtain
an imaginary solution, then the nucleus is predicted to be
deformed in its ground state.

The difference from the octupole case is that because of
the positive parity and low angular momentum of the 2+ state,
many particle-hole components are available for forming a 2+
quadrupole state and many particle-hole pairs may lie close
energetically in open-shell nuclei leading to softness or to
the instability of the spherical shape. As a result, the shell-
structure origin of quadrupole deformation is not as clearly
identified as in the case of octupole deformation. It is also un-
surprising that quadrupole deformation is so common across
the nuclear chart. Figure 3 shows the quadrupole deformation

FIG. 4. Hexadecapole deformation landscape with the SLy5
force according to the presence (collapse) or not (no collapse) of
imaginary solutions. The dotted lines indicate the magic numbers.
Lanthanide and actinide regions are shaded.

landscape with the mid-shell deformed regions highlighted
by circle or circular segments. The most strongly deformed
nuclei that are well-known in the literature, namely 20–24Ne,
22–26Mg, 26,28Si, 98–102Sr, 102Zr, and 152Ce, can be identified
in Fig. 3, too, as deformed.

Regarding regions in which quadrupole deformation ap-
pears, it would be interesting to mention the parameter-
independent predictions of the NpNn scheme [41] and the
so-called P factor [42], which is determined from the num-
ber of valence protons and valence neutrons counted from
the nearest closed shell. Nuclei with P > 5 are expected to
exhibit quadrupole deformation (see, for example, Figure 21
in Ref. [43]).

In conclusion, our approach based on self-consistent QRPA
captures the same region of quadrupole deformation as
well-known in literature such as in Ref. [7] using the
microscopic-macroscopic model.

C. Hexadecapole deformation softness

Hexadecapole deformation is not as thoroughly discussed
in the literature as quadrupole deformation. Although the par-
ity in both cases is positive, the number of single-particle
pairs that can form a J = 4 state is more limited. In addi-
tion, most of those pairs can couple to 2+ states as well,
so that hexadecapole softness or deformation is expected
to be favored in nuclei with strong quadrupole softness or
deformation. Figure 4 shows that it is around neodymium
(Z = 60) and polonium (Z = 84) that QRPA collapses in the
4+ channel. Observing the single-particle shell structure, the
hexadecapole-soft nuclei appear after closing the major shells.
Regions of softness, however, are more extended.

The area where there are enhancements of B(E4) transition
strength is shown in Fig. 5. The extension of this area to the
neutron-rich nuclei can provide us with more information on
the single-particle structure of the whole region. The Z, N =
59–70, 96–112 regions of the nuclear chart are interesting also
in the context of shape coexistence, as they are candidates for
the dual-shell mechanism proposed in Ref. [44].
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FIG. 5. Nuclei with especially enhanced hexadecapole transition
strength, B(E3) > 0.5A W.u. in the lanthanide region (Z = 57–71),
as calculated with SLy5 HFBCS-QRPA. These are certain Ce, Nd,
Sm, and Gd isotopes with N � 90.

In Fig. 6 we show a broader range of C4 and compare visu-
ally the resulting landscape with predictions for the absolute
value of the hexadecapole deformation parameter based on
the FRDM model [7]. The regions of deformation or softness
correspond almost one-to-one to our results. Regarding the

FIG. 6. (a) Landscape of the polarizability Cλ with the SLy5
force. The yellow color indicates nuclei for which we have not
obtained a result for the polarizability because static deformation is
predicted (collapse of spherical QRPA). (b) The absolute value of
the hexadecapole deformation parameter as predicted by the FRDM
model [7] for the nuclei studied in this work.

FIG. 7. Nuclear deformation landscape with different SkM∗

(a) and SLy5 (b) forces. The collapses are in color. The cross symbol
presents nuclei without any “collapse” in the completed diagnostic.
The dotted lines indicate the magic numbers.

division of the lanthanide region into two islands instead of
one, we note that one of the islands corresponds to positive
and one to negative values of β4, a distinction that we cannot
make with our approach.

D. Nuclear deformation landscape

Our approach is applicable to the deformation softness
and stiffness of any multipolarity in atomic nuclei including
quadrupole, octupole, and hexadecapole modes from light to
heavy nuclei, as we have seen. Figure 7 shows the overview
result of the “collapse” throughout the nuclide chart with
two different Skyrme forces, SkM∗ in Fig. 7(a) and SLy5
in Fig. 7(b). One can see that the octupole or hexadecapole
“collapse” coincides with the quadrupole “collapse”. This
means that the octupole and the hexadecapole deformation
are always on top of the quadrupole-deformation background.
As mentioned in Ref. [40], it was surprising to find that the
two Skyrme forces disagreed significantly on which nuclei are
spherical. However, looking at the landscape in Fig. 7, we ob-
serve that the predicted areas of deformation are similar, even
though they are not identical. The important conclusion is that
changes predicted by different models in the single-particle
shell structure may differ somewhat, leading to differences in
the deformation landscape as predicted with different Skyrme
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FIG. 8. Landscape for nuclear stiffness against multipole defor-
mation through the polarizability Cλ with the SLy5 force.

forces [40] and thus reaffirming the role of the shell-driving
mechanism in the evolution of nuclear deformation.

Note that the original magic numbers, 2, 8, 20, 28, 50, 82,
and 126 [45,46] enhance stability and make nuclei
spherical and stiff against nuclear deformations. In the con-
text of nuclear deformations, the original magic numbers
are interpreted as the stiff-multipole numbers. The presence
of strong multiple correlations decreases the stiffness of the
atomic nucleus, making them soft to the corresponding defor-
mation. Therefore, the octupole-driving particle numbers or
octupole-magic numbers (16, 34, 56, 88, and 134) represent
soft-octupole numbers. The evolution of octupole magic num-
bers in neutron-rich nuclei could be an interesting subject for
future work.

While the stiff-quadrupole-deformed nuclei correspond-
ing to the original magic number are trivial [Fig. 8(a)], the
stiff-octupole and the stiff-hexadecapole magic numbers are
less recognized and paid attention to so far. In Fig. 8(b) and
(c), therefore, we show also the value of Cλ=3,4 [Eq. (5)]

throughout the nuclide chart. The quadrupole, octupole, and
hexadecapole magic nuclei are in the colored regions.

As octupole and hexadecapole softness coincide with
quadrupole softness, different types of magic numbers com-
pete. As an example, in the case of 84

34Se50, our result shows
that the effect of octupole deformation softness is surpassed
by the stiffness of the closed shell structure. Our method
based on the fully self-consistent HFBCS-QRPA can diagnose
deformation softness against one multipolarity at a time. For
example, we cannot conclude whether a specific nucleus will
show, at the same time, quadrupole and octupole deforma-
tion or quadrupole and hexadecapole. However, in qualitative
terms at least, our approach can reliably diagnose softness
in atomic nuclei and deformation patterns in the nuclide
chart. Our results can serve as a guide to more quantitative
explorations.

In soft nuclei, low-lying states exhibit greater collectiv-
ity, making them more effectively described within the RPA
framework. The low-lying collective energy-level spectra be-
low a few MeV reveal the shape of the nuclear ground state.
Our analysis with the Skyrme HFBCS-QRPA emphasizes the
role of shell driving mechanism in the evolution of nuclear
deformation. It is reminded that the spin-orbit interaction
plays a crucial role in determining the single-particle shell
structure, magic numbers, and therefore nuclear deformations.
The strength of the spin-orbit interaction is determined empir-
ically and is not fully understood quantitatively, especially for
weakly bound nuclei [47].

From the shell-model perspective, it has been shown that
interactions between neutrons and protons are primarily re-
sponsible for causing nuclear deformation and that the same
physical explanation holds across the nuclear chart [11,12].
The review of the microscopic origin of nuclear deformation
from different approaches was discussed in Ref. [48]. The
spin-orbit-like shells drive also the mechanism for shape co-
existence discussed in Ref. [44]. In general, the degeneracy of
eigenvalues of a single-particle Hamiltonian around the Fermi
level leads to instability concerning shape vibrations.

For completeness, in the Supplemental Material [49], we
show the full range of Cλ values and indicate nuclei with
collapse for all three multipolarities, as calculated with the
SLy5 functional. We also show the overview of the nuclear
deformation softness landscape with three different Skyrme
forces based on the energy of the lowest excited state in each
channel. Finally, we provide tables with the numerical results
obtained and used in the figures.

IV. CONCLUSION AND FUTURE PERSPECTIVES

The spherical QRPA is a numerically light and theo-
retically sound method for diagnosing potential softness or
deformation in nuclei, especially octupole, hexadecapole, and
higher-multipolarity shapes, which are much less studied than
quadrupole shapes and typically require special microscopic
approaches. It can capture the patterns of deformation in the
nuclide chart and can help identify easily areas of potential
interest. Candidates for static quadrupole-octupole deformed
nuclei, as judged from the simultaneous softness or collapse
in both channels, were reported in Ref. [20]. In this work,
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122Te, 152Ce, 152–158Nd, 210Pb, and 206–218Po are found to
be possible candidates for static quadrupole-hexadecapole
deformation.

Nuclear deformation is ongoing research. Nowadays, new
exotic beam facilities have been built around the world. The
impact of the nuclear shape on the drip lines was recently
discussed in Ref. [50]. Theoretically, the determination of
the drip lines has been updated up to heavy nuclei from nu-
clear density functional theory [51] and up to Fe through the
valence-space formulation of the in-medium similarity renor-
malization group [52]. Moreover, the difficulty in assigning
meaningful effective values to the shape parameters β and γ

because of large fluctuations, questioning the spherical shape
of doubly magic nuclei has been recently raised [53]. Our

work can serve as a starting point for more detailed investi-
gations in the future.
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