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Elastic electron scattering from deformed and oriented odd-A nuclei
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Interference terms between monopole and quadrupole Coulomb form factors that contribute to the cross
section of electron scattering from polarized nuclei are studied within the plane wave Born approximation. By
experimentally exploring the effect of this nuclear response, valuable insights into the sign of the quadrupole
deformation can be obtained. The nuclear structure is evaluated numerically using a self-consistent deformed
Hartree-Fock approximation with Skyrme effective interactions and accounting for pairing correlations. To
illustrate the practical applicability, several examples of odd-A nuclei with different spins and deformations
are examined. Comparison of unpolarized and polarized cross sections becomes a tool to discriminate between
the oblate and prolate nature of the nuclear shape, providing a deeper understanding of the nuclear deformation.
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I. INTRODUCTION

Electron scattering from atomic nuclei is a powerful tool
for extracting fine details about nuclear properties, such as
sizes, shapes, electromagnetic moments, charge and current
distributions, form factors, and other inherent characteristics
[1–3]. This is possible because the process is driven by the in-
teraction between the electron and the electromagnetic fields
of the nuclei, which is described by the well-known quantum
electrodynamics theory. This great advantage has been ex-
ploited in the past providing unprecedented insights into the
internal structure of the nucleus. Nevertheless, the potential
for further learning about the nuclear structure through elec-
tron scattering remains far from exhausted.

The feasibility of studying electron scattering from unsta-
ble nuclei is becoming a reality. A significant step in this
direction has been achieved through the SCRIT project at
RIKEN [4,5], which has successfully conducted pioneering
electron scattering experiments using a radioactive target,
specifically on 137Cs [6]. Looking ahead, the forthcoming
ELISe project at GSI-FAIR [4,7] is another example of future
facilities of collider experiments with electrons and radioac-
tive ion beams.

Moreover, the study of the effects of the electroweak inter-
action in the nucleus has provided researchers with a tool to
investigate not only the electromagnetic properties of nuclei,
but also those due to the weak interaction. Prominent among
these pursuits are the parity-violating electron scattering ex-
periments, namely PREX [8] and CREX [9], conducted at the
Jefferson Laboratory, investigating lead and calcium nuclei,
respectively. These experiments aim to measure the weak
charge distribution of the nucleus, providing insights into the
nuclear structure, neutron densities, and even the fundamental
constituents, the nucleons themselves.
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From conventional scattering experiments employing fixed
unpolarized stable targets to more complex methodologies
involving polarized electrons and targets, the field continues
to advance rapidly. A notable innovation involves the incor-
poration of polarized internal targets positioned within the
experimental setups that strategically intercept the circulating
electrons in storage rings. This enhances control and ma-
nipulation of target polarization during experiments. Various
combination possibilities of beam and target polarizations for
different purposes have been carried out at prominent facilities
such as Hall-A at Jefferson Laboratory [10], Mainz Microtron
(MAMI/MESA) [11], and RIKEN [12]. The forthcoming
generations of research facilities, such as the Electron-Ion
Collider at Brookhaven National Laboratory, have even more
promising prospects, determined by the unparalleled quality
expected in the polarizations of electrons and ion beams [13].

The nuclear charge density distribution obviously influ-
ences the electron scattering cross section by means of the
so-called charge form factors [1–3]. This relationship has been
investigated using different theoretical approaches. These en-
compass the shell model [14,15], along with both relativistic
[16–19] and nonrelativistic [20–23] self-consistent mean-field
models. All of them show robust correlations between these
form factors and the underlying density distributions.

Obviously, the form factors contain information about nu-
clear deformation as well. The deformation of a nucleus refers
to its departure from a spherical shape due to the arrangement
of protons and neutrons within it. Understanding nuclear de-
formation is crucial to get information about the underlying
nuclear forces and the nature of the nuclear many-body sys-
tem. A large variety of nuclear properties are understood in
terms of nuclear deformation. These include among others,
rotational energy spectra, transition probabilities, and electro-
magnetic moments. In addition, the nuclear shape plays an
important role in understanding nuclear decays and reactions,
with an impact on other domains such as nuclear astrophysics
[24,25] and particle physics [26–29].
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Although a comprehensive characterization of the nuclear
shape requires numerous degrees of freedom, reducing them
to axial symmetry and quadrupole deformation is a good
starting point. This approximation is in most cases sufficient
to describe reasonably well the properties of a substantial
number of the existing nuclei, particularly those at the focus
of this study. Within this simplified framework, the shape of
a nucleus can be properly described by the quadrupole defor-
mation parameter (β2). Its sign provides information about the
ratio of axes. If the symmetry axis is larger (smaller) than the
perpendicular axes, the sign of β2 is positive (negative) and
the nuclear shape is prolate (oblate).

Nuclear deformation is theoretically obtained as the shape
configuration with minimum energy. However, empirical data
on β2 and particularly its sign remain somewhat limited [30],
which poses a real challenge. Electric quadrupole transition
probabilities B(E2) are systematically used to extract the
value of β2 [31], but the quadratic dependence on β2 prevents
obtaining its sign. In fact, the sign of deformation is a very
elusive observable that requires the use of sophisticated ex-
perimental methods to get insight into the oblate or prolate
character of the deformation. Various experimental methods
based on γ -ray spectroscopy and Coulomb excitation [32],
rotational and vibrational spectroscopy [33,34], isotope shifts
[35], and β-decay studies [36,37], have been employed to
determine the nuclear deformation. In addition, since electron
scattering experiments provide information about the charge
and magnetic distributions within the nucleus, it is obvious
that they can reveal the presence of nuclear deformation by
studying the angular distribution of the scattered electrons and
the form factors.

In the case of deformed nuclei, the Coulomb form factors
can be conveniently written in terms of multipoles, denoted
shortly as Cλ [2,38]. They are sensitive to the various com-
ponents of the deformed charge density distribution into a
multipole expansion. The C0 multipole would contain in-
formation about the spherical component, while C2 would
contain information concerning the quadrupole deformation.
However, in standard electron scattering experiments with
unpolarized electron beams being scattered by unpolarized
nuclei, the total charge form factor contributes to the cross
section as an incoherent summation of squared multipoles.
Hence, the observables sensitive to nuclear deformation are
hidden due to two key factors. First, the contributions of the
higher-order multipoles to the cross section decrease fast with
increasing multipolarity. Second, solely the squared values of
C2 multipoles contribute, preventing the extraction of infor-
mation regarding the sign indicative of the oblate or prolate
character of the deformation. Consequently, due to these rea-
sons, information about nuclear deformation is difficult to
disentangle.

A viable strategy to overcome this challenge involves using
polarization degrees of freedom in these scattering processes
[38–40]. In the experiments with polarized beams and/or
targets, polarization observables provide valuable information
about the nuclear structure, which is hidden in the unpolarized
case. In particular, new observables emerge that are sensitive
to nuclear deformation, enabling studies about the anisotropy
of charge and magnetic distributions within the nucleus. These

novel observables contain terms of interference between the
different multipoles that can be isolated experimentally by
choosing properly the kinematic conditions and the nuclear
polarizations.

This work focuses on the new information that can be
extracted via scattering of unpolarized electron beams that
interact with nuclei intentionally oriented along a quantization
axis. Novel and remarkable opportunities arise in this case to
gain deeper insights into the underlying nuclear structure. This
study was started in a previous work [41], where the suitability
of the method to obtain information about the deformation
sign was demonstrated through selected examples. Here, a
more comprehensive and systematic study is performed, in-
cluding an array of different nuclear spins (I = 3/2, 5/2, 7/2,
9/2) and deformation types (oblate, prolate or shape coexis-
tence). This exploration offers a more complete understanding
of the interplay between nuclear spins, deformation charac-
teristics, and the observable outcomes of electron scattering
experiments, focusing finally on the distinct signatures arising
from the different deformation patterns.

The following Secs. II and III introduce the theoretical
framework employed to describe both the reaction mechanism
and the nuclear structure involved in electron scattering from
deformed and aligned odd-A nuclei. Section IV presents the
outcomes of the investigation, focusing on various nuclei with
different spin parities in their ground states that also exemplify
different types of deformation. Concluding remarks are shown
in Sec. V.

II. ELECTRON SCATTERING CROSS SECTION FROM
ALIGNED TARGETS

The theoretical framework for describing inclusive
electron-nucleus scattering involving polarization degrees of
freedom in both the incident electron beams and the target
nuclei, has been introduced in earlier studies [39,40]. This
framework has further been adopted to address the specific
scenario of deformed nuclei as detailed in Refs. [38,42]. The
formalism is based on the simplest theoretical framework, the
plane wave Born approximation (PWBA), which assumes that
a single photon is exchanged in the process and that electrons
are properly described as plane waves.

This approximation provides a straightforward and intu-
itive way to interpret Coulomb form factor measurements by
linking them to the Fourier transforms of the charge matrix
elements. Proper treatment of the electron distortion caused
by the nuclear Coulomb field requires more involved cal-
culations, such as the distorted wave Born approximation
(DWBA) [43]. However, the influence of these distortions is
relatively minor in the context of this study. This is primar-
ily due to their limited impact at low momentum transfers,
typically below q � 1.2 fm−1, where the effect of the target
orientation is already substantial.

Here, I adopt the formalism and notation established in
Ref. [38] for the case of unpolarized electrons scattered by
deformed oriented nuclei, which are characterized by a ground
state with spin Ii and parity πi (Iπi

i ), leading to a final state I
π f

f .
The cross section can be expressed as,

σtot (θ
′, φ′)|

I
πi
i →I

π f
f

= Z2σM f −1
rec [σ0 + σal(θ

′, φ′)], (1)
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FIG. 1. (a) Multipole components λ = 0, 2 of the proton dis-
tributions in 21Ne (Iπ = kπ = 3/2+) for the prolate shape con-
figuration. (b) Excitation energy as a function of the quadrupole
deformation parameter β2.

in terms of the Mott cross section σM and the recoil factor frec.
The angles (θ ′, φ′) define the polarization of the target relative
to the direction of the momentum transfer �q = �ki − �k f .

The cross section σ0 is independent on polarizations and
can be written in terms of longitudinal (L) and transverse (T )
form factors carrying the information about the charge distri-
bution and the electric and magnetic currents, respectively. It
is written as,

σ0 = VL|FL(Ii, I f ; q)|2 + VT |FT (Ii, I f ; q)|2. (2)

Similarly, the new cross section that appears when the
target nuclei are aligned is independent of projectile polariza-
tions and given by

σal(θ
′, φ′) =

∑
	=even>0

α
Ii
	

[
P	(cos θ ′)

(−VLF 	
L + VT F 	

T

)

+ P2
	 (cos θ ′) cos(2φ′)VT T F 	

T T

+ P1
	 (cos θ ′) cos φ′VT LF 	

T L

]
. (3)
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FIG. 2. Same as in Fig. 1, but for the oblate and prolate shapes in
63Cu (Iπ = kπ = 3/2−).
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FIG. 3. Same as in Fig. 1, but for the oblate and prolate shapes in
191Ir (Iπ = kπ = 3/2+).

The kinematic factors VL and VT are given by,

VL = (Q2/q2)2, VT = tan2(θe/2) − (Q2/q2)/2, (4)

where Qμ = (ω, �q) stands for the four-momentum transferred
to the nucleus in the process where an incident electron with
four-momentum kμ

i = (εi, �ki ) is scattered through an angle θe

to an outgoing electron with four-momentum kμ

f = (ε f , �k f ),

with ω = εi − ε f and �q = �ki − �k f .
The terms labeled T T and T L contain interferences be-

tween transverse-transverse and transverse-longitudinal mul-
tipoles, respectively. They are not further taken into account
here because their contribution to the cross section is canceled
when the nuclei are polarized in the θ ′ = 0 direction, which
for simplicity will be the only case studied here. The terms L
and T can be separated with suitable choices of the kinematic
variables using standard Rosenbluth methods.

The structure functions F 	
L ’s in Eq. (3) contain terms in-

volving products of different charge multipoles. They can be
separated using the dependence of the cross section on the
direction of polarization (θ ′, φ′), on the population of the
states, as well as on the scattering angle θe.
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FIG. 4. Same as in Fig. 1, but for the oblate and prolate shapes in
27Al (Iπ = kπ = 5/2+).
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FIG. 5. Same as in Fig. 1, but for the oblate and prolate shapes in
55Mn (Iπ = kπ = 5/2−).

The statistical tensors α
Ii
	 describe the degree of polariza-

tion of the nucleus, taking into account the fact that that the
2Ii + 1 substates are not equally populated,

α
Ii
	 =

∑
Mi

P(Mi )〈IiMi	0|IiMi〉. (5)

P(Mi ) are the population probabilities of the target sub-
states |IiMi〉 along the direction of polarization (θ ′, φ′). With
this definition, αI

	=0 = 1 for 	 = 0, irrespective of the state
of polarization and αI

	 = δ	,0 for unpolarized targets where
P(Mi ) = 1/(2Ii + 1). Furthermore, all the statistical tensors
with odd 	 values vanish in the case of aligned nuclei
[P(Mi ) = P(−Mi )]. In such scenarios, the use of polarized
electrons makes no difference.

Focusing on the longitudinal form factors, also referred
to as charge or Coulomb form factors, which are the ob-
ject of this study, their contribution to the unpolarized cross
section can be expressed as a sum of charge multipole form
factors FCλ(q) as,

|FL(Ii, I f ; q)|2 =
∑
λ�0

|FCλ(Ii, I f ; q)|2, (6)
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FIG. 6. Same as in Fig. 1, but for 105Pd (Iπ = kπ = 5/2+).

with

FCλ(Ii, I f ; q) =
√

4π

Z
〈I f ||T̂ Cλ(q)||Ii〉/

√
2Ii + 1. (7)

Hence, the various charge multipole contributions add inco-
herently, sharing identical factors within the cross section,
thus preventing their kinematic separation.

The Coulomb multipole operators are given by

T̂ Cλ
μ (q) = iλ

∫
dR jλ(qR)Y μ

λ (�R)ρ̂(R), (8)

as functions of the nuclear charge operator ρ̂(R) to be speci-
fied later within the nuclear structure model used.

In contrast to FL, the new form factors F 	
L in σal contain

terms of interference between Coulomb multipoles:

F 	
L (Ii, I f ; q) =

∑
λ,λ′

X (λ, λ′, Ii, I f , 	)FCλ(q)FCλ′
(q), (9)

where X (λ, λ′, Ii, I f , 	) are factors that involve 3 j and 6 j
Wigner coefficients [38],

X = (−1)Ii+I f +1 Īiλ̄λ̄′	̄2

(
λ λ′ 	

0 0 0

){
Ii Ii 	

λ λ′ I f

}
, (10)

with ā = √
2a + 1.

The form factors F 	
L ’s can be isolated by measuring the

cross sections at θ ′ = 0 that correspond to nuclei oriented
along the �q = �ki − �k f direction,

σal =
∑

	

α
Ii
	

(−VLF 	
L + VT F 	

T

) = σtot (θ ′ = 0, φ′)
Z2σM f −1

rec

− σ0.

(11)

Using the kinematic dependence of the VL and VT factors, F 	
L

and F 	
T can be isolated and studied individually.

In rotational nuclei, the multipole charge form factors
corresponding to a given transition Iik → I f k within a band
characterized by the projection k of the total spin along the
symmetry axis, can be expressed in terms of the so-called
intrinsic form factors FCλ. The expression that relates labo-
ratory and intrinsic charge multipole form factors to lowest
order in angular momentum [38], is given by

FCλ(Ii, I f ; q) = 〈Iikλ0|I f k〉FCλ(q), (12)

FCλ(q) = iλ
√

4π

2λ + 1

∫ ∞

0
R2dRρλ(R) jλ(qR). (13)

The multipole components of the density distribution ρλ(R)
will be specified later as the coefficients of its expansion
into Legendre polynomials. Center-of-mass corrections are in-
cluded in the harmonic-oscillator approximation with a factor
exp[q2/(4A2/3)]. Moreover, finite-size effects are included as
a sum of monopoles [44] for protons and by the difference of
two Gaussians [45] for neutrons.

The main objective of this work is the study of the inter-
ference between the monopole and quadrupole charge form
factors, as they appear in Eq. (9). The ground states of even-
even rotational nuclei, characterized by (I = k = 0), lack the
capacity of being polarized and therefore, C2 multipoles can
only be extracted in a quadratic form as |FC2|2. This prevents
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FIG. 7. Same as in Fig. 1, but for 167Er (Iπ = kπ = 7/2+).

determination of the deformation sign. This extraction can be
achieved from inelastic transitions to the 2+ excited states. In
contrast, apart from nuclei with spins I = 1/2, odd-A rotors
can be aligned, leading to the emergence of interference con-
tributions to the cross section. Therefore, only elastic electron
scattering from nuclei with spins I � 3/2 will receive contri-
butions from both C0 and C2 and their interference can be
studied. Furthermore, only 	 = 2 terms are needed to study
such interference phenomena.

In the case of elastic scattering Ii = I f = k, the notation for
charge multipoles simplifies to FCλ(Ii = I f , I f ; q) ≡ FCλ

I f
(q),

and the contribution from aligned nuclei reduces to

σal = −α
Ii
2 P2(cos θ ′)VLF 	=2

L . (14)

In this case and for 	 = 2, the X coefficient in Eqs. (9) and
(10) is given by X = −2

√
5, independent of the spin values.

Then,

F 	=2
L (I f ; q) = −2

√
5FC0

I f
(q)FC2

I f
(q). (15)

To evaluate the statistical tensors, one can assume the
simplest scenario where the target is oriented along the
momentum transfer direction (θ ′ = 0) and the alignment is re-
alized as P(Mi = +Ii ) = P(Mi = −Ii ) = 0.5, or equivalently
for fully polarized nuclei P(Mi ) = δMi,+Ii . In this case the
α

Ii
2 factors in Eq. (5) take specific values, namely 1/

√
5,√

5/14,
√

7/15, and
√

6/11, for Ii = 3/2, 5/2, 7/2, and 9/2,
respectively.

Under these conditions, apart from kinematic factors, the
contribution of the longitudinal terms to the total cross sec-
tion can be written as

σtot ∼ (σ0 + σal ) ∼ VLFeff , (16)

where

Feff = |FL|2 + F02 = |FC0|2 + |FC2|2 + F02, (17)

with

F02 = A(I f )FC0(q)FC2(q), (18)

with A = 2/
√

5, 5
√

5/7, 14/(3
√

5), 12
√

5/11, for Ii = I f =
3/2, 5/2, 7/2, and 9/2, respectively.
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FIG. 8. Same as in Fig. 1, but for 177Hf (Iπ = kπ = 7/2−).

III. NUCLEAR STRUCTURE

The nuclear structure framework needed to calculate the
density distributions involved in the expressions of the multi-
pole charge form factors is derived from a self-consistent de-
formed Hartree-Fock (HF) calculation with effective Skyrme
interactions and pairing correlations in the BCS approxima-
tion, as described in Ref. [46]. Specifically, the Skyrme SLy4
interaction [47], along with phenomenological pairing gaps,
are used in these calculations. This formalism has previously
found application in electron scattering studies from axially
deformed nuclei, including the computation of both longitu-
dinal and transverse form factors [48–52]. Calculations with
other Skyrme interactions have also been performed in those
references leading to similar results.

In this approach the nuclear density can be written as,

ρ(R) = 2
∑

i

v2
i |�i(R)|2, (19)

where v2
i denote the occupation probabilities and �i the

single-particle Hartree-Fock wave functions. The latter are
expanded into the eigenstates of an axially deformed har-
monic oscillator potential, using a set of 11 major shells. The
harmonic-oscillator parameters are properly chosen to mini-
mize the energy in such basis. The quadrupole deformation
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FIG. 9. Same as in Fig. 1, but for 181Ta (Iπ = kπ = 7/2+).
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FIG. 10. Same as in Fig. 1, but for 179Hf (Iπ = kπ = 9/2+).

parameter β2 is obtained self-consistently from the intrinsic
quadrupole moment Q0 and the mean-square radius 〈R2〉, both
calculated microscopically as functions of the density,

β2 =
√

π

5

Q0

A〈R2〉 , (20)

Q0 =
√

16π/5
∫

ρ(R)R2Y20(�R)dR, (21)

〈R2〉 =
∫

R2ρ(R)dR∫
ρ(R)dR

. (22)

The axially deformed density distribution ρ(R) is con-
veniently expressed through an expansion in Legendre
polynomials [46],

ρ(R) = ρ(R cos θ, R sin θ ) =
∑

λ

ρλ(R)Pλ(cos θ ), (23)
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from Eq. (18) for the prolate shape in 21Ne.
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FIG. 12. Same as in Fig. 11, but for the oblate and prolate shapes
of 63Cu.

where the multipole coefficients are given by,

ρλ(R) = (2λ + 1)
∫ +1

0
Pλ(cos θ )ρ(R cos θ, R sin θ )d (cos θ ).

(24)

Figures 1–3 depict the results for the multipole densities
ρ0 and ρ2 of the proton distributions in 21Ne, 63Cu, and 191Ir,
respectively. Additionally, the figures provide plots of the
energy-deformation curves, i.e., binding energies as a function
of the quadrupole deformation parameter β2 given in Eq. (20).
The chosen nuclei are instances of Iπ = 3/2+, 3/2−, and
3/2+, respectively.

In the case of 21Ne, only the prolate deformation is consid-
ered for further calculations of form factors because its energy
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FIG. 13. Same as in Fig. 11, but for the oblate and prolate shapes
of 191Ir.

024312-6



ELASTIC ELECTRON SCATTERING FROM DEFORMED AND … PHYSICAL REVIEW C 109, 024312 (2024)

lies much deeper than the energy of the oblate configuration.
On the other hand, in the other two cases for 63Cu and 191Ir,
both oblate and prolate shapes are studied because the min-
ima are located at close energies, although in two different
scenarios. The relatively shallow minima in 63Cu potentially
indicate an example of soft nucleus, while the pronounced
energy minima separated by high-energy barriers in 191Ir,
point towards a paradigmatic example of shape coexistence.

In the case of 63Cu (Z = 29), the spin-parity assignment of
the ground state according to the Nilsson-like diagram in the
oblate sector agrees with the experimentally observed 3/2−
state. However, the prolate deformation is minimized with
the odd proton occupying a 1/2− state originated in the p3/2

spherical shell. It is worth noting that a 1/2− state is observed
experimentally at an energy E = 693 keV. In this study, the
prolate configuration is constrained to be in a 3/2− state to
compare both oblate and prolate configurations with the same
spin-parity assignments. On the other hand, the oblate and
prolate configurations in 191Ir are properly described with
3/2+ states in accordance with experiment.

Inspection of these figures reveals that ρ2(R) peaks always
in the surface region with positive (negative) values depend-
ing on the prolate (oblate) character. This difference has an
effect in the C2 multipole form factor in Eq. (13), becoming
a distinctive marker of the oblate or prolate character of the
nuclear shape.

The subsequent set of figures, namely Figs. 4–6, depicts
analogous plots for the cases of 27Al, 55Mn, and 105Pd, which
typify examples of Iπ = 5/2+, 5/2−, and 5/2+ nuclei, respec-
tively. For the same arguments as above, oblate and prolate
deformations are studied in the cases of 27Al and 55Mn,
whereas only the prolate case is studied in 105Pd. In the case of
27Al (Z = 13), the experimentally observed spin and parity of
the ground state (5/2+) corresponds to a prolate configuration
built on the d5/2 spherical shell. The oblate configuration is
minimized with a 1/2+ assignment, which is observed exper-
imentally as an excited state at E = 843 keV. Similarly to the
case of 63Cu, the oblate solution is constrained to the exper-
imental 5/2+. In the case of 55Mn (Z = 25), the 5/2− oblate
and prolate states from the f7/2 shell are used in the calcula-
tions. It is worth noting that for 55Mn the peaks of ρ2(R) at the
surface show the largest difference between oblate and prolate
shapes. This feature is related to the larger difference of the
magnitude of β2 between the oblate and prolate minima.

The following Figs. 7–9 correspond to 167Er, 177Hf, and
181Ta, which are examples of Iπ = 7/2+, 7/2−, and 7/2+
nuclei, respectively. Concluding this series, Fig. 10 shows the
results for 179Hf with Iπ = 9/2+. In these nuclei the analysis
is restricted to the form factors associated with prolate defor-
mations. The patterns observed in these examples of heavy
deformed nuclei with I = 7/2 and I = 9/2 show a similar be-
havior of the density multipoles ρ0 and ρ2. The most striking
feature regarding the densities is the appearance of wavings in
the ρ2 profiles, with large positive peaks on the surface, as ex-
pected from prolate configurations. The energy-deformation
curves show also a common behavior in those cases with
deep minima in the prolate sectors and oblate configurations
at excitation energies above 5 MeV that will not be considered
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FIG. 14. Charge [FCλ
5/2 ]2 (λ = 0, 2) and F02 form factors for the

oblate and prolate shapes in 27Al.

further. The sudden change in the spin and parity of the two
isotopes 177Hf (N = 105) and 179Hf (N = 107) from 7/2− to
9/2+ should also be highlighted. This is an interesting nuclear
structure effect, where the proximity of energy levels in the
vicinity of β2 = 0.3 favors a jump between the orbitals of h9/2

(7/2−) and i13/2 (9/2+).

IV. RESULTS ON FORM FACTORS

The results of this work for the charge form factors C0 and
C2 squared, as well as the interference term F02 in Eq. (18) are
presented in Figs. 11–20 for the same stable deformed nuclei
studied earlier. Namely these figures contain the results for
21Ne, 63Cu, 191Ir, 27Al, 55Mn, 105Pd, 167Er, 177Hf, 181Ta, and
179Hf, respectively.
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FIG. 15. Same as in Fig. 14, but for 55Mn.
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FIG. 16. Same as in Fig. 14, but for the prolate shape in 105Pd.

As a general comment, these figures demonstrate the
challenge of extracting meaningful information about C2
multipoles from unpolarized experiments due to their small
magnitude and to their quadratic dependence. In contrast, the
interference term F02 is significantly greater than (FC2)2 and
carries information about the sign of deformation. Typically,
the first peak of F02 is roughly between one and two orders of
magnitude smaller than (FC0)2 and two orders of magnitude
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FIG. 17. Charge [FCλ
7/2 ]2 (λ = 0, 2) and F02 form factors for the

prolate shape in 167Er.
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FIG. 18. Same as in Fig. 17, but for 177Hf.

larger than (FC2)2. The first and most prominent peak of the
interference term F02 in prolate (oblate) nuclei appears with a
negative (positive) sign. Hence, according to its effect on the
total cross section, the latter will be decreased (increased) with
respect to the unpolarized cross section. The strength of this
reduction (enhancement) depends on F02, which is determined
to some extent by the magnitude of the quadrupole defor-
mation parameter β2. The study of this dependence makes
more sense in cases in which one considers two different
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FIG. 19. Same as in Fig. 17, but for 181Ta.
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FIG. 20. Charge [FCλ
9/2 ]2 (λ = 0, 2) and F02 form factors for the

prolate shape in 179Hf.

deformations in the same nucleus. Specifically, it is observed
that in the case of 55Mn in Fig. 15 the differences between the
peaks of oblate and prolate form factors in both (FC2)2 and F02

are the largest within the cases studied since the differences in
β2 between oblate and prolate deformations in this nucleus are
also the largest.

Lastly, turning to Figs. 21–30, they contain the total
longitudinal form factor (FL )2 = (FC0)2 + (FC2)2 in the un-
polarized case, along with the previously defined Feff form
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FIG. 21. |FL|2 and Feff from Eq. (17) for the prolate shape in
21Ne. The inset contains the ratio between the total cross section with
aligned nuclei and the unpolarized one.
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FIG. 22. Same as in Fig. 21, but for the oblate and prolate shapes
in 63Cu.

factors for the same illustrative cases discussed earlier. A com-
parative analysis between the unpolarized response, which is
proportional to (FL )2, and the polarized counterpart, which
is proportional to Feff , shows a clear emerging trend. By
comparing experimental measurements of cross sections with
unpolarized and polarized nuclei, crucial information about
the oblate or prolate character of the nuclear shape can be
inferred, simply by checking whether the cross section in-
creases or decreases. Therefore, the comparison between these
two cross sections provides a signature of the sign of the
deformation that is independent of the model.

The magnitude of the deviation provides information about
the magnitude of the quadrupole deformation, although in
this case in a model-dependent way. The insets accompanying
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FIG. 23. Same as in Fig. 21, but for the oblate and prolate shapes
in 191Ir.
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FIG. 24. Same as in Fig. 21, but for the oblate and prolate shapes
in 27Al.

these figures show the ratios between the cross sections with
aligned nuclei and their unpolarized counterparts,

(σ0 + σal )

σ0
= 1 + F02

|FL|2 = Feff

|FL|2 . (25)

These figures show the extent of the deviation from the stan-
dard unpolarized cross section. The divergence is already
significant at low momentum transfers and gains prominence
when approaching the first diffraction minimum, where the
cross section is still large enough to be measured. Neverthe-
less, it is important to note that in the close vicinity of the
minimum, the cross section is very small, potentially leading
to the emergence of additional effects not included in this
study.
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FIG. 25. Same as in Fig. 21, but for the oblate and prolate shapes
in 55Mn.
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FIG. 26. Same as in Fig. 21, but for 105Pd.

V. CONCLUSIONS

The changes induced by nuclear deformation in the cross
section of electrons scattered by polarized odd-A nuclei have
been investigated. Specifically, the study focuses on the effect
produced by the interference form factors between monopole
and quadrupole Coulomb terms. To illustrate the potential
magnitude of those effects, specific instances with different
ground-state spins and parities and with different types of
deformation are presented. Namely 21Ne, 63Cu, 191Ir, 27Al,
55Mn, 105Pd, 167Er, 177Hf, 181Ta, and 179Hf. The nuclear struc-
ture is described within a deformed self-consistent Skyrme
HF+BCS calculations, while the reaction mechanism is based
on the PWBA.
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FIG. 27. Same as in Fig. 21, but for 167Er.
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FIG. 28. Same as in Fig. 21, but for 177Hf.

The important point is that joint measurements of both
the unpolarized and the polarized cross sections allow one
to obtain a model-independent signature of the oblate or pro-
late deformation character of the nucleus. This information is
based on the simple observation of whether the cross section is
increased or decreased by polarizing the target nucleus. The
magnitude of this deviation is related with the magnitude
of the quadrupole deformation in a model-dependent way.
Although the amplitude of this effect could depend on the
specific nuclear model considered, the constraints made in this
study do not change the conclusions concerning the feasibility
of getting observables that exhibit sensitivity to the C0/C2
interference and, therefore, to the sign of the axial deformation
in odd-A nuclei.
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FIG. 29. Same as in Fig. 21, but for 181Ta.
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FIG. 30. Same as in Fig. 21, but for 179Hf.

The nuclear spin in the electron scattering processes stud-
ied here determines the number of multipoles contributing to
the total form factor. While the primary focus of this paper
centers on the C0/C2 interference, a broader investigation
considering higher multipolarities allowed by the nuclear spin
may reveal additional interferences. Furthermore, the nuclear
spin also determines to a large extent the magnitudes of the
geometrical factors, dictating the weights of the interference
contributions to the total form factor. Conversely, the parity of
the nuclear state has no significant influence in this context.
The study encompasses nuclei with different atomic and mass
numbers. These numbers play an important role in determin-
ing the nuclear size and, specifically, the radius of the nuclear
charge. The latter exhibits a direct correlation with the first
minimum of the cross section, which undergoes compression
with increasing radius. Interestingly, this investigation reveals
that for the heavier nuclei under consideration, the quadrupole
parameters β2 and the density profiles exhibit remarkable
similarity, a consequence of the large core involved. This also
results in similar outcomes for the C0/C2 interference. In
contrast, lighter nuclei manifest a larger diversity of shapes,
leading to a broader range of density profiles and form fac-
tors that depend more on the specific characteristics of each
individual example considered. Future research should ad-
dress other important aspects, including the investigation of
inelastic reactions, the opportunities of polarized electrons,
and the impact of the electron Coulomb distortion on the cross
section.
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