
PHYSICAL REVIEW C 109, 024311 (2024)
Editors’ Suggestion

Eigenvector continuation for the pairing Hamiltonian
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The development of emulators for the evaluation of many-body observables has gained increasing attention
over the last years. In particular the framework of eigenvector continuation (EC) has been identified as a
powerful tool when the Hamiltonian admits for a parametric dependence. By training the emulator on a set
of training data the many-body solution for arbitrary parameter values can be robustly predicted in many cases.
Furthermore, it can be used to resum perturbative expansions that otherwise diverge. In this work, we apply EC
to the pairing Hamiltonian and show that EC-resummed perturbation theory is in qualitative agreement with the
exact solution and that EC-based emulators robustly predict the ground-state energy once the training data are
chosen appropriately. In particular the phase transition from the normal to the superfluid regime is quantitatively
predicted using a very low number of training points.
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I. INTRODUCTION

In ab initio nuclear structure calculations new chal-
lenges emerged over the last years. The combination of
basis-expansion methods with chiral effective field theory in-
teractions has enabled routine computations of medium-mass
nuclei [1,2]. This has led to the quest to develop accu-
rate interactions for medium-mass nuclei, e.g., by including
medium-mass observables in the construction of new chiral
interactions [3,4], and to explore uncertainty estimates from
the effective field theory truncation and uncertainties in the
low-energy couplings [5]. However, both of these aspects
require repeated solutions of the many-body problems when
varying the underlying interactions. To cope with these sig-
nificant computational demands, emulators have emerged as
powerful tools to efficiently lower the computational burden
of performing explicit calculations by mimicking the true
many-body solution.

For this purpose reduced basis methods (RBM) and more
general model order reduction (MOR) techniques have been
widely applied in the natural sciences to reduce the compu-
tational cost by projecting the problem onto an appropriately
chosen subspace [6–11]. In nuclear theory, RBMs have been
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applied to density functional theory [12,13], to the solution
of the Schrödinger equation for single-particle Hamiltonians
[14], and to scattering problems. For an overview over dif-
ferent MOR methods see Refs. [15,16]. Eventually, MOR
methods also enable uncertainty quantifications. A particular
variant of RBMs is the so-called eigenvector continuation
(EC) approach. The EC framework has emerged as a particu-
larly versatile method to emulate solutions of the many-body
problem governed by parametric dependencies [17]. Over the
last years, the EC method has been applied to various few- and
many-body problems, e.g., for uncertainty quantification in
few-nucleon systems [18] and medium-mass nuclei [19], for
scattering and reactions [20–23], for finite-volume extrapola-
tion [24] and nuclear matter computations [25]. Moreover, EC
has been used as a resummation tool for perturbative expan-
sions enabling a robust extraction of many-body observables
when the perturbation series diverges [26–28].

Practically, the emulator construction is based on the
solution of a generalized eigenvalue problem on a small sub-
space spanned by a set of nonorthogonal many-body states
defining the training vectors. From that training manifold,
high-dimensional parameter spaces can be exhausted at a
tractable computational cost. While in few-body applications
the training vectors are virtually exact, the development for
many-body calculations is accompanied by the introduction of
approximation schemes that facilitate the emulator construc-
tion. While various applications from exact training vectors
exist, the interplay of emulator quality and truncated training
vectors has not been studied in detail.

This work is dedicated to a detailed study of the exactly
solvable pairing Hamiltonian [29,30] that serves as a model
for nuclear superfluidity and is a common test ground for
novel many-body frameworks [31]. We will first establish
EC as a robust resummation tool for many-body perturbation
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theory (MBPT) even though the bare perturbative expansion
breaks down. In the second part of this work, we investigate
the accuracy of an EC-based emulator and its sensitivity to the
selected training points1 used in the construction. Recently,
the same system has been studied using RBMs built from
approximate density matrix renormalization group (DMRG)
wave functions [32].

II. EIGENVECTOR CONTINUATION

Eigenvector continuation provides a powerful framework
for the construction of emulators whenever the Hamiltonian
admits for a parametric dependence H (g1, . . . , gN ) with all
g ∈ R [17]. By training the EC emulator on a small set of
training points in the parameter space, it may robustly predict
many-body observables for different parameter values with-
out the need of performing explicit many-body simulations.
In nuclear structure applications such a tool is particularly
powerful, because the number of low-energy couplings in
chiral effective field theory interactions may be systematically
varied with an accurate emulator [19,25].

The construction of the EC emulator is based on the defi-
nition of a set of NEC training points Dtrain = {gi} that defines
a manifold of training vectors2

MEC(Dtrain) = {|�(gi )〉 : gi ∈ Dtrain}, (1)

where |�〉 denotes the many-body state of interest, e.g., the
ground state. Energies in the EC framework are evaluated at
the target coupling g◦ ∈ R by solving the generalized eigen-
value problem

H �x = EN�x, (2)

where the Hamiltonian and norm kernel are obtained for the
training vectors as

Hi j = 〈�(gi )|H (g◦)|�(g j )〉, (3a)

Ni j = 〈�(gi )|�(g j )〉. (3b)

Since the number of (nonorthogonal) training vectors
{|�(gi )〉} is much smaller than the size of the configuration ba-
sis in diagonalization approaches, the EC diagonalization is of
very limited cost. The solution of the generalized eigenvalue
problem admits for NEC solutions, so that the EC approach
provides also access to excited states belonging to the same
symmetry class, e.g., spin or parity. This was recently studied
for the case of the anharmonic oscillator [28]. Finally, we note
that the EC approach can be used for any other operator O
instead of H , thus enabling calculations of other observables
[18,19].

1Note that in the MOR literature, training points are often referred
to as snapshots.

2In our applications there is only a dependence on a single cou-
pling. However, the discussion straightforwardly generalizes to the
case of several couplings.

III. PAIRING HAMILTONIAN

In this work we study the pairing Hamiltonian

H (g) =
�∑
p

εp(c†
pcp + c†

p̄cp̄) − g
�∑
pq

c†
pc†

p̄cq̄cq, (4)

where p̄ denotes the time-reversed state of p, � denotes
the number of two-fold degenerate levels with single-particle
energies εp, and g the (real-valued) strength of the two-
body interaction. The single-particle spectrum is taken to
be equidistantly spaced εp = p�ε, with a level spacing of
�ε = 1 (in natural units). The pairing Hamiltonian has an
exact Richardson solution, which is accessible for arbitrary
coupling values and system size [29,30]. The Richardson
solution is obtained by solving a set of nonlinear coupled
equations for the pair energies Eα , where α = 1, . . . , Nocc

with the number of occupied pair states Nocc,

1 − g
2�∑
k=1

1

2εk − Eα

− 2g
Nocc∑

β �=α=1

1

Eα − Eβ

= 0. (5)

Here, the first sum runs over all possible single-particle states,
while the second sum is restricted to occupied pair states. In
the following, we will study the system at half-filling, i.e., half
of the shells are doubly occupied yielding a pair number of
Npair = �/2. The final ground-state energy is given by

∑
α Eα .

In our numerical benchmark we employ the formalism de-
scribed in Ref. [33] to solve Eq. (5).

It is well known that the pairing Hamiltonian undergoes
a transition from a normal to a superfluid phase once a
critical (positive) coupling value gcrit is exceeded. For g >

gcrit the system is no longer well approximated by low-rank
particle-hole excitations but dominated by the formation of
Cooper pairs resembling the superfluid character of the sys-
tem. This transition can be qualitatively captured by using
Bardeen-Cooper-Schrieffer (BCS) mean-field theory, where
U (1) particle-number symmetry is explicitly broken at the
mean-field level to account for the pairing correlations in the
system [34,35]. Therefore, the corresponding BCS vacuum
|�BCS〉 is not an eigenstate of the particle-number operator
A, but only restricted to have correct average particle number,
i.e., Nocc = 〈�BCS|A|�BCS〉. The emergence of pairing corre-
lations is further accompanied by a breakdown of standard
symmetry-conserving correlation expansions and requires the
use of quasiparticle reformulations to account for the collec-
tive effects induced by the static correlations [36–38].

In our benchmarks we employ Rayleigh-Schrödinger per-
turbation theory using the partitioning

H (λ) = H0 + λH1, (6)

where H0 is taken to be the (diagonal) one-body part of the
pairing Hamiltonian. The ground-state wave function is ex-
panded in the series

|�〉 =
∞∑

p=0

λp |�(p)〉, (7)

where |�(p)〉 denotes the pth order state correction [39].
Corrections to the ground-state energy are calculated via
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E (p) = 〈�(0)|H1|�(p−1)〉. The reference state |�(0)〉 is given
by the Hartree-Fock (HF) state |�HF〉 [40,41].

Moreover, we employ the n-particle–n-hole pair configu-
ration interaction (pCI-npnh) framework, where the A-body
configuration space is spanned by all pair excitations up to
n-particles–n-holes from of the HF state |�HF〉. The low-
lying spectrum is obtained from diagonalizing the many-body
Hamiltonian using Lanczos techniques. While this does not
provide a scalable solution for large systems, it is numerically
tractable for � � 20. In the case the maximum number of
n-particle-n-hole excitations is given by n = 2Npair, the exact
result (full CI, FCI) is recovered.

IV. EIGENVECTOR CONTINUATION AS A
RESUMMATION TOOL

Eigenvector continuation can be used to resum the pertur-
bation series by performing the EC in the space of MBPT state
corrections [26,27]. The Hamiltonian and norm matrices that
enter Eq. (2) are then given by

Hpq = 〈�(p)|H |�(q)〉, (8a)

Npq = 〈�(p)|�(q)〉, (8b)

where Np0 = δp0 by intermediate normalization. In this work,
MBPT state corrections up to first order are included;
therefore we denote this approach as EC-PT(1). Explicit ex-
pressions for the matrix elements in Eqs. (8a) and (8b) are
evaluated by virtue of Wick’s theorem [42]. The simplest
expression involves the second-order energy correction

H10 = E (2) = 1

8

∑
ai

g2

εa
i

, (9)

where εa
i = fi − fa is a shorthand notation for the energy

denominators (with i, j referring to occupied hole states and
a, b to particle states) and fp = εp − gnp denotes the normal-
ordered one-body part. The overlap is given by

N11 = 1

16

∑
ai

g2

(
εa

i

)2 . (10)

The most complicated expression corresponds to the matrix
element between two first-order state corrections and consists
of three contributions

H [0B]
11 = EHF N11, (11a)

H [1B]
11 = −1

8

∑
ai

g2

εa
i

, (11b)

H [2B]
11 = − 1

32

∑
ai

g3

εa
i

⎛
⎝∑

b

1

εb
i

+
∑

j

1

εa
j

⎞
⎠, (11c)

where the superscript indicates from which zero-, one-, or
two-body part of the Hamiltonian the contribution originates.
For the next order EC-PT(2), second-order state corrections
that contain 4p4h-excited components are needed.

Figure 1 shows a comparison of different many-body meth-
ods for the solution of the pairing Hamiltonian. In the normal
phase (g < gcrit) the HF and BCS solution coincide, since

FIG. 1. Comparison of different basis-expansion methods (for
details see text) for the ground-state energy of the pairing Hamil-
tonian as a function of the coupling g for � = 10 at half-filling
Nocc = 5. The critical coupling gcrit = 0.34 is indicated by the vertical
line.

the coupling strength is too weak to support a superfluid
ground state [35,43]. For g > gcrit the BCS state explores the
enlarged variational space, yielding a lower energy than the
symmetry-conserving HF solution. Both HF/BCS mean-field
approaches lack all dynamical particle-hole correlations lead-
ing to the deviations from the exact solution with increasing
coupling.

As shown by the second- and third-order MBPT results,
the perturbative expansion is only reliable for moderate cou-
plings and fails for larger values. However, the EC-PT(1)
results are in good agreement with the exact solution for a
wide range of couplings. The EC framework thus effectively
resums particle-hole correlations emerging from leading order
perturbative corrections to the ground state. In addition, EC-
PT(1) and pCI-2p2h give very similar results for all coupling
values. This is to be expected since both frameworks probe
up to two-particle-two-hole correlations in the configuration
space, either by a large-scale expansion in Slater determinants
in pCI-2p2h or by a small-scale expansion of multireference
states arising from the perturbative state amplitudes in EC-
PT(1). Here, we emphasize that in this work the evaluation of
the EC kernel is performed based on a diagrammatic approach
and is hence only of polynomially scaling complexity. This
makes it possible to compute EC-PT(1) corrections for arbi-
trary system sizes. In contrast, in Ref. [26] the perturbative
corrections at different orders were computed recursively us-
ing an exponentially large configuration basis, which restricts
this approach to limited basis spaces � � 20.

As shown in Fig. 2, the EC-PT(1) results perform at a sim-
ilar level as state-of-the-art nonperturbative coupled-cluster
doubles (CCD) [44,45] and in-medium similarity renormal-
ization group (IMSRG) [46,47] calculations when restricted to
the normal phase, which is relevant for ab initio calculations
of medium-mass nuclei. Still the CCD and IMSRG results are
consistently closer to the exact solution which we attribute
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FIG. 2. Relative error of the correlation energy compared to the
exact result of basis-expansion methods, including coupled-cluster
doubles (CCD) and in-medium similarity renormalization group
(IMSRG) calculations, in the normal regime (g < gcrit) for � = 10
at half-filling.

to a more elaborate resummation of higher-order effects that
are absent from the simpler EC-PT(1) estimate. Once further
corrections are included, e.g., using EC-PT(n � 2), the varia-
tional character of the EC ensures improvement of our results
towards the Richardson solution.

The failure of conventional basis-expansion approaches
can be understood in terms of the norm matrix shown in
Fig. 3 obtained by sampling n = 200 couplings from the in-
terval g ∈ [−2, 2] and evaluating the overlap of the resulting
ground-state eigenvectors. Matrix elements |Npq| ≈ 1 indicate
similar structures in the ground states, |�(gp)〉 and |�(gq)〉.
In the case where gp and gq belong to the same regime
(either normal or superfluid) the eigenvectors show strong

FIG. 3. Overlap between the exact ground states for the pair-
ing Hamiltonian sampled from 200 equidistant coupling values g ∈
[−2, 2] for � = 10 at half-filling Nocc = 5.

linear dependencies, thus, indicating similar correlations for
the two couplings. However, for gp < gcrit < gq the overlap
is significantly reduced yielding almost orthogonal eigenvec-
tors from the two regimes. As a consequence, one cannot
expect a Slater-determinant-based correlation expansion to
give accurate results in the superfluid regime [48]. This also
holds for non-perturbative expansions since the breakdown is
related to the use of an improper reference state and not a lack
of non-perturbative ladder-type resummations of particle-hole
correlations. Figure 3 also nicely illustrates the weak depen-
dence of the eigenstates on the parameters in each regime,
which is fundamental to the EC.

V. EIGENVECTOR CONTINUATION AS AN
EMULATION TOOL

Next, we use EC to construct a many-body emulator from a
selected set of training data. Since the ground-state dynamics
in the normal and superfluid regimes are fundamentally differ-
ent, we will investigate the performance of the EC approach as
a function of the training data that enter the definition of the
EC manifold in Eq. (1). Therefore, three different scenarios
characterized by different training sets will be investigated:

(i) a normal training set D<
train, where all training points

are in the normal regime,
(ii) a superfluid training set D>

train, where all training
points are in the superfluid regime,

(iii) a mixed set Dmixed
train , where training points from both

regimes are present.

Naturally, this gives rise to three emulator types:
EC(D<

train), EC(D>
train), and EC(Dmixed

train ), that have been trained
using the corresponding regimes.

Figure 4 shows the EC emulator predictions for the ground-
state energy for the three different training sets as well as the
deviation from the exact result. By construction, the error at
the training points vanishes because the exact many-body state
was used as training vector. We observe that the EC(D<

train)
emulator (dashed line) performs well in the normal regime
while incorrectly predicting the superfluid regime. Once the
critical coupling is approached the error rapidly increases and
no quantitative prediction is possible. Similarly, EC(D>

train)
(dotted line) accurately predicts the superfluid regime while
being incapable of capturing the correct trend in the normal
regime. These limitations are overcome by employing a mixed
emulator EC(Dmixed

train ): now the normal and superfluid regimes
are correctly described and only small deviations appear in
between training points.

We conclude that the inclusion of both dynamical particle-
hole correlations and static pairing correlations are crucial in
the training stage since otherwise the EC manifold probes an
insufficient subspace for capturing the Hamiltonian’s dynam-
ics at arbitrary coupling values. These findings are consistent
with the form of the norm matrix (see Fig 3): while in the
same regime two vectors have a large overlap, there is nearly
no overlap between the normal and the superfluid regime.
Therefore, it is not surprising that only selections of training
points from both regimes can approximate the solution across
both ranges of couplings. Finally, we compare the EC as an
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FIG. 4. EC results for the ground-state energy (top panel) of the
pairing Hamiltonian for three different training sets (dashed, dash-
dotted, and dotted lines with three training points indicated in the
legend and by the crosses) in comparison to the exact and EC-PT(1)
results. The bottom panel shows the deviation from the exact result.
Results are given for � = 10 at half-filling Nocc = 5, and gcrit = 0.34
is indicated by the vertical line.

emulator to the EC-PT(1) prediction. Here large errors have to
be expected, since only 2p2h-excitations span the EC-PT(1)
manifold, lacking important higher-body excitations in the
normal phase. The error can be systematically improved by in-
cluding higher-order state corrections in EC-PT(n). However,
the breakdown beyond the critical coupling is associated to the
insufficient HF reference state in the presence of superfluid
pairing correlations.

Finally, we comment on the impact of enlarging the train-
ing set. While for two training points it was not possible
to approximate the solution qualitatively over the considered
coupling range, three training points were sufficient to ap-
proximate the solution. Once a mixed training set is chosen,
a further increase in the number of training vectors does
not significantly increase the quality of the emulator. This is
consistent with the observation from the norm kernel, which
reveals strong linear dependencies among vectors from the
same regime. Therefore, adding (almost) co-linear vectors
will not further improve the emulated results. The location
of training points seems to be more important than the total
number of training points. Once the various physical regimes
are covered in the training stage, the emulator quantitatively
predicts the exact solution very well. Our general findings
agree with the results from Ref. [32] that employ an iterative
update of the RBM manifold.

FIG. 5. Difference between the EC and pCI-npnh ground-state
energies (dashed lines in the lower panel) for different truncations
(top panel) of the pairing Hamiltonian as well as their deviation
from the exact result (bottom panel). The EC is based on the case
of the mixed training points gi ∈ {−0.9, 0.3, 0.9}. Results are given
for � = 10 at half-filling Nocc = 5.

VI. TRUNCATION OF THE TRAINING VECTORS

The availability of the exact many-body solution for a
given parameter set is almost never fulfilled in realistic appli-
cations and hence the design of emulators naturally depends
on the many-body approximations. Therefore, the perfor-
mance of EC emulators has to be validated when approximate
training vectors are employed. To this end, we employ the
n-particle-n-hole pair configuration interaction (pCI-npnh) to
obtain training data at the 2p2h and 4p4h truncation. In gen-
eral, the quality of truncated EC emulators is limited by the
quality of the many-body approximations used for the training
vectors. Therefore, improvements of the truncated EC results
against the exact many-body solution need to be considered
with care.

In Fig. 5 we show the EC ground-state energies for 2p2h-
truncated and 4p4h-truncated training data and for the exact
(10p10h or FCI) training data for the case of the mixed
training set. The training-point truncations in between are
not shown, as they differ little from the FCI case. In the top
panel of Fig. 5, we observe that the difference between the
EC and pCI-npnh energies increases as the quality of the
many-body approximation improves. Comparing truncated
EC and pCI-npnh results against the exact results shows at
small couplings a probably accidental improvement at lower
particle-hole truncations, but overall the better the many-body
approximation the better is the truncated EC and pCI-npnh.
This is especially pronounced in the superfluid regime. To
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FIG. 6. Same as Fig. 5 but for the superfluid training points gi ∈
{0.5, 0.7, 0.9}.

explore this further, we consider in Fig. 6 the superfluid
training set. Also for this training set, the difference between
the EC and pCI-npnh energies is smallest at the 2p2h level.
Moreover, for this case of the superfluid training set, the EC
at the 4p4h and FCI level does not reproduce the CI (or the
exact) solution well when extrapolated to the normal regime.

As can be seen both in the lower panels of Figs. 5 and
6, EC better emulates lower CI truncations. This is not sur-
prising, since the size for the EC subspace is three for all
three training point truncations. However, while for pCI-2p2h
the three-dimensional subspace is used to approximate a 26-
dimensional subspace, for full CI it tries to emulate the full
252-dimensional space, which is much larger. This makes
emulating full CI a more complex problem. Therefore, while
the more accurate full CI approximation gives the better ap-
proximation close to the training points, further away from the
training points, it is more difficult for EC to emulate the larger
model space.

VII. SUMMARY AND CONCLUSIONS

In this article we applied the EC framework to the pair-
ing Hamiltonian. In the first part we used EC to resum the

perturbative expansion based on a HF state. In the second
part, we designed an EC emulator and tested its sensitivity on
the location of training data and many-body approximations
for the training vectors. The EC-resummed perturbative re-
sults were in qualitative agreement with the exact Richardson
solution even though the underlying perturbative corrections
indicated a divergent perturbative expansion. The employed
EC-PT(1)-truncation gave similar results as the CI results
truncated at 2p2h-level. We expect that our EC-PT(1) results
can be efficiently improved by designing a quasiparticle ex-
tension built on a BCS reference state [41,48].

For the emulator design, the proper choice of training data
was crucial. If the training set was entirely located in the
normal (superfluid) regime the predictions for the superfluid
(normal) regime gave rise to large errors. By incorporating
training points from both regimes (even just one from the
respective other regime) a quantitative prediction of the phase
transition was achieved and only moderate errors were en-
countered. While these errors can be systematically reduced
by including training points close to the critical value, the
specific uncertainties will generally depend on details like
level spacing and system size. In addition, we explore the
CI truncation of the training vectors. This showed that, for a
good choice of training points, the higher the truncation of the
training vectors the better the EC approximation. Surprisingly,
further away from the training data, there is a tendency that
lower truncated training points give better results. This could
be traced to the EC working better for lower truncated CI in
these cases.

Future studies will focus on the power of EC emulators
for performing large-scale sensitivity studies with respect to
variations of the low-energy couplings in chiral Hamiltonians.
While pioneering work has already been performed [19,25],
more work is needed to develop emulators for other ab initio
methods and to explore the quality of the emulator in the pres-
ence of many-body approximations. Ultimately, EC provides
a powerful framework for global statistical analyses that oth-
erwise remain intractable when exhausting high-dimensional
parameter spaces through explicit many-body calculations
from first principles.
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