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Background: Nuclear masses are of fundamental importance in both nuclear physics and astrophysics, and the
masses for most neutron-rich exotic nuclei are still beyond the experimental capability. The relativistic continuum
Hartree-Bogoliubov (RCHB) theory has achieved great successes in the studies of both stable and exotic nuclei.
The mass table based on the RCHB theory has been constructed with the assumption of spherical symmetry [Xia
et al., At. Data Nucl. Data Tables 121, 1 (2018)]. The upgraded version including deformation effects based on
the deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc) is under construction, and the part
for even-even nuclei has been finished [Zhang et al., At. Data Nucl. Data Tables 144, 101488 (2022)]. The kernel
ridge regression (KRR) approach is a useful machine-learning approach in refining nuclear mass prediction, and
is found to be reliable in avoiding the risk of worsening predictions at large extrapolation distance [Wu and Zhao,
Phys. Rev. C 101, 051301(R) (2020)].
Purpose: The aim of this work is to combine the RCHB mass model and the KRR approach to construct a
high-precision and reliable nuclear mass model describing both stable and weakly bound neutron-rich exotic
nuclei. Another purpose is to utilize the masses of even-even nuclei from the DRHBc theory to validate the
performance of the KRR approach.
Method: The KRR approach is employed to refine the RCHB mass model by learning and representing the mass
residual of the RCHB mass model with the experimental data. The leave-one-out cross-validation is applied to
determine the hyperparameters in the KRR approach. The DRHBc mass model for even-even nuclei is employed
to help to analyze the physical effects included in the KRR corrections and examine the KRR extrapolations.
Results: The refined RCHB mass model with KRR corrections can achieve an accuracy of root-mean-square
deviation 385 keV from the experimental masses. The major contributions contained in the KRR corrections are
found to be the deformation effects. The KRR corrections also contain some residual deformation effects and
some other effects beyond the scope of the DRHBc theory. The extrapolation of the KRR approach in refining
the RCHB predictions is found to be very reliable.
Conclusions: A mass model benefiting from the RCHB model with continuum effects properly treated and
the KRR approach is constructed. This model is demonstrated to be accurate in reproducing the masses of
experimentally known nuclei and reliable in extrapolating to the experimentally unknown neutron-rich regions.
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I. INTRODUCTION

Nuclear masses are important for both nuclear physics [1]
and astrophysics [2]. They reflect many underlying physical
effects of nuclear quantum many-body systems, and can be
used to extract nuclear structure information, e.g., nuclear
deformation [3], shell effects [4], and nuclear force [5]. They
also determine the reaction energies for all nuclear reactions,
which are important in understanding the energy production
in stars [6] and the study of nucleosynthesis [7–9]. Exper-
imentally, about 2500 nuclear masses have been measured
so far [10]. Nevertheless, there are still a large number of
nuclei that cannot be accessed experimentally even in the
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foreseeable future. Theoretically, many models have been
applied to predict nuclear masses, including macroscopic
models [11], macroscopic-microscopic models [12–15], and
microscopic models [16–22]. The macroscopic-microscopic
models have achieved good accuracy in reproducing the
data of experimentally known nuclei, while the microscopic
models are usually believed to have a better reliability of
extrapolation [23,24].

Many efforts have been made to predict nuclear masses
with microscopic models, such as nonrelativistic and rela-
tivistic density functional theories. On the nonrelativistic side,
several nuclear mass tables have been constructed based on
Hartree-Fock-Bogoliubov calculations with Skyrme or Gogny
functionals [17,18,25]. The relativistic theory, i.e., covariant
density functional theory (CDFT), has gained wide attention
in recent decades for many attractive advantages, such as the
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automatic inclusion of the nucleonic spin degree of freedom
and the spin-orbital interaction [26], the explanation of the
pseudospin symmetry in nucleon spectrum [27–31] and the
spin symmetry in antinucleon spectrum [31–33], and the nat-
ural inclusion of the nuclear magnetism [34]. The CDFT has
proven to be a powerful tool to describe a variety of nuclear
phenomena [35–43].

For exotic nuclei which are far away from stability val-
ley and weakly bound, the Fermi energy is very close to
the continuum threshold. The pairing interaction can scat-
ter nucleons from bound states to the resonant ones in the
continuum, and the density could become more diffuse due
to this coupling to the continuum. Therefore, pairing cor-
relations and continuum effects are important for not only
the description of exotic nuclei but also the prediction of
drip-line locations. This is important for the studies of r
process in extremely high neutron density environment, e.g.,
the neutron star mergers. Based on the CDFT, the relativis-
tic continuum Hartree-Bogoliubov (RCHB) theory, with the
pairing correlations and continuum effects properly treated,
has been developed [44,45]. The RCHB theory has achieved
great successes in the studies of both stable and exotic nu-
clei [20,46–56]. Based on the RCHB theory and the density
functional PC-PK1 [57], the first nuclear mass table including
continuum effects has been constructed and the importance of
continuum effects on the limits of the nuclear landscape has
been discussed [20]. However, limited to the assumption of
spherical symmetry, the root mean square (rms) deviation of
the RCHB mass table with respect to available data is 7.96
MeV. In order to improve the description of nuclear masses
starting from the RCHB model, on the one hand, construc-
tion of an upgraded version of the mass table including the
deformation and continuum effects simultaneously by using
the deformed relativistic Hartree-Bogoliubov theory in con-
tinuum (DRHBc) [58,59] is in progress [60–62], and the part
for even-even nuclei has been finished [22]. On the other hand,
one may improve the predictions of the RCHB mass model
with the help of machine-learning approaches.

Recently, machine-learning approaches have been widely
employed in nuclear physics [63–66], including the successful
and wide applications in refining the predictions of nuclear
masses [67–71]. Among the various machine-learning appli-
cations in nuclear masses, the kernel ridge regression (KRR)
approach is found to be a reliable approach in avoiding the risk
of worsening the predictions at large extrapolation [67,72–
75], and has been examined to have the ability of assessing
known physical effects contained in the RCHB model [76].
This is important for the predictions of exotic nuclei far
away from the stability valley. Therefore, the KRR approach
is promising to improve the predictions of the RCHB mass
model.

In this work, the KRR approach and the RCHB mass model
are combined to construct a high-precision nuclear mass
table to reliably describe the exotic nuclei far away from the
stability valley. The KRR corrections on the RCHB masses
are compared with the DRHBc corrections to analyze the
physical effects included in the KRR corrections. The KRR
extrapolations are examined by taking the DRHBc masses as

pseudoexperimental data beyond the experimentally known
region.

II. THEORETICAL FRAMEWORK

The KRR approach is employed to refine the RCHB model,
by learning and predicting the mass residuals of the RCHB
predictions with the experimental data [10]. The mass residual
of the nucleus (Zi, Ni ) is expressed as

MKRR
res (Zi, Ni ) =

m∑
j=1

K[(Zi, Ni ), (Zj, Nj )]α j, (1)

where m is the number of nuclei in the training set, α j are
weights to be determined, and K[(Zi, Ni ), (Zj, Nj )] is the
Gaussian kernel function taken as

K[(Zi, Ni ), (Zj, Nj )] = exp

[
− (Zi − Zj )2 + (Ni − Nj )2

2σ 2

]
.

(2)

The Gaussian kernel has been validated to have better per-
formance than other kernels, e.g., Laplacian, Matern, Cachy,
multiquadric ones, in the nuclear mass predictions [75]. The
weights α j are determined by minimizing the loss function
defined as

L(α) =
m∑

i=1

[
MKRR

res (Zi, Ni ) − MData
res (Zi, Ni )

]2 + λ||α||2, (3)

which yields

α = (K + λI)−1MData
res . (4)

The σ in kernel function (2) defines the length scale that the
kernel affects, and the length scales in the neutron and proton
directions are assumed to be the same, i.e., only one σ is
introduced in Eq. (2). The λ in loss function (3) determines
the regularization strength. Both σ and λ are hyperparameters
to be determined by validation procedure.

III. NUMERICAL DETAILS

In the training process of the KRR network, the experi-
mental masses are taken from the AME2020 [10], and the
theoretical masses are taken from the RCHB mass table [20].
Their overlap includes 2278 nuclei. The mass data from the
DRHBc mass table [22] are taken for comparison, which in-
cludes 2886 even-even nuclei, and the overlap with AME2020
includes 603 nuclei.

The hyperparameters (σ, λ) are determined by the leave-
one-out cross validation. With a given set of hyperparameters
(σ, λ), the refined RCHB results with the KRR correction for
each of the 2278 nuclei can be obtained with the KRR network
trained on all other 2277 nuclei and the rms deviation can be
calculated. The rms deviations obtained by the leave-one-out
cross-validation are illustrated in Fig. 1. One can see that the
hyperparameters can be well determined according to the min-
ima of the rms deviations. The resultant hyperparameters are
(σ = 3.1, λ = 0.005), and the corresponding rms deviation
is 385 keV. The obtained rms deviation 385 keV from the
leave-one-out cross-validation can be regarded as the accuracy
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FIG. 1. The rms deviations obtained by the leave-one-out cross-
validation with different hyperparameters.

of the KRR predictions on the known experimental data. With
the optimal hyperparameters, a refined RCHB mass table with
KRR corrections can be built.

IV. RESULTS AND DISCUSSION

The mass deviations of the RCHB [20], DRHBc [22], and
KRR predictions with the experimental data AME2020 are
presented in Fig. 2. As can be seen, the RCHB predictions
reproduce the masses of spherical nuclei around the magic
number very well, but the deviations are large when referring
to open-shell nuclei due to the assumed spherical symmetry
in the RCHB theory. Note that, the masses near N = 126
are overestimated by the RCHB calculation, showing that the
shell effects here are overestimated.

Both the inclusion of deformation effects in the DRHBc
calculations and the inclusion of KRR corrections can im-
prove the RCHB predictions. By comparing the DRHBc and
RCHB results, it is found that the deformation effects signif-
icantly improve the descriptions of masses, especially for the
nuclei with the neutron number between two magic numbers,

FIG. 2. The mass deviations of the RCHB [20], DRHBc [22],
and KRR predictions with the experimental data AME2020.

FIG. 3. (a) The full DRHBc corrections on the RCHB predic-
tions. (b) The DRHBc corrections from the deformation corrections
of the intrinsic mean field. (c) The DRHBc corrections from the
rotational corrections from the beyond mean-field effects.

and the rms deviation is reduced to 1.41 MeV. It is also noted
that for some nuclei the deviation from data is still consider-
able, such as the parabolic behavior near N = 60, which may
correspond to some residual deformation effects that are not
fully considered in the framework of DRHBc. The overesti-
mation near N = 126 still remains in the DRHBc predictions.
With the KRR corrections, it is found that the deviations
are generally small, and the rms deviation is remarkably
reduced to 0.38 MeV. The parabolic behavior near N = 60
and the overestimation around N = 126 are both eliminated
by the KRR corrections, showing that the KRR network
captures the correct physical effects for both of them. The
residual small deviations could come from the residuals of
some known effects, and may also come from several sophis-
ticated unknown physical effects.

Since both the DRHBc model with deformation effects and
the KRR model show significant improvement in comparison
with the RCHB model, it would be interesting to extract and
compare their corresponding corrections on nuclear masses.
The detailed illustrations are presented in Figs. 3 and 4. The
DRHBc correction here in Fig. 3(a) is defined as the deviation
of the DRHBc predictions with the RCHB ones. According
to the discussion in Ref. [22], the DRHBc corrections can
be divided into two parts, i.e., the deformation corrections
at the mean-field level, and the rotational corrections from
the beyond mean-field effects. As can be seen in Fig. 3, the
DRHBc corrections are around 7.51 MeV, which are con-
tributed by 6.05 MeV from the deformed intrinsic mean field
and 1.91 MeV from the beyond mean-field effects.

The KRR corrections on the RCHB results are shown in
Fig. 4(a), and the rms value is 8.33 MeV. By comparing the
results in Figs. 3(a) and 4(a), it is found that the patterns
of the corrections are similar, indicating that the KRR cor-
rections are mainly contributed by the deformation effects.
The remaining corrections after subtracting the intrinsic de-
formed mean-field corrections from DRHBc are shown in
Fig. 4(b), with the rms value 2.85 MeV. A part of the contribu-
tions to the corrections is certainly attributed to the rotational
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FIG. 4. (a) The KRR corrections on the RCHB predictions.
(b) The differences between the KRR corrections and the intrinsic
deformation effects in the DRHBc corrections. (c) The differences
between the KRR corrections and the full DRHBc corrections.

corrections from the beyond mean-field effects for the
deformed nuclei. The remaining corrections after further sub-
tracting the rotational corrections are shown in Fig. 4(c), with
the rms value 1.52 MeV. This part of corrections still exhibits
slightly parabolic behavior in the regions between closed
shells, which indicates that it still includes some deformation
effects which are not fully included in the DRHBc theory, e.g.,
triaxiality [77]. Certainly, the remaining corrections should
also include some other effects beyond the scope of the
DRHBc theory, such as the beyond-mean-field vibrational
corrections, the effects of the exchange interactions, etc.

The above discussions illustrate the accuracy of the refined
RCHB predictions with the KRR corrections in reproducing
experimentally known nuclear masses. It is also important
to examine the reliability of the KRR corrections when
extrapolated to the regions without mass data. According to
the analysis above, the KRR corrections and the DRHBc
corrections share large common contributions induced by the
deformation effects. As the DRHBc corrections with defor-
mation effects are the most important missing effects in the
RCHB calculation, the DRHBc predictions can be regarded
as good pseudoexperimental data. Therefore, we can take the
opportunity to examine the reliability of the KRR corrections
by comparing with the DRHBc predictions in the region with-
out experimental mass data.

The performance of the KRR extrapolation had been
examined to be reliable in the previous work [67], which
shows that the KRR approach can avoid the risk of wors-
ening the mass description for nuclei at large extrapolation
distances. This holds true for the present cases. Here, we
would take two typical isotopes, i.e., tin stands for spherical
isotopes and dysprosium stands for deformed isotopes, to val-
idate the extrapolation ability of the KRR corrections on the
RCHB predictions. The comparison of the RCHB, DRHBc,
and KRR mass predictions of tin and dysprosium isotopes
are presented in Fig. 5. The experimental data AME2020, and
the results from another machine-learning approach, the radial
basis function (RBF) [68,79], are presented for comparison.

FIG. 5. The RCHB, DRHBc, KRR, RBF predictions and the
experimental data for Sn (a) and Dy (b) isotopes. The values are
subtracted with the RCHB predictions. The purple band represents
the uncertainty of the nuclear masses of the DRHBc model, which
is evaluated by the rms deviation from the experimental data. The
vertical bar in each panel shows the last experimentally known
nucleus [78].

The setups of the learning procedure of the RBF approach,
including the training and validation, are the same as the KRR
approach adopted in the present work.

The tin isotopes with proton number Z = 50 are proton-
magic nuclei, and most of them are spherical or near spherical.
Therefore, the RCHB predictions are in good agreement with
the experimental data, and the DRHBc predictions are similar
with the RCHB ones. For the region with experimentally
known masses, i.e., N � 85, both the KRR and RBF ap-
proaches can well reproduce the experimental data and the
DRHBc predictions. However, when moving to the region
without experimental data, the RBF predictions go far away
from the RCHB predictions, while the KRR predictions still
match with the RCHB predictions. Since most tin isotopes are
expected to be spherical or near spherical, the KRR predic-
tions that match with the RCHB predictions are more reliable.
Another hint of the reliability of the KRR approach is that
the KRR predictions still lie in the uncertainty band of the
DRHBc predictions when moving to the region without exper-
imental data. On the contrary, the RBF predictions run away
from the uncertainty band when moving to the experimentally
unknown region, although the RBF approach has achieved
satisfactory accuracy in refining the RCHB mass predictions
for experimentally known region [79].

The dysprosium isotopes, with proton number Z = 66
lying between magic numbers 50 and 82, are mostly well
deformed. Therefore, the RCHB predictions significantly de-
viate from the experimental data. Note that the DRHBc
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predictions also deviate from the experimental data, but the
data still lie in the uncertainty band of the DRHBc predic-
tions. For the region with experimentally known masses, i.e.,
N � 101, both the KRR and RBF approaches can well re-
produce the experimental data and they all lie in the DRHBc
uncertainty band. For the region without experimental data,
the RBF predictions gradually deviate from the DRHBc un-
certainty band, while the KRR predictions still lie in the
DRHBc uncertainty band. Especially, when the extrapolations
move to the regions where the neutron number is close to
the magic number N = 126, the DRHBc predictions come
back to the spherical RCHB predictions. This behavior is well
reproduced only by the KRR approach. These examinations
manifest the reliability of the KRR extrapolation in refining
the RCHB predictions.

For both tin and dysprosium isotopes, one can see that the
KRR predictions would return to the RCHB predictions when
extrapolated to nuclei at large distances, e.g., 150Sn for tin
isotope and 186Dy for dysprosium isotopes. This is because of
the decay behavior of the Gaussian kernel with the increase of
extrapolation distance. This behavior limits the KRR approach
to extrapolate to large distances, but it also helps the KRR
approach avoid the risk of worsening the mass description
for nuclei at large extrapolation distances. The details of this
behavior and the limit of the extrapolation distance in the KRR
approach have been discussed in Ref. [67].

V. SUMMARY

In summary, the KRR approach and the RCHB mass
model are combined to construct a high-precision and reli-
able nuclear mass model that can describe both stable and
exotic nuclei. The refined RCHB predictions with KRR ap-
proach can achieve an accuracy of rms deviation 385 keV
with the experimental masses. The KRR corrections on the
RCHB masses are compared with the DRHBc corrections to

analyze the physical effects included in the KRR corrections.
It is found that the major contributions contained in the KRR
corrections are from the deformation effects at the mean-field
level, and the rotational corrections from the beyond mean-
field effects also play an important role. Detailed comparisons
also indicate that the KRR corrections contain some effects
beyond the scope of the DRHBc theory, such as the triaxial
deformation and vibrational corrections. The DRHBc predic-
tions are taken as the pseudoexperimental data to examine the
KRR extrapolations on nuclei without mass data. The exami-
nations manifest very well the reliability of the extrapolation
of the KRR approach in refining the RCHB predictions. For
perspective, the KRR approach with odd-even effects (KR-
Roe) can be employed to further refine the RCHB predictions.
This will be even more appealing in case the DRHBc mass
table for odd-mass and odd-odd nuclei are also finished, so
that we can use the data to analyze the odd-even effects in the
KRRoe correction and validate the extrapolation performance
for nuclei with different number parity of proton and neutron.
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