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g factor of chiral doublets with π(1h11/2)1 ⊗ ν(1h11/2)−1 configuration
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The g factor of chiral doublet bands has been extensively studied within the framework of the particle rotor
model. Specifically, these investigations have focused on systems characterized by the particle-hole configu-
ration π (1h11/2)1 ⊗ ν(1h11/2)−1. Comprehensive examinations have been carried out to assess the influence of
deformation parameters β and γ , the moment of inertia J0, the total spin I , and the angular momentum of the
collective rotor jR on the g factor. The findings reveal that the g factor exhibits insensitivity to variations in J0 and
β values, while its behavior is highly sensitive to changes in the γ parameter. Moreover, it has been observed
that the g factors and the g( jR ) plots associated with the doublet bands demonstrate remarkable similarity in
the static chirality region. However, noticeable differences arise in regions characterized by chiral vibration or
lacking chirality.
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I. INTRODUCTION

The phenomenon of nuclear chirality can manifest in
rapidly rotating nuclei characterized by a triaxially deformed
core and populated by high- j valence particles and holes [1].
In the body-fixed frame, the angular momenta of the valence
particles and holes align along the principal axes of the triaxial
core, with the short axis aligningwith their angular momenta
and the long axis aligned with the holes. Simultaneously, the
rotational core aligns its angular momentum along the inter-
mediate axis. Consequently, the left-handed and right-handed
orientations of these three angular momenta become degener-
ate, potentially leading to a spontaneous breaking of chiral
symmetry. However, in the laboratory frame, the require-
ments of time-reversal invariance and quantum-mechanical
tunneling allow for the restoration of chiral symmetry by
facilitating the exchange of total angular momentum between
the left-handed and right-handed configurations. As a result,
the expected observation involves chiral doublet bands, char-
acterized by nearly degenerate �I = 1 bands sharing the same
parity [1].

To date, the observation of more than 50 candidate nuclei
exhibiting chirality has been documented in mass regions
around A ≈ 80, 100, 130, and 190. The extensive research
conducted in this field can be explored further through recent
reviews such as Refs. [2–9], along with the corresponding data
tables provided in Ref. [10]. Notably, the predictions [11–17]
and confirmations [18–26] of multiple chiral doublet bands
within a single nucleus have significantly advanced the inves-
tigation of chirality in nuclear structure physics, sustaining the
ongoing interest and significance of this research area.

In addition to energy spectra, electromagnetic transition
strengths serve as important observables for the identification
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of nuclear chirality. In a model utilizing the configuration
π (1h11/2) ⊗ ν(1h11/2)−1 and a triaxial deformation parameter
of γ = 30◦, ideal nuclear chirality is determined based on cer-
tain criteria outlined in references such as Refs. [1,2,5,27–38].
Specifically, these criteria specify that there should be sim-
ilarities in the reduced magnetic dipole (M1) and electric
quadrupole (E2) transition strengths within a band (intraband)
as well as between different bands (interband). Such observa-
tions play a crucial role in the analysis and determination of
nuclear chirality.

The exploration of additional observables that serve to
characterize nuclear chirality remains a compelling research
question. Very recently, we have embarked on the novel in-
vestigation of the static (electric) quadrupole moment (SQM),
also known as the spectroscopic quadrupole moment, pertain-
ing to nuclear chiral doublet bands [39]. This examination
marks the first exploration of SQMs in the context of chi-
ral nuclear systems. The SQM is intricately linked to both
intrinsic deformation parameter (a static property) and the
orientation of the total angular momentum (a dynamic prop-
erty) of the nuclear system. The SQM serves as a fundamental
indicator of the charge distribution associated with rotational
motion, thereby aiding in the discernment of whether the
angular momenta have given rise to configurations associated
with chiral vibration or static chirality. Through the study
of SQMs, one gleans essential insights into the nature and
characteristics of these intriguing phenomena in nuclear struc-
ture. It is worth mentioning here that the SQM has also been
used to investigate the angular momentum coupling scheme
in wobbling motion in Refs. [40,41].

Furthermore, a significant breakthrough has been achieved
with the first-ever measurement of the g factor (gyromag-
netic ratio) in a chiral band, specifically for the bandhead of
128Cs [42,43]. The determination of the g factor provides vital
information concerning the relative orientation of the three
angular momentum vectors associated with the particle, the
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hole, and the nuclear core. It enables the distinction between
whether these three angular momentum vectors lie within a
plane (referred to as a planar configuration or chiral vibra-
tion) or span across three-dimensional space (known as an
aplanar configuration or static chirality). This pioneering mea-
surement of the g factor offers novel insights and prospects
for further understanding the intricate nature of nuclear chi-
rality. Note that the configuration of the bands in 128Cs is
π (1h11/2)1 ⊗ ν(1h11/2)−5 [42,43]. In the context of the neu-
tron component, the notation −5 signifies the presence of five
unoccupied states, or “holes,” within the h11/2 shell. Further,
four of these holes are paired in such a way that they occupy
the time and time-reversed states. Based on this configuration,
Ref. [42] focused on the study of the g factor for the bandhead
(I = 9h̄) of 128Cs and Ref. [42] focused further on the g factor
of the yrast band (9h̄ � I � 20h̄) in 128Cs.

In this work, my focus centers on investigating the g factors
for not only the yrast band but also the yrare band within
a simplified configuration, namely, π (1h11/2)1 ⊗ ν(1h11/2)−1.
By examining this specific configuration, I aim to unravel
the intricate interplay between the valence proton, the va-
lence neutron, and the core constituents and their respective
contributions to the g factor. Additionally, this simplified
configuration allows for a more focused exploration of the
underlying nuclear structure and its manifestation in the mag-
netic properties of the system.

My calculations in this study are based on the widely
utilized particle rotor model (PRM), which has demon-
strated significant success in describing chiral doublet bands,
as evidenced by previous works [1,7,27,36,38,44–49]. This
quantum-mechanical model integrates the collective rota-
tional motion with intrinsic single-particle motions, providing
a comprehensive description of the nuclear system within
the laboratory frame. The Hamiltonian of the PRM is diago-
nalized considering states with the total angular momentum
as a fundamental quantum number. Through the diagonal-
ization process, one can directly obtain the energy splitting
and quantum-mechanical tunneling probabilities between the
doublet bands. Importantly, the underlying inputs required by
the PRM are derived from the covariant density functional
theory [11,50], and for practical applications, please refer to
related references [18–20,23,34,42,48,51–53]. Consequently,
the PRM affords a straightforward approach to investigate the
g factor of chiral doublet bands with the given framework and
methodology.

II. THEORETICAL FRAMEWORK

A. Particle rotor model

In the PRM, the Hamiltonian describing a system consist-
ing of one proton and one neutron coupled to a triaxial rigid
rotor can be formulated as follows [1,7,27,36,38,44–49]:

ĤPRM = Ĥcoll + Ĥp + Ĥn, (1)

where Ĥcoll represents the Hamiltonian of the rigid rotor,

Ĥcoll =
3∑

k=1

ĵ2
Rk

2Jk
=

3∑
k=1

(Îk − ĵpk − ĵnk )2

2Jk
. (2)

In this formula, the index k = 1, 2, and 3 corresponds to
components aligned with the three principal axes within the
body-fixed frame. The Hamiltonian incorporates various op-
erators: ĵRk and Îk signify the angular momentum operators of
the collective rotor and the total nucleus, respectively, while
ĵp(n)k represents the angular momentum operator of the va-
lence proton (neutron). The parameters Jk correspond to the
three principal moments of inertia characterizing the system.

The Hamiltonians Ĥp and Ĥn are employed to describe the
behavior of a single proton and neutron, respectively, situated
outside the collective rotor. For a nucleon in a j-shell orbital,
Ĥp(n) is given by

Ĥp(n) = ±C

2

{
cos γ

[
ĵ2
3 − j( j + 1)

3

]
+ sin γ

2
√

3
( ĵ2

+ + ĵ2
−)

}
,

(3)

where the sign ± refers to a particle or hole and γ is the
triaxial deformation parameter. The coupling parameter C
exhibits a proportionality relationship with the quadrupole
deformation parameter β associated with the collective rotor.
This implies that changes in β directly influence the magni-
tude of C, establishing a connection between the structural
deformations of the rotor and the strength of the coupling
within the system.

B. Weak-coupling basis

The PRM Hamiltonian presented in Eq. (1) can be effec-
tively solved through diagonalization within the framework
of the weak-coupling basis [38], which is a product of the
states of proton | jp〉, neutron | jn〉, and core | jR〉, respectively.
The three angular momenta are coupled to the total angular
momentum as follows: j p and jn are coupled to a vector j pn =
j p + jn which, in turn, is coupled with jR to I = j pn + jR. In
detail,

|( jp jn) jpn jR; IM〉
=

∑
mp,mn,mpn,mR

〈 jpmp jnmn| jpnmpn〉

× 〈 jpnmpn jRmR|IM〉| jpmp〉| jnmn〉| jRmR〉, (4)

where first the coupling of j p and jn to j pn is performed and
after that j pn and the rotor quantum number jR are coupled to
the total angular momentum I. In the above expression, mR,
mpn, and mp(n) are the projection quantum numbers of jR, j pn,
and j p(n) on the z axis in the laboratory frame, respectively.
Obviously, the appearance of Clebsch-Gordan coefficients
requires M = mpn + mR = mp + mn + mR. The value of jpn

is in the range | jp − jn| � jpn � jp + jn. Accordingly, for a
given jpn, the value of jR must satisfy the triangular condition
|I − jpn| � jR � I + jpn of the angular momentum coupling.
There are several possible jpn quantum numbers, indicating
that the total spin state |IM〉 may be formed in several ways,
here called coupling schemes. A single coupling scheme given
by Eq. (4) defines a unique set of expected mutual angles
between each pair of the angular momentum vectors.

In general, the state with definite spin |IM〉 is a superposi-
tion of many coupling schemes (only the angular momentum
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quantum numbers are exposed):

|IM〉 =
∑

jp, jn, jpn, jR

cI jp jn jpn jR |( jp jn) jpn jR; IM〉, (5)

with the superposition coefficients cI ( jp, jn, jpn, jR) obtained
by diagonalizing the Hamiltonian ĤPRM (1).

C. g factor

The g factor of the studied system is defined in terms of the
magnetic moment. This factor captures the ratio between the
magnetic moment and the angular momentum of the system,
shedding light on the intrinsic magnetic properties and the
behavior of the nuclear system under external magnetic fields.
By investigating and analyzing the g factor, one can gain
valuable insights into the underlying spin dynamics and the
coupling between the angular momentum and the magnetic
moment within the system. The magnetic moment is defined
as the expectation value of the z component of the magnetic
moment operator μ̂ in the state |II〉 in which the z compo-
nent of the angular momentum M takes its maximal value as
M = I ,

μ(I ) = g(I )I = 〈II|gIz|II〉
= 〈II|gp jpz + gn jnz + gR jRz|II〉

= 〈II|gp j p · I + gn jn · I + gR jR · I|II〉
I (I + 1)

〈II|Iz|II〉. (6)

In the above derivation, I have used the projection theorem,
also known as the Landé formula. Further using the following
relations

I = j p + jn + jR, (7)

〈I2〉 = I (I + 1), (8)〈
j2

p(n)

〉 = jp(n)( jp(n) + 1), (9)

one gets

g(I ) = 1

〈I2〉 〈gp j p · I + gn jn · I + gR jR · I〉

= gR + 1

〈I2〉 〈(gp − gR) j p · I + (gn − gR) jn · I〉

= gR + g(p) + g(n)

= gchiral − 1

〈I2〉 (gp〈 jn · jR〉 + gn〈 j p · jR〉+gR〈 j p · jn〉).

(10)

In the aforementioned analysis, I incorporate the individual
contributions to the g factors originating from the proton and
neutron constituents:

g(p) = (gp − gR)

√
jp( jp + 1)

I (I + 1)
cos θpI , (11)

g(n) = (gn − gR)

√
jn( jn + 1)

I (I + 1)
cos θnI , (12)

which are determined by the effective angles between the
proton (neutron) and the total angular momenta θpI (θnI ). By
considering these distinct components, I aim to provide a
comprehensive understanding of the overall g-factor behavior
within the system, taking into account the specific effects and
interactions of both valence protons and valence neutrons.

In addition, I introduce the g factor in the limit of the ideal
chiral geometry with the proton, neutron, and rotor angular
momentum vectors being mutually perpendicular j p ⊥ jn ⊥
jR,

gchiral = 1

2

[
(gp + gn + gR) + (gp − gn − gR)

〈
j2

p

〉
〈I2〉

+ (gn − gp − gR)

〈
j2
n

〉
〈I2〉 + (gR − gp − gn)

〈
j2
R

〉
〈I2〉

]
.

(13)

This enables a more refined examination of the g-factor
phenomenon and facilitates a deeper exploration of the un-
derlying physical mechanisms at play.

For the total spin state |IM〉 derived from a single coupling
scheme within the weak-coupling basis (4), it is possible
to analytically calculate its g factor by employing angular
momentum algebra. The matrix elements of the squares and
scalar products appearing in Eq. (10) for this particular single
coupling scheme can be expressed as follows [43]:

〈( j′p j′n) j′pn j′R; IM| j2
p|( jp jn) jpn jR; IM〉 = δ j′p jpδ j′n jnδ j′R jRδ j′pn jpn jp( jp + 1), (14)

〈( j′p j′n) j′pn j′R; IM| j2
n|( jp jn) jpn jR; IM〉 = δ j′p jpδ j′n jnδ j′R jRδ j′pn jpn jn( jn + 1), (15)

〈( j′p j′n) j′pn j′R; IM| j2
R|( jp jn) jpn jR; IM〉 = δ j′p jpδ j′n jnδ j′R jRδ j′pn jpn jR( jR + 1), (16)

〈( j′p j′n) j′pn j′R; IM| j p · jn|( jp jn) jpn jR; IM〉 = δ j′p jpδ j′n jnδ j′R jRδ j′pn jpn (−1) jp+ jn+ jpn

× √
jp( jp + 1)(2 jp + 1)

√
jn( jn + 1)(2 jn + 1)

{
jp jn jpn

jn jp 1

}
, (17)

〈( j′p j′n) j′pn j′R; IM| j p · jR|( jp jn) jpn jR; IM〉 = δ j′p jpδ j′n jnδ j′R jR (−1) jR+ jp+ jn+I+1
√

(2 jpn + 1)(2 j′pn + 1)
√

jp( jp + 1)(2 jp + 1)

×
√

jR( jR + 1)(2 jR + 1)

{
jp jpn jn
j′pn jp 1

}{
jpn jR I

jR j′pn 1

}
, (18)
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〈( j′p j′n) j′pn j′R; IM| jn · jR|( jp jn) jpn jR; IM〉 = δ j′p jpδ j′n jnδ j′R jR (−1) jR+ jp+ jn+I+1+ jpn+ j′pn

√
(2 jpn + 1)(2 j′pn + 1)

√
jn( jn + 1)(2 jn + 1)

×
√

jR( jR + 1)(2 jR + 1)

{
jn jpn jp

j′pn jn 1

}{
jpn jR I
jR j′pn 1

}
, (19)

where nonzero values of the six- j symbols give all possible
coupling schemes. These analytical expressions enable the
determination of the g factor for the given single coupling
scheme, allowing for a precise quantitative evaluation of the
magnetic properties associated with the total spin state |IM〉.
One can calculate the set of the g-factor values correspond-
ing to possible coupling schemes by substituting the matrix
elements (14)–(19) together with the values of gp, gn, and gR

into Eq. (10).
It is important to note that the matrix elements (14)–(19)

are valid only when j′R = jR. This condition implies that the g
factor can be decomposed into a summation of contributions
from different jR values. In other words, the g factor can be
expressed as

g(I ) =
∑

jR

g( jR). (20)

This decomposition allows for a detailed analysis and under-
standing of the individual contributions of different jR values
to the overall g factor. By considering these contributions
separately, one can gain insights into the specific effects and
influences of each jR value on the magnetic properties of
the system. Therefore, this decomposition offers a valuable
approach to examine and interpret the underlying physics
governing the g factor within the given context.

III. NUMERICAL DETAILS

In the calculations, I consider a system consisting of one
proton particle in the h11/2 state and one neutron hole in
the h11/2 state. This system is coupled to a triaxial rigid
rotor with quadrupole deformation parameters β = 0.23 and
a triaxial deformation parameter γ ranging from 0◦ to 60◦.
In this configuration, the 1 axis, the 2 axis, and the 3 axis
correspond to the intermediate (m), short (s), and long (l) axes
of the ellipsoid, respectively. To account for the rotational
motion, moments of inertia of the irrotational flow type are
employed, given by Jk = J0 sin2(γ − 2kπ/3) (k = 1, 2, and
3), with J0 = 30h̄2/MeV. For the calculation of the g factor,
I have utilized the adopted values of gp = 1.21 for the proton,
gn = −0.21 for the neutron, and gR = 0.41 for the core. These
specific g-factor values have been incorporated to account for
the individual components of the system.

IV. RESULTS AND DISCUSSIONS

For the particle-hole configuration under consideration,
namely, π (1h11/2)1 ⊗ ν(1h11/2)−1, and within the range
of 15◦ � γ � 45◦, previous investigations documented in
Refs. [1,31,36–39,54,55] have established the presence of
what is commonly referred to as chiral geometry within a
specific range of spin values. These earlier investigations have

extensively explored various aspects of this system, including
the energy spectra, electromagnetic transition probabilities,
static quadrupole moments, and the overall angular momen-
tum geometry. Detailed results pertaining to these quantities
can be found in the aforementioned references. In the present
work, my primary focus lies in studying the behavior of the
g factor for this particular system. I aim to contribute to the
understanding of the g-factor behavior associated with the ob-
served chiral geometry within the specified range of γ values.

A. Influences of deformation and moment of inertia

I first study the influences of deformation and moment
of inertia on the g factor. In Fig. 1, I present the computed
g factors for the yrast and yrare states of the π (1h11/2)1 ⊗
ν(1h11/2)−1 configuration at I = 9h̄ within the PRM. The g
factors are examined as a function of (a) the moment of inertia
J0, while keeping deformation parameters β = 0.23 and γ =
30◦ constant; (b) the deformation parameter β, with J0 fixed
at 30 h̄2/MeV and γ = 30◦; and (c) the triaxial deformation
parameter γ , with J0 maintained at 30 h̄2/MeV and β = 0.23.

From the analysis, it becomes evident that the g factor
shows limited sensitivity to both the moment of inertia J0 and
the deformation parameter β. In contrast, the g factor exhibits
notable dependence on the value of the triaxial deformation
parameter γ . I have further checked that the similar sensi-
tivity with respect to γ can be observed for the higher and
lower β values compared to the chosen value of β = 0.23,
as illustrated in Fig. 1(c) for β = 0.10 and 0.35. Moreover,
the g factor demonstrates symmetry about the point γ = 30◦.
Within the near prolate region (γ � 10◦) and the near oblate
region (γ � 50◦), the g factor remains relatively constant.
Outside these two regions, distinct trends can be observed
for the yrast and yrare states as γ increases. Specifically, the

FIG. 1. The g factors for the yrast and yrare states associated
with the particle-hole configuration π (1h11/2)1 ⊗ ν(1h11/2)−1 config-
uration calculated within the PRM at I = 9h̄ as functions of (a) the
moment of inertia J0, (b) the quadrupole deformation parameter
β, and (c) the triaxial deformation parameter γ . The dotted lines
represent the g factor for the rotor gR = 0.41.
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FIG. 2. (a) Contributions from the valence proton particle g(p)

and neutron hole g(n) to the g factors of both the yrast and yrare
states as a function of γ with with a fixed deformation parameter
of β = 0.23 and a constant moment of inertia of J0 = 30 h̄2/MeV,
at I = 9h̄. (b) The corresponding effective angles θpI and θnI of yrast
and yrare bands.

g factor of the yrast state decreases, while that of the yrare
state increases. This contrasting behavior between the doublet
states highlights the impact of varying triaxial deformation
on their respective g factors. This analysis provides valuable
insights into the relationship between nuclear structure and the
observed trends in the g factors for these specific particle-hole
configurations.

In order to gain a deeper understanding of the behav-
ior of the g factors with respect to the triaxial deformation
parameter γ , I analyze the contributions from the valence
proton particle g(p) (11) and neutron hole g(n) (12) to the g
factors of both the yrast and yrare states. This analysis is
conducted under specific conditions, with a fixed deformation
parameter of β = 0.23 and a constant moment of inertia of
J0 = 30 h̄2/MeV, at an angular momentum value of I = 9h̄.
The contributions g(p) and g(n) are presented in Fig. 2. To illus-
trate these contributions, I present in Fig. 2 the corresponding
effective angles denoted as θpI and θnI for the yrast and yrare
states, respectively.

Upon analyzing the contributions of the valence proton
g(p) and neutron g(n) to the g factors of the yrast and yrare
bands, one observes distinct trends. Specifically, for the yrast
state, both g(p) and g(n) decrease as the triaxial deformation
parameter γ increases. In contrast, for the yrare state, both
g(p) and g(n) exhibit an increase with increasing γ . These
observed trends can be attributed to two primary factors.
First, the angle θpI (θnI ), which represents the effective angle

associated with the valence proton particle (neutron hole)
configuration, shows a contrasting behavior between the yrast
and yrare states. Specifically, in the yrast state, θpI increases
with increasing γ , while in the yrare state, it decreases with
increasing γ . Second, the signs of the differences gp − gR =
0.80 and gn − gR = −0.62 appearing in the g-factor formula
Eq. (10) are opposite. These differences determine the contri-
bution of the valence proton and neutron to the total g factors.
The contrasting signs of these differences further contribute to
the different trends observed in the yrast and yrare bands as γ

increases.
At this stage, one can understand that the distinct sensitivi-

ties of the g factor to the β and γ deformation parameters stem
from two underlying physical aspects. First, the irrotational
flow type moments of inertia Jk = J0 sin2(γ − 2kπ/3) em-
ployed in my model, and the resulting ratios between the three
principal axis moments of inertia, are sensitive to the γ defor-
mation parameter while remaining independent of β. Second,
the γ dependence in the single- j shell Hamiltonian (3) used
in the model governs the angular momentum properties of the
proton particle and the neutron hole. Specifically, the angu-
lar momentum component of the proton particle along the s
axis is equal to that along the m axis at γ ≈ 0◦. However,
when γ ≈ 30◦, the angular momentum component along the
s axis becomes significantly larger than that along the m axis.
Both of these physical factors have a direct and consequential
impact on the effective angles θpI and θnI , which ultimately
influence the values of the g factor.

B. Influences of total spin

The combination of the valence proton particle angular
momentum j p, the valence neutron hole angular momentum
jn, and the core angular momentum jR results in the forma-
tion of the total spin I for the studied system. It has been
extensively established in the literature, as documented in
Refs. [37,38,42,56,57], that the presence of chiral rotations,
which refer to nonplanar rotations of the total angular mo-
mentum, manifests only above a critical spin value I . At
lower spins, a different phenomenon known as chiral vibration
occurs, characterized by an oscillation of the total angular
momentum between left- and right-handed configurations.
Conversely, at higher spins, a chiral rotation takes place.

To investigate the influence of collective rotation on the
g factor, I have examined the g factors of the yrast and
yrare bands in the π (1h11/2)1 ⊗ ν(1h11/2)−1 configuration as
functions of spin, considering various triaxial deformation
parameters (γ = 0◦, 10◦, 20◦, 30◦, 40◦, 50◦, and 60◦). Figure 3
depicts these variations, including the cases when the valence
proton and neutron angular momenta are parallel to the total
angular momentum ( j p ‖ jn ‖ I), perpendicular to each other
and to the rotor angular momentum j p ⊥ jn ⊥ jR [i.e., gchiral

in Eq. (13)], as well as the g factor of the rotor gR. In addition,
to illustrate the changes in these configurations, Fig. 4 presents
the effective angles θpI and θnI for the yrast and yrare bands
in the π (1h11/2)1 ⊗ ν(1h11/2)−1 configuration as functions of
spin, considering γ = 0◦, 10◦, 20◦, and 30◦.

For the case of γ = 30◦, previous work in Ref. [37] has
provided a comprehensive understanding of the evolution of
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FIG. 3. The g factors of the yrast and yrare bands for the
π (1h11/2)1 ⊗ ν(1h11/2)−1 configuration as functions of spin at γ =
0◦, 10◦, 20◦, 30◦, 40◦, 50◦, and 60◦. The dashed lines represent the
cases when j p ‖ jn ‖ I, j p ⊥ jn ⊥ jR, and the g factor of the rotor
gR.

the chiral mode in this system. The analysis was conducted
using an azimuthal plot of the total angular momentum, re-
vealing a transition from planar to aplanar rotation as the
rotational mode of the system changes. It was found that
this transition occurs at a critical spin value of I = 13h̄. In
accordance with this rotational transition, the g factors of the
yrast and yrare bands were observed to decrease with increas-
ing spin I , as illustrated in Fig. 3. Notably, these g factors
exhibit striking similarities, especially within the region of
static chirality (I � 13h̄) described in Refs. [37,38]. In fact,
they become nearly identical within this regime.

FIG. 4. The effective angles θpI and θnI (in degrees) of the yrast
and yrare bands for the π (1h11/2)1 ⊗ ν(1h11/2)−1 configuration as
functions of spin at γ = 0◦, 10◦, 20◦, and 30◦.

Moreover, the corresponding effective angles θpI and θnI

of the doublet bands, as depicted in Fig. 4, demonstrate that
they are quite similar for spins I � 13h̄ and converge as I
exceeds 14h̄. Therefore, the similarity in g factors can be
regarded as a distinctive characteristic of static chirality. Fur-
thermore, it is worth noting that the g factors calculated using
the PRM closely resemble those obtained in the limit of gchiral

( j p ⊥ jn ⊥ jR) near the bandhead. However, it is important to
clarify that this does not necessarily indicate the presence of
chiral rotation at the bandhead. Instead, this similarity arises
due to the fact that the angular momentum of the rotor is
significantly smaller than that of the proton and neutron in the
vicinity of the bandhead, as elucidated in Ref. [37]. Within
the region of static chirality, the g factors calculated by the
PRM deviate from the gchiral ( j p ⊥ jn ⊥ jR) limit, suggesting
that the ideal aplanar rotation is not fully realized in the PRM
calculations. It is important to note that the total Hamiltonian
for the present symmetric particle-hole configuration with an
irrotational flow type of moment of inertia is invariant under
the transformation γ → 60◦ − γ . Consequently, the g factors
obtained using γ and 60◦ − γ exhibit symmetry with respect
to those obtained using γ = 30◦, as exhibited in Fig. 3. This
symmetry is reflected in the increasing-decreasing behavior
of the g factors of the doublet bands for γ < 30◦ and the
decreasing-increasing trend observed for γ > 30◦. However,
one can observe that the g factors of the doublet bands are
not similar to those observed at γ = 30◦. Specifically, for
γ < 30◦, the g factors of the yrast band are larger than those
of the yrare band for a given spin, while the opposite trend is
observed for γ > 30◦. Additionally, the differences between
the g factors of the doublet bands decrease with increasing
spin. A previous study [38] demonstrated that chiral geom-
etry does not occur at γ = 10◦ and 0◦, where the energy
difference between the doublet bands is considerably large. In
these cases, the angular momentum exhibits planar rotation
modes, i.e., lacking the chirality. The large difference in g
factors between the doublet bands observed at γ = 10◦ and
0◦ confirms this conclusion.

The behaviors of the g factors can be comprehended by
examining the plots of the effective angles θpI and θnI at
γ = 20◦, 10◦, and 0◦, as illustrated in Fig. 4. It is observed that
the θnI values for the doublet bands exhibit similar slight in-
creasing trends. However, the θpI values for the doublet bands
differ significantly. Specifically, the θpI value for the yrare
band is greater than that of the yrast band. The magnitude
of this difference becomes more pronounced as γ deviates
from γ = 30◦, resulting in the larger differences between the
g factors of the doublet bands (cf. Fig. 3). Furthermore, the θpI

values demonstrate a decreasing trend, suggesting that the
proton angular momentum approaches the total angular mo-
mentum as the spin increases. Consequently, the g factors of
the doublet bands exhibit an increasing behavior, as depicted
in Fig. 3.

C. Influences of rotor angular momentum

As previously mentioned, the g factor can be expressed as
a sum of contributions from various jR values. In Fig. 5, I
present the g factor components g( jR) as a function of R for
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FIG. 5. Contributions to the g factors of the yrast and yrare bands as functions of rotor angular momentum jR at triaxial deformation
parameters γ = 0◦, 20◦, 30◦, and 60◦.

the yrast and yrare bands calculated at γ = 0◦, 20◦, 30◦, and
60◦. An examination of the figure reveals that as the total spin
I increases, the distributions of g( jR) progressively shift their
weights from the low-R region to the high-R region, indicating
a gradual rise in the rotor angular momentum.

At γ = 0◦ and 60◦, the quantum number R can only take
even integer values, as its three-axis component in the intrinsic
frame KR must be zero. Consequently, the distribution g( jR) is
zero for odd R. When looking at the g( jR) plots for the yrast
and yrare bands across the entire spin range of 8h̄ � I � 20h̄,
they exhibit distinct behaviors. The weights assigned to each

R value, as well as the positions of the maxima, differ between
the two bands. Specifically, in the yrare band, the R value asso-
ciated with the maximum weight is consistently 2h̄ larger than
that in the yrast band. This behavior aligns with the significant
energy difference [38] and significant g-factor difference (cf.
Fig. 3) observed between the doublet bands.

At γ = 20◦, the contributions from odd R values become
more significant. This can be attributed to the decreasing
energies of the rotor associated with odd R, which gradually
become comparable to those of even R at γ = 20◦ [38,58]. For
I � 12h̄, the R value corresponding to the maximum g( jR) in
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the yrare band remains consistently 2h̄ larger than that in the
yrast band. However, for I � 13h̄, the g( jR) plots for the yrast
and yrare bands exhibit similar patterns, although noticeable
differences in the detailed amplitudes persist. This similarity
aligns with the small energy differences (less than 300 keV)
[38] and closer g factor (cf. Fig. 3) observed between the
doublet bands in this spin region.

At γ = 30◦, the most notable characteristic is the striking
similarity between the g( jR) plots of the yrast and yrare bands
for I � 14h̄, both in terms of the distribution patterns and the
amplitudes. These properties are consistent with the nearly de-
generate nature of the doublet bands observed in this scenario
[38]. Consequently, the g factors of the doublet bands exhibit
a high degree of similarity, as illustrated in Fig. 3.

V. SUMMARY

In summary, extensive investigations have been conducted
to explore the g factor of chiral doublet bands using the
particle rotor model. The focus of these studies has been
on systems characterized by the particle-hole configuration
π (1h11/2)1 ⊗ ν(1h11/2)−1. A comprehensive examination has
been carried out to evaluate the influence of deformation pa-
rameters β and γ , the moment of inertia J0, the total spin I ,
and the angular momentum of the collective rotor jR on the g
factor.

The key conclusions derived from these investigations can
be summarized as follows.

(i) The variation in the γ parameter significantly affects
the behavior of the g factor, emphasizing its sensitivity
to this particular parameter.

(ii) The g factor demonstrates little sensitivity to changes
in the deformation parameter β and the moment of
inertia J0.

(iii) The total spin I and the angular momentum of the
collective rotor jR play significant roles in affecting
the g factor.

(iv) The g factors and corresponding g( jR) plots for the
doublet bands exhibit significant similarities in the
region of static chirality, while differences become
apparent in regions characterized by chiral vibration
or the absence of chirality.

These findings provide valuable insights into the com-
plex behavior and underlying physics of chiral doublet
bands.

Presently, experimental measurements of the g factor in re-
lation to chiral rotation have primarily been conducted solely
for the bandhead of 128Cs [42,43]. This limited scope accentu-
ates the need for future experimental endeavors to concentrate
on quantifying the g factor for a broader range of chiral
doublet bands. By conducting such measurements, a more
comprehensive understanding of the behavior of chiral dou-
blet bands can be obtained. The systematic characterization
of the g factor across a wider spectrum of chiral doublet bands
will provide crucial insights into the underlying physics that
governs these systems. Consequently, it is strongly advocated
that future investigations prioritize the measurement of the g
factor for various chiral doublet bands to advance the under-
standing of their magnetic behavior.
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