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A general method is proposed to obtain the distribution of the total quantum number M for a set of N identical
fermions with momentum j, which is a cornerstone of the nuclear shell model. This can be performed using
a recursive procedure on N , yielding closed-form expressions, which are found to be linear combinations of
piecewise polynomials. We also highlight and implement in that framework two three-term recurrence relations
over N , more convenient than Talmi’s five-term recurrence which has nevertheless already proved its worth in
the past. In addition, the current approach allows one to consider both integer and half-integer values of j on the
same footing. The technique is illustrated by detailed examples, corresponding to N = 3 to 6 fermions.
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I. INTRODUCTION

The knowledge of the distributions of magnetic quantum
number M and angular momentum J for N identical fermions
with half-integer spins j is a cornerstone of nuclear-physics
studies [1–3]. Such quantities, which are obviously insepara-
ble from the structural foundations of the nuclear shell model,
are encountered in various physical studies, for instance about
the J-pairing interaction or nuclear transitions [4,5]. The prob-
lem is rather complicated, since the possible occurrence of a
specific value of J is governed by the Pauli exclusion princi-
ple. Several methods, such as generating functions, recurrence
relations or algebraic number theory—for instance via Gaus-
sian polynomials [6,7]—have proven effective in addressing
that issue. Classification and numbering of states can also be
tackled with the seniority scheme [3,8] or Molien functions
applied to supergroups [9]. It is possible to compute the num-
ber of states P(M; j, N ) with a given projection M on the
quantization axis and the number of levels Q(J; j, N ) with
spin J in jN configurations by a procedure dealing with integer
partitions and Young diagrams [10]. In addition, the latter
quantities can be determined using concepts from (or related
to) group theory, such as irreducible representations, Schur
functions, unitary and symplectic groups, as well as seniority
[11–13]. However, exact analytical expressions for P(M; j, N )
and Q(J; j, N ) are known only in very simple cases, for small
numbers of fermions. In a work about the quantum Hall ef-
fect [14], Ginocchio and Haxton obtained a simple formula
for Q(0; j, 4), which is also equal to Q( j; j, 3). Zamick and
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Escuderos interpreted the Ginocchio-Haxton formula in the
framework of a combinatorial approach for J = j with N = 3
[15]. Zhao and Arima exhibited patterns in Q(J; j, 3) and
Q(J; j, 4), and obtained empirical formulas [16]. They also
showed that Q(J; j, N ) could be enumerated by the reduction
from SU (N + 1) to SO(3) and obtained analytical expressions
of Q(J; j, 4) [17]. Talmi suggested to express Q(J; j, N ) in
terms of Q(J; j − 1, N ), Q(J; j − 1, N − 1), and Q(J; j −
1, N − 2). Using the corresponding recurrence relation, he
proved some results found empirically by Zhao and Arima
[16]. Zhang et al. extended Talmi’s recursion relation to boson
systems and proved empirical formulas for five bosons. They
also obtained the number of states with given spin for three
and four bosons by using sum rules of six- j and nine- j sym-
bols [18,19]. Five years later, Jiang et al. derived the analytical
formulas for three fermions in a single- j shell Q(J; j, 3) and
three bosons with spin �, by using a reduction rule from the
U (4) to the O(3) group chain, U (4) ⊃ Sp(4) ⊃ O(3) [20,21].
In Refs. [22,23], the authors extended the studies for three and
four fermions to the number of states with given spin J and
isospin T .

Recently, using a five-term recurrence relation established
by Talmi [24] we have been able to derive explicit expressions
for the the distributions P(M; j, 3), Q(J; j, 3), P(M; j, 4) and
Q(J; j, 4) [25]. This led us to deduce exact formulas for the
total number of levels in single- j orbits for three, four, and five
fermions. In the N = 3 case, an alternative derivation much
simpler than the one previously published and relying on the
use of fractional parentage coefficients [26] was obtained. In a
similar approach, Yin and Zhao generalized Talmi’s recursion
formulas by further considering the isospin couplings and
derived explicit formulas of the number of states with a given
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total spin I and isospin T for N nucleons in a single- j shell
[27].

The aim of this paper is to show that closed-form ex-
pressions, explicitly as linear combinations of piecewise
polynomials, may be given for the fermion distribution
P(M; j, N ) for any value of N . This can be performed
using a recursive procedure on N . As mentioned above,
for N � 4 we proposed in our previous work [25] to use
Talmi’s recursion relation involving five P values [24]. In
the present paper we show that a better option may be
provided by using a simpler recurrence relation involving
only three values P(M; j, N ), P(M ′; j − 1/2, N ), P(M ′′; j −
1/2, N − 1). We first outline in Sec. II the method imple-
menting the three-term recurrence to get the distribution
P(M; j, N ) for the lowest N values. One interest of the current
method is that it allows us to consider the half-integer as
well as integer momenta j on the same footing. This method
is applied to various values of the fermion number N (up
to 6), which illustrates its efficiency. We also provide the
corresponding expressions for the number of total angular
momentum Q(J; j, N ).

II. RECURSIVE GENERAL ALGORITHM

A. Definitions and recurrence properties

For a subshell of N fermions with individual momentum j,
we study the number of possible values of the total magnetic
quantum number M, written as P(M; j, N ). Because of Pauli
principle, if the magnetic quantum numbers of each fermion
are written m1, m2, · · · mN , then one has M � Jmax = j +
( j − 1) + · · · ( j − N + 1) = N j − N (N − 1)/2. The number
of levels with angular momentum J may be derived from
the well-known relations Q(J; j, N ) = P(J; j, N ) − P(J +
1; j, N ) if J < Jmax, and Q(Jmax; j, N ) = P(Jmax; j, N ). In this
paper we will assume M � 0 unless otherwise mentioned.

The distribution P obeys several useful recurrence prop-
erties. In our previous work, we used extensively a five-term
recurrence equation derived by Talmi [24]. However, an in-
teresting alternative is provided by two three-term relations
derived in Ref. [28] [labeled (B.8) and (B.4), respectively]:

P(M; j, N ) = P(M + N/2; j − 1/2, N ) + P(M − j

+ (N − 1)/2; j − 1/2, N − 1), (1a)

P(M; j, N ) = P(M − N/2; j − 1/2, N ) + P(M + j

−(N − 1)/2; j − 1/2, N − 1). (1b)

An analogous relation on the number of levels with given
total momentum J has been published by Bao et al. [29].

B. Piecewise polynomial decomposition

From the analysis performed in our previous work [25],
we assume that the magnetic moment M distribution may be
written as

P(M; j, N ) =
∑
k�0

(−1)kH (N j − M − 2k j)

× PN,k (N j − M − 2k j) for M � 0, (2)

where H (m) is the Heaviside function, H (m) = 1 if m �
0, 0 otherwise. Negative M are not considered here, since
P(−M; j, N ) = P(M; j, N ). For a given M, because of the
Heaviside functions, the maximum index in the sum is defined
be the constraint M − N j − 2k j � 0, so that

kmax(M, j, N ) = �(N j − M )/(2 j)�, (3)

where �x� is the integer part of x. If 0 � M < j and N is
odd (one may show that − j < M < j is then allowed by our
formalism), then one has kmax = (N − 1)/2. If 0 � M < 2 j
and N even, then one has kmax = (N − 2)/2. Therefore, the
general expression is kmax = �(N − 1)/2� for any N .

The determination of the functions PN,k (X ) is the purpose
of the present work. Furthermore, we add the constraints on
the PN,k functions

PN,k (X ) = 0 for X = 0,−1, · · · − N + k + 1. (4)

The property (2) is established here by recurrence on N . We
have checked its validity for N � 4 [25], where the PN,k func-
tions are piecewise polynomials. Explicit values for the first
PN , k are given in the next subsection.

An interesting property in using the recurrence (1a) is
that the kmax of the three involved P values are iden-
tical. More precisely, as analyzed in the Appendix B,
one can show that kmax(M, j, N ) = kmax(M + N/2, j −
1/2, N ) = kmax(M − j + (N − 1)/2, j − 1/2, N − 1). More-
over, using Eq. (1b), one shows in the same Ap-
pendix that kmax(M, j, N ) = kmax(M − N/2, j − 1/2, N ) =
kmax(M + j − (N − 1)/2, j − 1/2, N − 1) + 1. A finer anal-
ysis, detailed in Appendix B, shows that the above identities
may be violated but one has always has k1 � k3 � k2 in the
first case using the notations (B1), and k′

2 � k′
3 + 1 � k′

1 in the
second case, with notations (B5). Furthermore, using Eq. (1a),
the cases where inequalities occur corresponds to zero PN,k

value: for instance, if k1 = k2 + 1 = k3 + 1, then one can
check that PN,k1 (X ) vanishes.

C. Examples of PN,k values

If N = 2, from the well-known value P(M; j, 2) = �(2 j +
1 − M )/2�, then the sum contains indeed one term,

P2,0(X ) = X/2 + π (X )/2, (5a)

where X = 2 j − M and π (X ) = 1 if X is odd, 0 if X is even.
As shown in Ref. [25] and derived in Appendix A using three-
term recurrence, one has

P3,0(X ) = X 2/12 + α(mod(X, 6)),

P3,1(X ) = X 2/4 − π (X )/4, (5b)

with α defined in Appendix A. Throughout this paper
mod(m, n) is the modulo function, defined for n > 0 as the re-
mainder in the Euclidean division of m by n—notice that such
remainder is nonnegative. The parity of m may be expressed
as a modulo function

π (m) = mod(m, 2). (6)

The next sections are devoted to the derivation of the ex-
pression of PN,k polynomials for N between 4 and 6.
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D. Implementation of the recurrence if M � (N − 2) j

Let us first consider the case N j − 2 j � M � N j, for
which kmax = 0. Substituting the expansion (2) for each of
the three P in the recurrence (1a), one easily checks that
each of the three sums involves only one term k = 0. The
arguments of the PN,0 functions are, respectively, X = N j −
M, X ′ = N ( j − 1/2) − M − N/2 = X − N , and X ′′ = (N −
1)( j − 1/2) − M + j − (N − 1)/2 = X − N + 1. The result-
ing recurrence on PN,0 is

PN,0(X ) = PN,0(X − N ) + PN−1,0(X − N + 1). (7)

One notices that we ignored the Heaviside functions in this
derivation. Though X > 0, one may have X ′ < 0 if X < N . In
this case from the constraints (4), one has PN,0(X ) = PN,0(X −
N ) = PN−1,0(X − N + 1) = 0 so that the cancellation of P
allows us to omit the Heaviside functions. Writing X = N j −
M = Nν + n, with ν = �X/N�, n = mod(X, N ) and applying
the recurrence (7) ν times, one gets, noting that PN,0(n) = 0
from Eq. (4),

PN,0(X ) =
ν∑

i=1

PN−1,0(X − (i − 1)ν + 1). (8)

This formula bears several consequences. Since the known
values for PN,0 if 1 � N � 3 are indeed piecewise polynomi-
als of degree N − 1 of the argument X = N j − M, it proves
that for any N PN,0 is also a polynomial in X = N j − M
of degree N − 1. This provides an efficient way to get the
analytical expression of PN,0. An alternate derivation for the
PN,0 computation is developed in Appendix C.

E. Implementation of the recurrence if 0 � M � (N − 2) j

We now consider the case (N − 4) j � M � (N − 2) j. The
PN,k expansion contains two terms, and the recurrence (1a) is
written for X = (N − 2) j − M � 0,

PN,0(X + 2 j) − PN,1(X )

= PN,0(X − N + 2 j) − PN,1(X − N )

+ PN−1,0(X − N + 2 j + 1) − PN−1,1(X − N + 1).
(9)

The key point of our method lies in the fact that, since the
identity (7) has been established for 0 � X � 2 j and that
the PN,0 are piecewise polynomials with coefficient obeying
simple congruence properties, one also has PN,0(X + 2 j) =
PN,0(X − N + 2 j) + PN−1,0(X − N + 2 j + 1). Therefore, the
above equations implies

PN,1(X ) = PN,1(X − N ) − PN−1,1(X − N + 1)

for N � 3 and 0 � X � 2 j. (10)

The known value of P3,1 shows that PN,1(X ) is also a piecewise
polynomial of degree N − 1, that can be efficiently derived in
a closed form using the above recurrence. In a similar way as
in the k = 0 case, one may demonstrate that PN,1(X ) = 0 if
X = 0, 1, · · · N − 2.

The same procedure may be used repeatedly for
each k value, using the above cancellation property if
k = 2, etc. Writing X = N j − M − 2k j the argument

of the PN,k function in the left side of Eq. (1a), the
arguments of P(M + N/2; j − 1/2, N ) and P(M − j + (N −
1)/2; j − 1/2, N − 1) in the expansion (2) are, respectively,
X ′ = N ( j − 1/2) − M − N/2 − k(2 j − 1) = X − N + k and
X ′′ = (N − 1)( j − 1/2)−M + j − (N − 1)/2− k(2 j − 1) =
X − N + k + 1. The fact that the k indices are taken equal in
X, X ′, X ′′ is justified by the analysis done in Appendix B. We
therefore obtain

PN,k (X ) = PN,k (X − N + k) + PN−1,k (X − N + k + 1).
(11)

The above equation applies for k � (N − 2)/2 (respectively,
k � (N − 3)/2) if N is even (respectively, odd). Using
Eq. (11) and the constraints (4), one may also demonstrate
that

PN,k (X ) = 0 if X = 0, 1, · · · N − k − 1. (12)

F. Case M � j and N odd

The above method does not work for the maximum value
k = (N − 1)/2 if N = 2ν + 1 is odd. Equation (11) would
involve as its last term PN−1,(N−1)/2 which does not exist. The
most direct method relies on the expansion (2), where the last
term k = ν is singled out—since M � j Heaviside functions
are set equal to 1—

P(M; j, 2ν + 1)

= O(M; j, 2ν + 1)

+(−1)νP2ν+1,ν ((2ν + 1) j − M − 2ν j), (13a)

O(M; j, 2ν + 1)

=
ν−1∑
k=0

(−1)kP2ν+1,k ((2ν + 1) j − M − 2k j). (13b)

Substituting this sum in the recurrence (1a) provides the
equation

(−1)νP2ν+1,ν ( j − M ) + O(M; j, 2ν + 1)

= (−1)νP2ν+1,ν ( j − M − ν − 1) + O(M + N/2;

j − 1/2, 2ν + 1) + P(M + ν − j; j − 1/2, 2ν). (14)

The last term in this equation may be rewritten P( j − M −
ν; j − 1/2, 2ν) to get a positive first argument. Here we
assume M � j and not M � j − ν but the marginal case
j − ν � M � j could be treated by a similar procedure; it
has been checked that separating both cases M + ν − j pos-
itive versus negative does not lead to different expressions.
To sum up this discussion, according to the above equation,
one may express the difference P2ν+1,ν ( j − M ) − P2ν+1,ν ( j −
M − ν − 1) as a linear combination of the O(M; j, 2ν + 1)
and P(M, j, 2ν) which are all known since they involve either
P2ν+1,k with k < ν or P2ν,k . As an illustration, this procedure
has been used in the cases N = 3 (Appendix A) and N = 5
(Sec. IV). The main drawback of this method, in addition
to the rather tedious computation needed, is that it does not
obviously shows that P2ν+1,ν is only a function of the argu-
ment N j − M − 2ν j = j − M. To overcome this drawback,
an alternative method is now proposed.
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G. A variant of the three-term recurrence

The purpose of this section is to obtain the relation
corresponding to Eq. (11) when the recurrence (1b) is used
instead of Eq. (1a). We proceed similarly as in Sec. II E.
If we insert the form (2) into the equation (1b), then the
argument of the kth term in the expansion of P(M; j, N )
is X = N j − N − 2k j. Accordingly, this argument is X ′ =
N ( j − 1/2) − M + N/2 − (2 j − 1)k′ = X + k′ + 2(k − k′) j
for P(M − N/2; j − 1/2, N ), and X ′′ = (N − 1)( j − 1/2) −
M + j + (N − 1)/2 − (2 j − 1)k′′ = X + k′′+2(k − k′′−1) j
for P(M − j − (N − 1)/2; j − 1/2, N − 1). As shown by the
analysis of Appendix B, the k indices must then be chosen so
that k = k′ = k′′ + 1. A similar procedure as above allows us
to obtain separately an equation for each interval k. One then
obtains, using k = k′ = k′′ + 1,

PN,k (X ) = PN,k (X + k) − PN−1,k−1(X + k − 1) for k � 1.

(15)

The minus sign in front of the last term comes from the (−1)k

factor in the expansion (2), namely (−1)k′′ = −(−1)k . This
can be rewritten as PN,k (X ) = PN,k (X − k) + PN−1,k−1(X −
1). Such relation may be applied, for instance, if N = 2ν + 1
is odd and M < j, for which the relation (11) was inefficient.
One has then k = ν and the function P2ν+1,ν obeys

P2ν+1,ν (X ) = P2ν+1,ν (X + ν) + P2ν,ν−1(X ) for ν � 1.

(16)

III. APPLICATION OF THE THREE-TERM RECURRENCE
TO THE FOUR-FERMION CASE

The aim of this section is to use the three-term recurrence
relation (1a) to compute P(2 j − p; j, 4) with −2 j + 6 � p �
2 j, so that M = 2 j − p is nonnegative and below or equal to
Jmax( j, 4) = 4 j − 6. As in the three-fermion case, we split the
discussion according to the sign of p.

A. Case M greater than or equal to 2 j

The general formula (C4) writes in the four-fermion case

P(2 j − p; j, 4) =
t∑

s=1

P

(
j − p + 5

2
s − 1; j − s

2
, 3

)
with t =

⌊
2 j + p − 2

4

⌋
. (17)

The sum (17) involves in its generic term the three-fermion distribution P( j − p; j, 3) with j = j − s/2, p = p − 3s + 1. If
p � 0, then one has also p � 0 so that the relation (A11) applies with only the first two terms included. One has P(2 j − p; j, 4) =
S1 + S2, with

S1 =
t∑

s=1

(2 j + p − 4s + 1)2

12
, S2 =

t∑
s=1

α(mod(2 j + p − 4s + 1, 6)), (18)

with p � 0, and t given by Eq. (17). We define

2 j + p = 12ν + m, (19)

with ν and m integers. The S1 sum is obtained by standard algebra and evaluates to

S1 = (2 j + p − 1)3

144
− 2 j + p − 1

36
+

(
− 5

48
,−1

3
,

1

48
, 0

)
(20)

for mod(2 j + p, 4) = 0, 1, 2, 3, respectively. The sum S2, rewritten as = ∑t
s=1 α(mod(m + 2s + 1, 6)) evaluates as follows.

We notice that the number of terms t is 3ν − 1, 3ν, 3ν + 1, 3ν + 2 for 0 � m � 1, 2 � m � 5, 6 � m � 9, 10 � m � 11,
respectively. Since one needs to evaluate α(mod(m + 2s + 1, 6)), this quantity has a period 3 in s and it is natural to collect
s terms by groups of three and to put the number of terms into the form t = 3�t/3� + mod(t, 3). For instance, in the m = 0 case
one has t = 3(ν − 1) + 2 terms. Gathering the various terms in S2 as ν − 1 times the three-term partial sum α(3) + α(5) + α(1)
plus two additional terms α(3) + α(5), and using the explicit list (A5d), one obtains

S2 = (ν − 1)(α(3) + α(5) + α(1)) + α(3) + α(5) = ν + 1

12
= 2 j + p + 12

144
if mod(2 j + p, 12) = 0. (21)

The 11 other cases m = 1, · · · 11 are dealt with accordingly. One gets

S2 =
(

ν + 1

12
,

(1 − 2ν)

3
,

ν

12
,−2ν

3
,

ν

12
,−2ν

3
,
ν + 3

12
,− (2ν + 1)

3
,
ν − 1

12
,−2ν

3
,
ν + 2

12
,−2(ν + 1)

3

)
(22)

for m = 0 · · · 11, respectively. One notices that the ν-dependent part in this list is ν/12 (respectively, −2ν/3) if m is even
(respectively, odd). Making the substitution ν = (2 j + p − m)/12, and adding the S2 value to S1 given by Eq. (20) one gets the
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result, valid if p � 0,

P(2 j − p; j, 4) = (2 j + p − 1)3

144
−

(
1

12
− π (2 j + p − 1)

16

)
(2 j + p − 1) + ω(mod(2 j + p − 1, 12)), (23a)

with ω(m) =
(

0,
1

72
,

1

9
,−1

8
,−1

9
,

17

72
, 0,−17

72
,

1

9
,

1

8
,−1

9
,− 1

72

)
if m = (0, 1, · · · 11), respectively. (23b)

The above list may also be expressed as a sum of modulo functions

ω(m) = mod(m, 3) − mod(−m, 3)

9
− mod(m, 4) − mod(−m, 4)

16
. (23c)

This agrees with Eq. (3.51) of Ref. [25]. However, the present derivation is simpler and applies to integer values of j.

B. Case M less than 2 j

Writing the total magnetic quantum number as M = 2 j − p, from Eq. (11) one has

P4,1(p) − P4,1(p − 3) = P3,1(p − 2) = (p − 2)2

4
− mod(p, 2)

4
for p > 0. (24)

We write p = 3ν + n with n = 0, 1 or 2. One may notice that the difference (24) vanishes if p = 1, 2, 3, so that to get P4,1(p)
one has to iterate the equation ν times. One gets after such iteration

(P4,1(p) − P4,1(p − 3)) + (P4,1(p − 3) − P4,1(p − 6)) + · · · + (P4,1(n + 3) − P4,1(n)) = P4,1(p) − P4,1(n) = T1 + T2, (25a)

T1 =
ν−1∑
i=0

(p − 2 − 3i)2/4, (25b)

T2 = −
ν−1∑
i=0

mod(p − 3i, 2)/4. (25c)

These sums are easy to evaluate through basic algebraic manipulations, e.g., with Mathematica software. The result depends on
mod(p, 3) and mod(p, 6) for T1 and T2, respectively. One has

T1 = p3

36
− p2

24
− p

24
+

(
0,

1

18
,

1

36

)
for mod(p, 3) = (0, 1, 2), (26a)

T2 = − p

24
+

(
0,

1

24
,

1

12
,−1

8
,

1

6
,− 1

24

)
for mod(p, 6) = (0, 1, 2, 3, 4, 5), (26b)

P4,1(p) = T1 + T2 = p3

36
− p2

24
− p

12
+

(
0,

7

72
,

1

9
,−1

8
,

2

9
,− 1

72

)
for mod(p, 6) = (0, 1, 2, 3, 4, 5). (26c)

As mentioned above, one easily verifies that P4,1(p) = 0 for −2 � p � 3. The recurrence hypothesis is confirmed by this P4,1

value which is indeed a function of p only. One notices that the list of constants appearing between parentheses in the P4,1(p)
expression is identical to the quantity ξ (p) + 1/9 defined in Ref. [25]. The complete result agrees with Eq. (3.51) in this paper
and may be written as

P(2 j − p; j, 4) = (2 j + p − 1)3

144
−

(
1

12
− π (2 j + p − 1)

16

)
(2 j + p − 1) + ω(mod(2 j + p − 1, 12))

−H (p)

[
p3

36
− p2

24
− p

12
+ 1

9
+ ξ (mod(p, 6))

]
for − 2 j + 6 � p � 2 j, (27a)

with ξ (m) =
(

−1

9
,− 1

72
, 0,−17

72
,

1

9
,−1

8

)
if m = (0, 1, 2, 3, 4, 5), respectively. (27b)

Solving a simple linear system, one can easily show that

ξ (m) = −1

9
− mod(m, 2)

8
+ mod(−m, 3)

9
. (27c)

The interest of this derivation, in addition to its conciseness, is that it holds even for integer j. It must be noticed that this formula
do not apply for negative M, i.e., if p > 2 j. From the relation (27), setting p = 2l , one gets the total number of levels for four
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fermions with integer j,

Qtot(l
4) = P(0; l, 4) =

∑
L

Q(L; l, 4) = 2l3

9
− l2

6
+ l

6
+

⎧⎪⎨
⎪⎩

0 if mod(l, 3) = 0

− 2
9 if mod(l, 3) = 1

− 4
9 if mod(l, 3) = 2

(28a)

= 2l3

9
− l2

6
+ l

6
− 2

9
mod(l, 3). (28b)

The corresponding expression for half-integer j has been derived previously, see Eq. (3.54) in Ref. [25].

IV. APPLICATION TO THE FIVE-FERMION CASE

We now turn to the computation of P(M; j, 5) with M = 3 j − p, −2 j + 10 � p � 3 j, so that M is such that 0 � M �
Jmax( j, 5) = 5 j − 10. The discussion is split by considering successively the cases p � 0, 0 � p � 2 j, and 2 j � p � 3 j. The
case p > 3 j does not need to be considered since P(−M; j, N ) = P(M; j, N ).

A. Case M greater than or equal to 3 j

The general formula (C4) writes in the five-fermion case

P(3 j − p; j, 5) =
t∑

s=1

P

(
2 j − p + 3s − 1; j − s

2
, 4

)
with t =

⌊
2 j + p − 5

5

⌋
. (29)

The sum (29) involves in its generic term the four-fermion distribution P( j − p; j, 4) with j = j − s/2, p = p − 4s + 1. We
may use the expression (27). If p � 0, then one has also p � 0 so that the relation (27) applies, ignoring the part factored by
H (p). One has P(3 j − p; j, 5) = S1 + S2, with

S1 =
t∑

s=1

(2 j + p − 5s)3

144
−

(
1

12
− π (2 j + p − 5s)

16

)
(2 j + p − 5s), S2 =

t∑
s=1

ω(mod(2 j + p − 5s, 12)), (30)

with p � 0, and t given by Eq. (29). Since the index t involves the ratio (2 j + p)/5 and the array ω involves mod(2 j + p, 12),
we are led to consider values of 2 j + p modulo the lowest common multiple of 5 and 12, i.e., we define

2 j + p = 60ν + m, (31)

with ν and m integers.
The S1 sum is obtained by standard algebra and evaluates to

S1 = (2 j + p)4

2880
− (2 j + p)3

288
+ (2 j + p)2

288
+ 2 j + p

24
− mod(2 j + p, 2)

32
(2 j + p) + c1(mod(2 j + p, 10)), (32)

with

c1(i) =
(

0,
1

320
,

13

360
,− 39

320
,−1

5
,

5

64
,− 3

40
,

329

2880
,−1

5
,− 39

320

)
, (33)

for i = 0, 1, · · · 9, respectively.
The sum S2, rewritten as

∑t
s=1 ω(mod(m − 5s + 1, 12)) is a quantity that is periodic in 2 j + p with period 60. At variance

with the sum of α computed in Eq. (21), there is no term proportional to (2 j + p) appearing in S2 because one has
∑11

i=0 α(i) = 0.
Here we do not give the list of the 60 values of S2 according to m, because the computation is straightforward and because the
useful value is indeed S2 + c1(mod(2 j + p, 10)). The computation performed in the 60 cases according to m = mod(2 j + p, 60)
provides the value of the “constant” term of the polynomial P5,0(2 j + p)

φ5(m) = S2(m) + c1(mod(m, 10)) = ϕ(mod(m, 12)) + δ(mod(m, 5))

5
, with 0 � m � 59. (34)

For m = 0, 1 · · · 11, the ϕ(m) term may be expressed as a list, or identified to a simple linear combination of modulo functions

ϕ(m) =
(

−1

5
,− 31

2880
,− 3

40
,

1

320
,− 4

45
,− 39

320
,− 3

40
,

329

2880
,−1

5
,− 39

320
,

13

360
,

1

320

)
(35a)

= −1

5
+ mod(m, 2)

64
+ −mod(m, 3) + 2mod(−m, 3)

27
+ mod(m, 4)

16
. (35b)
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Therefore, the constant term is, for 0 � m � 59,

φ5(m) = mod(m, 2)

64
+ −mod(m, 3) + 2mod(−m, 3)

27
+ mod(m, 4)

16
− mod(m, 5) + mod(−m, 5)

25
, (36)

and the complete result is

P5,0(X ) = X 4

2880
− X 3

288
+ X 2

288
+ X

24
− π (X )

X

32
+ φ5(mod(X, 60)), (37)

for X = p + 2 j = 5 j − M.

B. Case M greater than j and below 3 j

Using the general relation (11) and the assumption (4), one may write

P5,1(p) − P5,1(p − 4) = P4,1(p − 3), (38)

P5,1(p) − P5,1(p0) =
ν∑

i=1

P4,1(p0 + 4i − 3), (39)

with the modulo 4 definition p = 4ν + p0, ν, p0 integers. Using the known definition for P4,1(p), given by Eq. (3.51) of Ref. [25]
or by Eq. (27), the above sum is easy to obtain. One gets

P5,1(p) − P5,1(p0) = (P5,1(p0 + 4ν) − P5,1(p0 + 4ν − 4)) + · · · + (P5,1(p0 + 4) − P5,1(p0)) = T1 + T2, (40a)

T1 =
ν∑

i=1

f1((p0 + 4i − 3)/2), T2 =
ν∑

i=1

ξ (mod(p0 + 4i − 3, 6)). (40b)

With the value f1(p/2) = p3/96 − p2/24 − p/12 + 1/9, one gets after some basic algebra

T1 = p4

576
− p3

96
− p2

288
+ 7p

96
+

(
0,− 35

576
,− 11

144
,− 3

64

)
for mod(p, 4) = (0, 1, 2, 3), (41a)

T2 = −(1 − π (p))
p

32
+

(
0, 0,

1

16
, 0,

1

9
, 0,− 7

144
,

1

9
,

1

9
,−1

9
,

1

16
,

1

9

)
for mod(p, 12) = (0, 1, · · · 11). (41b)

The contribution P5,1(p) is given by the sum T1 + T2, and one easily gets

P5,1(p) = p4

576
− p3

96
− p2

288
+ p

24
+ π (p)

p

32
+ η(mod(p, 12)), (42)

with η(m) given, for m = 0, 1 · · · 11, by

η(m) =
(

0,− 35

576
,− 1

72
,− 3

64
,

1

9
,− 35

576
,−1

8
,

37

576
,

1

9
,−11

64
,− 1

72
,

37

576

)
(43a)

= mod(m, 2)

64
+ mod(m, 3) + mod(−m, 3)

27
− mod(−m, 4)

16
. (43b)

C. Case M < j

In this case we apply the method sketched in Sec. II F. The three-term recurrence (1a) is for N = 5, p � 2 j, substituting the
form (2) and dropping the Heaviside functions which are equal to 1,

P5,0(2 j + p) − P5,1(p) + P5,2(p − 2 j) = P5,0(2 j + p − 5) − P5,1(p − 4) + P5,2(p − 2 j − 3) + P(2 j − p + 2; j − 1/2, 4).

(44)

All functions in this equation are known except P5,2. Since we know from the general theory of Sec. II that

P5,0(2 j + p) − P5,0(2 j + p − 5) = P4,0(2 j + p − 4), (45a)

P5,1(p) − P5,1(p − 4) = P4,1(p − 3), (45b)

the difference P5,2(p − 2 j) − P5,2(p − 2 j − 3) depends only on four-fermion functions P4,0, P4,1, P(2 j − p + 2; j − 1/2, 4).
When evaluating this last element, one must take care that 2 j − p + 2 is negative and that the expression (27) does not hold for
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negative M. We use the M → −M symmetry and the known value for the four-fermion distribution,

P(2 j − p + 2; j − 1/2, 4) = P(p − 2 j − 2; j − 1/2, 4) = P4,0(6 j − p) − P4,1(4 j + 1 − p). (46)

In the special cases p = 2 j − 2 and p = 2 j − 1, one could assume that since p − 2 j − 2 < 0, one has M = −2 or −1 and
that the above equation does not apply. In fact, one can check by direct substitution that the analytical form (27) does hold for
p = 2 j + 1 (M = −1) and p = 2 j + 2 (M = −2), so that the above equation is valid in the interval 2 j � p � 4 j.

Gathering the above equations, we obtain after basic algebra, with the substitution p → X = p − 2 j,

P5,2(p − 2 j) − P5,2(p − 2 j − 3) = X 3

24
− X 2

4
+ 11X

24
− 1

4
+ π (X − 1)

(
1

4
− X

8

)
+ �(X, 2 j), (47a)

�(X, 2 j) = −ξ (mod((2 j − X + 1, 6)) + ξ (mod(2 j + X − 3, 6)) + ω(mod(4 j − X − 1, 12)) − ω(mod(4 j + X − 5, 12)).

(47b)

Using the known values of the arrays ω and ξ , and performing the computation for all the values of mod(X, 12) and mod(2 j, 6),
one easily verifies that �(X, 2 j) = 0 for any pair (X, 2 j). We may therefore write, using the relation π (X − 1) = 1 − π (X ),

P5,2(X ) − P5,2(X − 3) = f52(X ) = X 3

24
− X 2

4
+ X

3
+ π (X )

(
X

8
− 1

4

)
, (48)

which holds for X � 3. The value for P5,2(X ) is obtained as above, setting the modulo 3 definition X = 3ν + X0. One has

P5,2(X ) − P5,2(X0) =
ν∑

i=1

f52(X0 + 3i). (49)

Once again this sum is easily performed using the above definition of f52(X ). Since it contains a mod(X, 2) term, and X0 is 0, 1,
or 2, six cases must be considered. One gets

P5,2(X ) = X 4

288
− X 3

144
− X 2

36
+ π (X )

X

16
+ γ5(mod(X, 6)), (50a)

γ5(m) =
(

0,− 1

32
,

1

9
,− 1

32
, 0,

23

288

)
for m = (0, 1, 2, 3, 4, 5) (50b)

= −mod(m, 2)

32
+ 2mod(m, 3) − mod(−m, 3)

27
. (50c)

D. Summary and examples for the five-fermion case

Collecting expressions (37), (42), and (50), the complete value P(3 j − p; j, 5) = P5,0(p + 2 j) − H (p)P5,1(p) + H (p −
2 j)P5,2(p − 2 j) is therefore given, after changing 3 j − p into M for a better readability, by

P(M; j, 5) = (5 j − M )4

2880
− (5 j − M )3

288
+ (5 j − M )2

288
+ (5 j − M )

24
− π (5 j − M )

(5 j − M )

32

+ ϕ(mod(5 j − M, 12)) + δ(mod(5 j − M, 5))

5

− H (3 j − M )

[
(3 j − M )4

576
− (3 j − M )3

96
− (3 j − M )2

288
+ (3 j − M )

24

+π (3 j − M )
(3 j − M )

32
+ η(mod(3 j − M, 12))

]

+ H ( j − M )

[
( j − M )4

288
− ( j − M )3

144
− ( j − M )2

36
+ π ( j − M )

( j − M )

16
+ γ5(mod( j − M, 6))

]
. (51)

The values for ϕ, η, and γ5 are given by Eqs. (35b), (43), and (50c), respectively.
A careful inspection of the above derivation shows that it holds not only for 2 j � p � 3 j but also for 2 j � p � 4 j, or,

in terms of the total magnetic quantum number − j � M � j. This property is important if one needs to use this value to get
the expression for P(M; j, 6) for 0 � M � 2 j. It is worth mentioning that we have been able to obtain again the formula (51)
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FIG. 1. Polynomials P5,0, P5,1, and P5,2 and total distribution
function P(M; j, 5) for j = 11/2. The plot is done in the interval
from − j to Jmax (−11/2 � M � 35/2).

using Talmi’s five-term recurrence. However, the latter deriva-
tion is more cumbersome and is not detailed here.

Figures 1 and 2 display the three latter polynomials to-
gether with the total P(M; j, 5) distribution, respectively, for
j = 11/2 and j = 23/2. If one ignores the integer values
of X = 3 j − M in the interval 0–6 for which P5,1(X ) van-
ishes (P5,1(0) = · · · = P5,1(6) = 0), and the integer values of
X = j − M in the interval 0–4 for which P5,2(X ) vanishes,
then one notices that the ratios P51(3 j − M )/P50( j − M ) and
P52( j − M )/P50( j − M )/ are positive and rapidly decreasing
functions of M. As mentioned in Sec. VI of our previous paper
[25], one has for any j, N the property P(Jmax − 1; j, N ) =
P(Jmax; j, N ) = 1. This is visible on the black and red curves
of Figs. 1 and 2, which level off at P = 1 for M � Jmax − 1.

FIG. 2. Polynomials P5,0, P5,1, and P5,2 and total distribution
function P(M; j, 5) for j = 23/2. The abscissa ranges from − j to
Jmax (−23/2 � M � 95/2).

Using expressions (37), (42), and (50), and keeping
only the fourth-degree term in the polynomials—which is
correct for j � 5 one easily obtains for M � 0 the ratio
P5,2( j)/P5,1(3 j) � 2/81 or P5,2( j)/P5,0(5 j) � 2/125. This
is confirmed by the plots displayed here. More generally
from the above formulas one gets P5,2( j − M )/P5,1(3 j −
M ) � 2( j − M )4/(3 j − M )4 which indeed decreases with M.
An interesting point is that P5,0(5 j − M ), P5,1(3 j − M ) and
P5,2( j − M ) are not even functions of M, while P(M; j, 5) is
(i.e., P(−M; j, 5) = P(M; j, 5)). As seen on these plots, for
M = − j one observes the approximate—though not exact—
cancellation of the difference P5,0(5 j − M ) − P5,1(3 j − M ),
so that P(− j; j, 5) � P5,2(2 j).

Since the piecewise polynomial forms for P5,k (5 j − M −
2k j) are the same for integer and half-integer j, the plot of
these quantities for integer j do not differ significantly from
the plot for half-integer j. This why we only consider in the
above figures the half-integer case. Finally, we could check
that the general aspect of the plots do not change much when
considering large- j value.

E. Number of levels with given total angular momentum

Using the relation Q(J; j, N ) = P(J; j, N ) − P(J +
1; j, N ) (for J < Jmax) [30], one can derive the total number
of levels with a given total moment J = 3 j − p for five
fermions. We thus need to evaluate P(3 j − p; j, 5) − P(3 j −
(p − 1); j, 5), and when computing the contribution of
−H (p)P5,1(p), i.e., the second part of Eq. (51), one may
notice that P5,1(−1) = 0, so that the contribution of this part to
Q(J; j, 5) is simply −H (p)P5,1(p) + H (p − 1)P5,1(p − 1) =
−H (p)(P5,1(p) − P5,1(p − 1)) even if p = 0. A similar
consideration applies to the term in factor of H (p − 2 j).
Using the relation (51) for P one gets, after some basic
simplifications,

Q(J; j, 5) = (5 j − J )3

720
− (5 j − J )2

80
+ (5 j − J )

20

−π (5 j − J )
(5 j − J )

16
+ γ5,0(mod(5 j − J, 60))

− H (3 j − J )

[
(3 j − J )3

144
− (3 j − J )2

24

+π (3 j − J )
(3 j − J )

16
+γ5,1(mod(3 j − J, 12))

]

+ H ( j − J )

[
( j − J )3

72
− ( j − J )2

24
− ( j − J )

12

+π ( j − J )
( j − J )

8
+ γ5,2(mod( j − J, 6))

]
.

(52a)
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In the above equation, one has

γ5,0(m) = −1

5
+ mod(m, 2)

16
− mod(m, 3) − mod(−m, 3)

9
+ mod(m, 4) + mod(−m, 4)

16

+ δ(mod(m, 5))

5
− δ(mod(m − 1, 5))

5
(52b)

γ5,1(m) = −mod(m, 2)

8
+ mod(−m, 3)

9
+ mod(m, 4) − mod(−m, 4)

16
(52c)

γ5,2(m) = −mod(m, 2)

8
+ mod(m, 3)

9
, (52d)

with m ranging from 0 to 59 for γ5,0(m), from 0 to 11 for γ5,1(m), and from 0 to 5 for γ5,2(m).
The expression (51) allows us to obtain the total number of levels for j = l integer. One has

Qtot(l
5) = P(0; l, 5) =

∑
L

Q(L; l, 5) = 23l4

288
− 23l3

144
+ 13l2

144
+ l

12
− π (l )

3l

16
+ s0, (53a)

with s0 =
(

0,
3

32
,

17

36
,

11

32
, 0,

91

288
,

1

4
,

11

32
,

2

9
,

3

32
,

1

4
,

163

288

)
for mod(l, 12) = 0, 1 · · · 11 (53b)

= −mod(l, 2)

32
+ 4mod(l, 3) − 2mod(−l, 3)

27
+ mod(l, 4)

8
. (53c)

The corresponding number of levels for half-integer j has already been published, see Eq. (4.11) of Ref. [25].

V. APPLICATION TO THE SIX-FERMION CASE

To demonstrate the efficiency of the recurrence (1a), we provide as a last example its application to the derivation of
expressions for P(4 j − p; j, 6).

A. Case M greater than or equal to 4 j

The general formula (C4) becomes in the case N = 6 and p � 0

P(4 j − p; j, 6) = P6,0(p + 2 j) (54a)

=
t∑

s=1

P(4 j − p + 3s − j + (s − 2)/2; j − s/2, 5), (54b)

where t = �(2 j + p − 9)/6�. With the substitutions j → j − s/2, p → p − 5s + 2 the five-fermion expression for P (51)
provides, after basic algebraic manipulations, setting π (X ) = mod(X, 2),

P6,0(X ) = X 5

86400
− X 4

3840
+ 19X 3

12960
+ π (X )

X 2

384
+ ψ6,0(mod(X, 6))X + ϕ6,0(mod(X, 60)) with X = p + 2 j. (55)

The coefficient factoring X = p + 2 j is

ψ6,0(m) =
(

1

180
,− 629

17280
,− 7

540
,− 103

5760
,− 7

540
,− 629

17280

)
for m = (0, 1, . . . 5) (56a)

= 1

180
− 3mod(m, 2)

128
− mod(m, 3) + mod(−m, 3)

162
(56b)

= − 7

540
− 3mod(m, 2)

128
+ δ(mod(m, 3))

54
, (56c)

where we have used the Kronecker symbol δ(n) = 1 if n = 0, δ(n) = 0 otherwise. The term ϕ6,0(m) can be given explicitly as
a list of 60 values (0, 16889/518400, 583/32400, . . . ,−313/32400,−19319/518400). A simpler formulation is provided by
identifying this list to a linear combination of modulo functions. Solving a simple linear system leads to

ϕ6,0(m) = −5 mod(m, 2)

768
− mod(m, 3) − mod(−m, 3)

162
− mod(−m, 4)

32
+ 1 − δ

(
mod(m, 6)

)
6

− mod(m, 5)

25
. (56d)

One notices that ϕ6,0(m) is a function of mod(p + 2 j, 60). As a rule the zeroth-order term in the polynomial PN,k (X ) is a function
of mod(X, L(N − k)) where L(N − k) is the least common multiple of the integers (2, 3, . . . , N − k).
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B. Case M between 2 j and 4 j

The general formalism set in Sec. II leads us to write P6,1(p) = P6,1(p − 5) + P5,1(p − 4). Iterating this equation, with the
modulo 5 definition p = p0 + 5ν we get

P6,1(p) − P6,1(p0) = P6,1(p) (57a)

= (P6,1(p0 + 5ν) − P6,1(p0 + 5ν − 5)) + · · · + (P6,1(p0 + 5) − P6,1(p0)) (57b)

=
ν∑

i=1

P5,1(p0 + 5i − 4). (57c)

Using the known piecewise expression for P5,1(p) (42) we get, with the assumption P6,1(p0) = 0 for 0 � p0 � 4,

P6,1(p) = p5

14400
− p4

960
+ 13p3

4320
+ p2

96
− p

24
+ π (p)

p

64
+ ϕ6,1(mod(p, 60)). (58a)

The zeroth-order term ϕ6,1(m) is, separating the contribution with period 12 and the contribution with period 5,

ϕ6,1(m) = α6,1(mod(m, 12)) + mod(−m, 5)

25
, (58b)

α6,1(n) =
(

0,− 253

1728
,− 19

216
,− 7

64
,− 1

27
,− 125

1728
,

1

8
,− 253

1728
,

1

27
,− 7

64
,− 35

216
,− 125

1728

)
for n = 0, 1 · · · 11, (58c)

ϕ6,1(m) = mod(m, 2)

64
+ mod(m, 3) − mod(−m, 3)

27
− 1 − δ(mod(m, 4))

8
+ mod(−m, 5)

25
. (58d)

Using the above formulas one checks that P6,1(p) = 0 if −4 � p � 10, in agreement with the assumption (57a).

C. Case 0 � M � 2 j

The general formula (11) implies for N = 6, k = 2, and p − 2 j � 4,

P6,2(p − 2 j) = P6,2(p − 2 j − 4) + P5,2(p − 2 j − 3). (59)

Setting X = p − 2 j, and X = X0 + 4ν with ν integer, we obtain by repeated application of the above relation

P6,2(X ) − P6,2(X0) = (P6,2(X0 + 4ν) − P6,2(X0 + 4ν − 4)) + · · · + (P6,2(X0 + 4) − P6,2(X0)) (60a)

=
ν∑

i=1

P5,2(X0 + 4i − 3). (60b)

The known expression for P5,2(p) (50) provides, after basic algebra, and assuming P6,2(X0) = 0 for 0 � X0 � 3,

P6,2(X ) = X 5

5760
− X 4

768
− X 3

864
+ X 2

48
− X

60
− π (X )

X 2 − 3X

128
+ γ6,2(mod(X, 12)). (61a)

The last term of this expression is, for m = 0, 1 · · · 11, respectively,

γ6,2(m) =
(

0,− 121

6912
,− 11

432
,− 11

256
,− 1

27
,

391

6912
,− 1

16
,− 553

6912
,

1

27
,

5

256
,− 43

432
,− 41

6912

)
(61b)

= 13 mod(m, 2)

256
+ mod(m, 3) − mod(−m, 3)

27
− mod(m, 4)

32
. (61c)

With the above formulas one may easily check that P6,2(X ) = 0 for −4 � X � 7, in agreement with the recurrence hypothesis.
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FIG. 3. Polynomials P6,0, P6,1, and P6,2 and total distribution
function P(M; j, 6) for j = 11/2. The total magnetic quantum num-
ber M ranges from 0 to 18.

D. Summary and examples for the six-fermion case

Collecting the polynomial expressions (55), (58), and (61),
one has, in the six-fermion case,

P(M; j, 6)

= (6 j − M )5

86400
− (6 j − M )4

3840
+ 19(6 j − M )3

12960

+π (6 j − M )
(6 j − M )2

384

+ψ6,0(mod(6 j − M, 6))(6 j − M )

+ϕ6,0(mod(6 j − M, 60))

+ H (4 j − M )

[
(4 j − M )5

14400
− (4 j − M )4

960

+ 13(4 j − M )3

4320
+ (4 j − M )2

96
− (4 j − M )

24

+π (4 j − M )
(4 j − M )

64
+ ϕ6,1(mod(4 j − M, 60))

]

+ H (2 j − M )

[
(2 j − M )5

5760
− (2 j − M )4

768

− (2 j − M )3

864
+ (2 j − M )2

48
− (2 j − M )

60

−π (2 j − M )
(2 j − M )2 − 3(2 j − M )

128

+ γ6,2(mod(2 j − M, 12))

]
, (62)

FIG. 4. Polynomials P6,0, P6,1, and P6,2 and total distribution
function P(M; j, 6) for j = 23/2. The quantum number M varies
from 0 to 54.

where M varies from 0 to 6(2 j − 5)/2. The various phase
factors are provided by Eqs. (56), (58d), and (61c).

Of course as in the five-fermion case, such expressions
allows one to obtain the total number of levels of a given
angular momentum J , with the help of the usual relation
Q(J; j, 6) = P(J; j, 6) − P(J + 1; j, 6). We can also derive
the total number of levels from the expression P(0; j, 6).

Figures 3 and 4 display the three polynomials P6,k to-
gether with the total P(M; j, 6) distribution, respectively, for
j = 11/2 and j = 23/2. Contrary to the N = 5 case, the
distribution are plotted only for M � 0. For M < 0, the sym-
metry property P(−M; j, 6) = P(M; j, 6) must be used. One
also notices that the distributions undergo moderate changes
when j increases from 11/2 to 23/2. The ratios P6,1(4 j −
M )/P6,0(6 j − M ) and P6,2(2 j − M )/P6,0(6 j − M ) decreasing
functions of M. For M � 0, the former ratio is about 1, while
the latter amounts to roughly one order of magnitude, as can
be checked on the above-mentioned analytical forms.

E. Number of levels with given total angular
momentum for six fermions

The number of levels with total angular momentum J is
given by the usual formula Q(J; j, 6) = P(J; j, 6) − P(J +
1; j, 6). From the expansion (2), one may write

Q(J; j, 6) = Q6,0(6 j − J ) − H (4 j − J )Q6,1(4 j − J )

+ H (2 j − J )Q6,2(2 j − J ). (63)

For J � 4 j, using the value P60(X ) given by Eq. (55),
simple algebraic manipulations allows us to write,
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if X = p + 2 j = 6 j − J , then

Q6,0(X ) = X 4

17280
− X 3

864
+ X 2

288
+ π (X )

X 2

192
+ ψ60(mod(X, 6))X + φ60(mod(X, 60)), (64a)

ψ60(m) = 1

24
− 5mod(m, 2)

96
− mod(−m, 3)

54
, (64b)

φ60(m) = 13mod(m, 2)

384
− mod(m, 3) − 4mod(−m, 3)

54
+ mod(m, 4) − mod(−m, 4)

32

−mod(m, 5) + mod(−m, 5)

25
+ mod(−m, 6)

36
. (64c)

For 2 j � J � 4 j, setting X = 4 j − M, the evaluation of P61(X ) − P61(X − 1) from Eq. (58) leads to

Q61(X ) = X 4

2880
− 7X 3

1440
+ 23X 2

1440
− X

120
+ π (X )

X

32
+ φ61(mod(X, 60)). (65a)

The constant term can be expressed as

φ61(m) = −3 mod(m, 2)

64
+ δ(mod(m − 2, 3))

9
− mod(−m, 4)

16
+ δ(mod(m − 1, 5))

5
. (65b)

For J � 2 j, we get, using P62(X ) provided by Eq. (61) and X = 2 j − J ,

Q6,2(X ) = X 4

1152
− X 3

144
+ X 2

72
− π (X )

X 2 − 4X

64
+ φ62(mod(X, 12)) (66a)

φ62(m) = 9 mod(m, 2)

128
+ δ(mod(m − 2, 3))

9
+ δ(mod(m, 4)) − 1

8
. (66b)

To get the total number of levels Qtot( j6) = ∑
J Q(J; j, 6), we use

Qtot( j6) = P(0; j, 6) = P6,0(6 j) − P6,1(4 j) + P6,2(2 j) (67)

and expressions (55), (58), and (61) for the P6,k (X ). After elementary algebra, we obtain

Qtot( j6) = P(0; j, 6) = 11 j5

450
− 11 j4

120
+ 31 j3

270
− j2

12
+ j

6
+ π (2 j)

(
j2

16
− 3 j

32

)
+ �6(mod(2 j, 60)), (68a)

where �6(m) = 43

128
mod(m, 2) + 2

27
(mod(m, 3) − mod(−m, 3)) − mod(m, 4)

16
− 2

25
mod(3m, 5). (68b)

If j = l is integer, then �6 receives a somewhat simpler expression. Knowing that mod(2l, 3) − mod(−2l, 3) = mod(l + 1, 3) −
1, mod(2l, 4) = 2mod(l, 2), and mod(6l, 5) = mod(l, 5) we finally get

�6(mod(2l, 60)) = −mod(l, 2)

8
+ 2

27
(mod(l + 1, 3) − 1) − 2

25
mod(l, 5). (69)

VI. CONCLUSION

In this work, we presented a method to determine the
distributions of the total magnetic quantum number M and of
the total angular momentum J without any restriction, apart
from the fact that the complexity of the calculation increases
with the number of fermions N . The method boils down
to closed-form expressions as piecewise polynomials which
obeys simple recurrence relations. An interesting fact is that
the closed-form expressions obtained here or in Ref. [25] can
be formulated such that they apply for half-integer as well as
integer momenta j. Explicit expressions for the M-distribution
are provided by Eqs. (27), (51), and (62) for N = 4, 5, and 6,
respectively. Formulas were also provided for the distribution
of the total angular momentum J .

In a general way, the relations established for the piecewise
polynomials can be implemented in an algorithm that would
enable one to determine the distribution of angular momen-
tum M whatever the number of fermions. The techniques
presented here can be generalized to the case of two angular
momenta, for instance to determine the number of states with
a given total spin I and isospin T for N nucleons in a single- j
shell [27].

It is worth mentioning that Zhao and Arima [16] proved
that the number of states with a given value of Jmax − J of N
fermions in a j orbit is equal to the number of states of N spin-
� bosons with total spin L, the value of Lmax − L (Lmax = N�)
being equal to Jmax − J . In the present work we choose, for
simplicity, to carry out the derivations for fermions, but the
results can also be extended to bosons.
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TABLE I. Elements for computing P( j − p; j, 3) if p � 0 using sum (A3). See main text for details.

m 0 1 2 3 4 5

Lowest term 1 1 2 1 1 2
Highest term 3ν − 1 3ν 3ν 3ν + 1 3ν + 1 3ν + 2
Missing terms 3i 3i + 2 3i + 1 3i 3i + 2 3i + 1
Sum 3ν2 3ν2 + ν 3ν2 + 2ν 3ν2 + 3ν + 1 3ν2 + 4ν + 1 3ν2 + 5ν + 2

A priori, it is possible to relate the total number of levels Qtot( jN ) in a jN configuration to sums involving the coefficients of
fractional parentage, which is likely to yield sum rules for 3n j symbols or recoupling coefficients. We already applied that idea
[31] previously to the three- and four-fermion cases, and it turns out that the corresponding sum rules involve 3n j coefficients
up to n = 2 and n = 3, respectively [25,26]. For the five- and six-fermion cases, one may expect higher 3n j coefficients (12 j,
15 j, etc.), which suggests rather tedious calculations, but would definitely be worth investigating.

APPENDIX A: THREE-TERM RECURRENCE APPLIED TO THE THREE-FERMION CASE

The aim of this Appendix is twofold. First, it illustrates the general method sketched in Sec. II. Then it provides the values of
the polynomials P3,0(X ), P3,1(X ) required to initiate the recursion on N .

If N = 3, then one has from the relations (C4) and (C3)

P(M; j, 3) =
t∑

s=1

P(M + 2s − j − 1, j − s/2, 2). (A1)

As in Ref. [25] we use the notation M = j − p, so that

t =
⌊

j − M

3

⌋
=

⌊
2 j + p

3

⌋
. (A2)

Noting that M = M + 2s − j − 1 = 2s − p − 1 is positive, the general term of the above sum is obtained from the well-known
value P(M; j, 2) = � j + 1/2 − |M|/2�. We consider first the p � 0 case (or M � j), so that M � 0. We write 2 j + p = 6ν + m
with ν, m integers and get

P(2s − p − 1, j − s/2, 2) =
⌊

2 j + p

2
− 3s

2
+ 1

⌋
=

⌊
3ν + m

2
− 3s

2
+ 1

⌋
(A3)

to be summed from s = 1 to t = 2ν + �m/3�. One must separate six cases according to m. For instance, if m = 0, then the sum
(A1) involves the terms 3ν − 1, 3ν − 2, 3ν − 4, · · · 4, 2, 1. It involves all integers i from 1 to 3ν − 1, except those verifying
mod(i, 3) = 0. This sum is easily computed as

P( j − p; j, 3)|m=0 =
3ν−1∑
i=1

i −
ν−1∑
i=1

3i = 3ν2 = (2 j + p)2

12
. (A4)

The various cases m = 0 to 5 are summed up in Table I. One obtains from this table

P( j − p; j, 3) = (2 j + p)2

12
+ α(mod(2 j + p, 6)), (A5a)

with α(m) =
(

0,− 1

12
,−1

3
,

1

4
,−1

3
,− 1

12

)
if m = (0, 1, 2, 3, 4, 5) (A5b)

= − 1

12
− δ(mod(m, 2))

4
+ δ(mod(m, 3))

3
(A5c)

= mod(m, 2)

4
− mod(m, 3) + mod(−m, 3)

9
, (A5d)

where δ(n) is the Kronecker symbol. This agrees with Ref. [25] but here we do not assume j half-integer.
In the case p � 0 as in Ref. [25] we write the assumption, to be verified by recurrence,

P( j − p; j, 3) = (2 j + p)2

12
+ α(2 j + p) − H (p)P3,1(p), (A6)
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where H (p) is the Heaviside function (H (p) = 1 if p � 0, 0 otherwise) and P3,1(p) a function to be determined. Using the value
P( j + 1; j, 3) mentioned in Ref. [25] one notices that P3,1(1) = 0. Putting such form in the basic relation (1a), we get, for p � 2
(which allows us to drop the Heaviside functions),

(2 j + p)2

12
+ α(2 j + p) − P3,1(p) = (2 j + p − 3)2

12
+ α(2 j + p − 3) − P3,1(p − 2) + P(1 − p; j − 1/2, 2). (A7)

From the value P(M; j, 2) = � j + 1/2 − |M|/2� one easily checks

P(1 − p; j − 1/2, 2) = P(p − 1; j − 1/2, 2) =
⌊

j − p − 1

2

⌋
= j − p

2
+ π (2 j + p)

2
. (A8)

It is interesting to note that the above relation holds not only for p � j but also for p � 2 j. Using the property α(m) −
α(mod(m − 3, 6)) = −(−1)m/4, one obtains from Eq. (A7), if 2 � p � 2 j,

P3,1(p) − P3,1(p − 2) = p − 1, (A9)

which does not depend on j as expected from the general analysis of Sec. II. Separating the cases p even and odd, we get

P3,1(p) =
{

P3,1(2q) − P3,1(0) = ∑q
i=1(2i − 1) = q2 = p2/4 if p = 2q,

P3,1(2q + 1) − P3,1(1) = ∑q
i=1(2i) = q(q + 1) = p2/4 − 1/4 if p = 2q + 1.

(A10)

One has thus obtained

P( j − p; j, 3) = (2 j + p)2

12
+ α(2 j + p) − H (p)

(
p2

4
− π (p)

4

)
, (A11)

with −2 j + 3 � p � 2 j and α given by Eq. (A5d). This expression agrees with Eq. (2.23) of Ref. [25]. The interest of the
present derivation is that it applies even if j is integer. In addition we have established the formula remains valid for − j � M =
j − p � 3 j − 3, though it must not be applied in the full M-range, namely for p > 2 j or M < − j.

Such formula with j = p = l integer allows one to obtain the total number of levels for three fermions. One has

P(0; l, 3) =
∑

L

Q(L; l, 3) =
{

l2/2 if l is even
(l2 + 1)/2 if l is odd

=
⌊

l2 + 1

2

⌋
. (A12)

The corresponding formula for half-integer j has already been obtained, using fractional parentage coefficients [26] or recurrence
relations [25].

APPENDIX B: MAXIMUM VALUES OF THE INTERVAL INDICES IN THREE-TERM RECURRENCES

The aim of this Appendix is the study of the maximum k indices according to the sum representation (2) for each P function
involved in the recurrence (1a). Using the function kmax defined by Eq. (3), we set

k1 = kmax(M, j, N ), k2 = kmax(M + N/2, j − 1/2, N ), k3 = kmax(M − j + (N − 1)2, j − 1/2, N − 1). (B1)

Let us show that the three indices k1, k2, and k3 for relation (1a) are equal or differ by 1. Here also we limit ourselves to M � 0.
Let us first set a1 = (N j − M )/(2 j), a2 = (N j − M − N )/(2 j − 1) and a3 = (N ( j − 1) + 1 − M )/(2 j − 1), so that k1 = �a1�,
k2 = �a2� as well as k3 = �a3�. We have

a1 − a2 = M + N j

2 j(2 j − 1)
. (B2)

Since M � (2 j + 1 − N )N/2, we get

M + N j � 2N j − N (N − 1)

2
= N (2 j − (N − 1)/2) � N (2 j − 1) if N � 3. (B3)

Therefore, a1 − a2 � N/(2 j) � 1 if N � 3 and N � 2 j (we omit the trivial full-shell case). As a consequence, k1 � k2 and
k1 − k2 is equal to 0 or 1. In the same way a3 − a2 = 1/(2 j − 1), so that 0 � a3 − a2 � 1, and taking integer parts, k3 � k2 and
k3 − k2 is equal to 0 or 1. We have also, using the same upper value for M as above

a1 − a3 = M + (N − 2) j

2 j(2 j − 1)
� (N − 1)(2 j − N/2)

2 j(2 j − 1)
� N − 1

2 j
� 1 if N � 2. (B4)

Furthermore, assuming again N � 2, one has M + (N − 2) � 0, so that 0 � a1 − a3 � 1, and k1 − k3 is equal to 0 or 1.
Therefore, the relation k1 � k3 � k2 always holds.
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If k1 = k2 + 1, then for the arguments of the Heaviside functions, one has X1 = X (k1) = N j − M − 2k1. j � 0 and N ( j −
1/2) − M − N/2 − (2 j − 1)k1 < 0. This means that X ′(k2) � 0 but X ′(k1) < 0, or equivalently N j − M � 2k1. j > N j − M −
N + k1. This corresponds to 0 � X1 � N − k1 − 1. From Eq. (12) we know that in such conditions PN,k1 (X1) = 0.

The relations on the maximum indices in the recurrence (1b) are obtained in a quite similar way. Defining now

k′
1 = kmax(M, j, N ), k′

2 = kmax(M − N/2, j − 1/2, N ), k′
3 = kmax(M + j − (N − 1)2, j − 1/2, N − 1), (B5)

one has then k′
1 � k′

3 + 1 � k′
2, and k′

2 − k′
1 does not exceed 1. In the “general” case, one has k′

1 = k′
3 + 1 = k′

2, and if k′
2 − k′

1 = 1
one checks that the corresponding PN,k vanishes.

APPENDIX C: ALTERNATE METHOD FOR DERIVING THE M DISTRIBUTION IF M � (N − 2) j

This alternate method also relies on the use of Eq. (1a). The general procedure to get P values from this recurrence is to apply
it again to the P(M + N/2; j − 1/2, N ) quantity in the second member. Iterating Eq. (1a) n times one gets

P

(
M + n − 1

2
N ; j − n − 1

2
, N

)
= P

(
M + n

2
N ; j − n

2
, N

)
+ P

(
M + n

2
N − j + n − 2

2
; j − n

2
, N − 1

)
. (C1)

This allows us to express P(M; j, N ) as the sum

P(M; j, N ) = P

(
M + τ

2
N ; j − τ

2
, N

)
+

τ∑
s=1

P

(
M + s

2
N − j + s − 2

2
; j − s

2
, N − 1

)
. (C2)

Here we choose τ = t , t being such that P(M + tN/2; j − t/2, N ) = 0 while P(M + (t − 1)/2N ; j − (t − 1)/2, N ) �= 0. In
other words, one imposes M + tN/2 > Jmax( j − t/2, N ) = N ( j − t/2) − N (N − 1)/2, and M + (t − 1)N/2 � Jmax( j − (t −
1)/2, N ) = N ( j − (t − 1)/2) − N (N − 1)/2. Noting the integer part of x as �x�, one gets

t =
⌊

j − N − 1

2
− M

N

⌋
+ 1 =

⌊
N j − M − (N − 3)N/2

N

⌋
. (C3)

Therefore, if M � (N − 2) j, then the P(M; j, N ) distribution is given by

P(M; j, N ) =
t∑

s=1

P

(
M + s

2
N − j + s − 2

2
; j − s

2
, N − 1

)
. (C4)
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