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In this study, we calculate the nuclear matrix elements (NMEs) for the light neutrino-exchange mechanism
of neutrinoless double beta decay (0νββ) of 124Sn within the framework of the interacting nuclear shell model,
using the effective shell model Hamiltonian GCN5082. The NMEs are calculated employing both closure and
nonclosure approaches. For the intermediate nucleus 124Sb, effects of energy of 100 states for each Jπ

k = 0+ to
11+ and 2− to 9− (�Jk = 1) are explicitly included in the nonclosure approach. The optimal closure energy,
which reproduces nonclosure NMEs using the closure approach, is found to be ≈ 3 MeV for 0νββ decay
of 124Sn. The NMEs for 0νββ decay of 124Sn did not fully converge with 100 intermediate states for each
spin-parity of 124Sb. A comparison of NMEs and lower limits of T 0ν

1/2 with some of the recent calculations
is presented. Further, to gain a comprehensive understanding of the role of nuclear structure on the 0νββ

decay, the dependence of NMEs on the spin-parity of the intermediate states, coupled spin-parity of neutrons
and protons, and the number of intermediate states, is explored. The estimated lower limit on the half-life
T 0ν

1/2 ≈ 7.49 × 1026 yr provides valuable input for the experimental investigations of 0νββ decay of 124Sn in
India and elsewhere.

DOI: 10.1103/PhysRevC.109.024301

I. INTRODUCTION

The 0νββ decay is a rare weak nuclear decay that can
occur in certain even-even nuclei. During this process, two
neutrons inside the nucleus are converted into two pro-
tons and two electrons without emitting any neutrinos. This
phenomenon violates the lepton number conservation, and
a neutrino is involved as a virtual intermediate particle
[1–4]. Observation of this rare decay process would pro-
vide strong evidence that neutrinos are Majorana particles.
The Majorana nature of neutrinos is a widely favored for
the explanation of the smallness of neutrino mass in many
theoretical particle physics models. Also, the absolute mass
scale of neutrinos is not yet known, and currently, only an
upper limit has been derived. The 0νββ process is also ex-
pected to provide information on the absolute mass scale
of neutrinos. The current best upper limit on the effective
Majorana neutrino mass 〈mββ〉, extracted from the measured
T 0ν

1/2(136Xe) � 2.3 × 1026 yr using quasiparticle random phase
approximation nuclear matrix element (NME), is 156 meV
[5]. Whereas the predicted upper limit of mν from the tritium
β decay experiment KATRIN is 0.8 eV [6].
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Several decay mechanisms have been proposed for the
0νββ decay process [3]. The decay rate for all 0νββ decay
mechanisms is related to NMEs and the absolute mass of the
neutrino. These NMEs are typically calculated using theo-
retical nuclear many-body models [4]. Some of the widely
used models are the quasiparticle random phase approxima-
tion (QRPA) [7], the interacting shell-model (ISM) [8–11], the
interacting boson model (IBM) [12,13], the generator coordi-
nate method (GCM) [14–16], the energy density functional
(EDF) theory [14,15], the relativistic energy density func-
tional (REDF) theory [15,16], and the projected Hartree-Fock
Bogoliubov model (PHFB) [17]. Recently, some ab initio cal-
culations of NMEs have been performed for the 0νββ decay
of the lower mass nuclei (A = 6–12) using the variational
Monte Carlo (VMC) technique [18–20].

In India, the efforts have been initiated for the TIN.TIN
experiment (The INdia’s TIN detector) to search for 0νββ

decay in 124Sn [21], at the proposed underground facility of
India-based Neutrino Observatory (INO) [22]. This motivates
us to improve the reliability of NMEs for the 0νββ decay
of 124Sn using the nuclear shell model, which will aid in
optimizing the experiment setup and extracting the absolute
neutrino mass. In the present work, we focus on the simplest
and standard light neutrino-exchange mechanism.

The 0νββ decay of 124Sn occurs as

124Sn →124Te + e− + e−. (1)
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Previously, the NMEs for the light neutrino-exchange mech-
anism of 0νββ decay for 124Sn was calculated using closure
approximation in the nuclear shell model in Refs. [8,9,23–27].
In the closure approximation, the effects of excitation energy
of all the virtual intermediate states of the 0νββ decay were
approximated with constant closure energy, thereby avoiding
the complexity of calculating a large number of intermediate
states, which can be computationally challenging for nuclear
shell model, particularly for higher mass isotopes such as
124Sn. The difficult part of closure approximation is picking
the correct closure energy which has no definite method yet
and can greatly influence the accuracy of NMEs.

In recent years, the nonclosure approach has gained
popularity due to increasing computational resources. This
approach truly includes the real effects of many allowed ex-
citation energy states for each spin-parity of the intermediate
nucleus. This way we can improve the reliability of NMEs
for 0νββ decay and avoid the problem of picking the correct
closure energy value. This approach was first applied in the
nuclear shell model calculations for 0νββ decay for 48Ca [28].
Subsequently, it was also used for 76Ge [29,30], 82Se [31], and
48Ca [32,33].

Although the nonclosure approach has been extensively
used for lower mass region nuclei, it has not been applied
for 0νββ decay candidates like 124Sn in the higher mass
region. The present study employs the nonclosure approach
to calculate the NMEs of 124Sn using the nuclear shell model,
with an aim of examining the effects of excitation energy on a
large number of intermediate states.

This paper is organized as follows. Section II outlines the
theoretical formalism for computing the NMEs for 0νββ de-
cay, and presents the expression for the decay rate. In Sec. III,
we describe the nonclosure approach to NMEs calculation,
which is the method employed in this study. Section IV
presents the results of our calculations and provides a dis-
cussion of the findings, including a comparison to previous
studies. Finally, in Sec. V, we summarize the main conclu-
sions of our work.

II. THEORETICAL FORMALISM
OF 0νββ DECAY RATE AND NME

The decay rate for the light neutrino-exchange mechanism
of 0νββ decay can be written as [34]

[
T 0ν

1
2

]−1 = G0νg4
A|M0ν |2

( 〈mββ〉
me

)2

, (2)

where G0ν is the well-known phase-space factor that can be
calculated accurately [35], M0ν is the total nuclear matrix ele-
ment for the light neutrino-exchange mechanism, and 〈mββ〉 is
defined by the neutrino mass eigenvalues mk and the neutrino
mixing matrix elements Uek , given in Eq. (3) of Ref. [32].

The total nuclear matrix element M0ν can be expressed
as the sum of Gamow-Teller (MGT ), Fermi (MF ), and tensor
(MT ) matrix elements, as given by [34]

M0ν = MGT −
(

gV

gA

)2

MF + MT , (3)

where gV and gA are the vector and axial-vector constants,
respectively. In the present work, gV = 1 and the bare value
of gA = 1.27 is used. The matrix elements MGT , MF , and MT

of the scalar two-body transition operator Oα
12 of 0νββ decay

can be expressed as [10]

Mα = 〈 f |Oα
12|i〉, (4)

where α ∈ F, GT, T , and in the present case, |i〉 corresponds
to the 0+ ground state of the parent nucleus 124Sn, and | f 〉 cor-
responds to the 0+ ground state of the granddaughter nucleus
124Te.

The calculation of two-body matrix elements (TBMEs) for
0νββ decay involves scalar two-particle transition operators
Oα

12 that incorporate both spin and radial neutrino potential
operators. These operators are given by [28]

OGT
12 = τ1−τ2−(σ1.σ2)HGT (r, Ek ),

OF
12 = τ1−τ2−HF (r, Ek ), (5)

OT
12 = τ1−τ2−S12HT (r, Ek ),

where τ is isospin annihilation operator, r = r1 − r2 is the
internucleon distance of the decaying nucleons, and r = |r|.
The operator S12 is defined as S12 = 3(σ1.r̂)(σ2.r̂) − (σ1.σ2).
For the light-neutrino exchange mechanism of 0νββ decay,
the radial neutrino potential with explicit dependence on the
energy of the intermediate states is given by [28]

Hα (r, Ek ) = 2R

π

∫ ∞

0

fα (q, r)qdq

q + Ek − (Ei + E f )/2
, (6)

where R is the radius of the parent nucleus, q is the momentum
of the virtual Majorana neutrino, Ei, Ek , and E f are the ener-
gies of initial, intermediate, and final nuclei, respectively. The
fα (q, r) = jp(q, r)hα (q2), where jp(q, r) is spherical Bessel
function (p = 0 for Fermi and GT, and p = 2 for tensor
NMEs). The hα (q2) accounts for the effects of finite nucleon
size (FNS) and higher-order currents (HOC) which are given
in Refs. [34,36]. In the expression of hα (q2), the parameters
MV and MA are 850 MeV and 1086 MeV, respectively, while
μp − μn is 4.7 is used in the calculation [37].

In the calculation of the NMEs for 0νββ decay, it is also
necessary to take into account the effects of short-range cor-
relations (SRC). A standard method to include SRC is via a
phenomenological Jastrow-like function [36,38]. By includ-
ing the SRC effect in the Jastrow approach, one can write the
NMEs of 0νββ defined in Eq. (4) as [36]

M0ν
α = 〈 f | fJastrow(r)Oα

12 fJastrow(r)|i〉, (7)

where the Jastrow-type SRC function is defined as

fJastrow(r) = 1 − ce−ar2
(1 − br2). (8)

In literature, three different SRC parametrizations are used:
Miller-Spencer, charge-dependent Bonn (CD-Bonn), and Ar-
gonne V18 (AV18) to parametrize a, b, and c [37]. The
parameters a, b, and c in different SRC parametrizations are
given in Table I. This approach of using the Jastrow-like
function to include the effects of SRC is extensively used in
Refs. [27,37,39]. The authors of Refs. [40,41] have recently
proposed another method namely, the unitary correlation op-
erator method (UCOM) to estimate the effects of SRC. The
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TABLE I. Parameters for the short-range correlation (SRC)
parametrization of Eq. (8).

SRC type a b c

Miller-Spencer 1.10 0.68 1.00
CD-Bonn 1.52 1.88 0.46
AV18 1.59 1.45 0.92

present study focuses only on the Jastrow-type approach to
estimate the effects of SRC. The detailed descriptions of in-
corporating the SRC effects in different approaches can be
found in Refs. [36,38].

III. THE NONCLOSURE APPROACH
OF NME CALCULATIONS

In the nonclosure approach, the neutrino potential of
Eq. (6) is computed explicitly by considering energy Ek

of a large number of states |k〉 of the virtual intermediate
nucleus which is 124Sb for the present case. The term
Ek − (Ei + E f )/2 in the denominator of the neutrino potential
of Eq. (6) is written as a function of excitation energy (E∗

k )
of the intermediate state (|k〉) as Ek − (Ei + E f )/2 →
Qββ (0+)/2 + 	M + E∗

k [28], where Qββ (0+) is the Q value
corresponding to the 0νββ decay of 124Sn, and 	M is the

mass difference between the 124Sb and 124Sn isotopes and
E∗

k is the excitation energy of the intermediate states |k〉 with
different allowed spin-parities of 124Sb.

If one approximates the term Ek − (Ei + E f )/2 in the de-
nominator of the neutrino potential of Eq. (6) with a constant
closure energy (〈E〉) value such that Ek − (Ei + E f )/2 →
〈E〉, it is known as closure approximation [37]. The closure
approximation is widely used in the past because it eliminates
the complexity of calculating a large number of virtual in-
termediate states, which can be computationally challenging,
particularly for higher mass region isotopes using the nuclear
shell model. The difficult part of closure approximation is
picking the right value of constant closure energy 〈E〉 which
greatly influences the accuracy of the calculated NMEs. In this
paper, we focus on using the nonclosure approach to include
the real effects of at least 100 states for each spin-parity of the
virtual intermediate nucleus 124Sb. The NMEs with the clo-
sure method are also calculated with the closure energy near
the optimal value for which NMEs in closure and nonclosure
methods overlap.

The method based on the nonclosure approach is known as
the running nonclosure method [28] as we can only calculate
a finite number of intermediate states out of all possibilities
with the current computational limit. The partial NMEs for
the transition operator of Eq. (5) in the running nonclosure
method is defined as [33]

Mα (Jk, J, E∗
k ) =

∑
k′

1k′
2k1k2

√
(2Jk + 1)(2Jk + 1)(2J + 1)(−1) jk1+ jk2+J

{
jk1′ jk1 Jk

jk2 jk2′ J

}
OBTD(k, f , k′

2, k2, Jk )

× OBTD(k, i, k′
1, k1, Jk )〈k′

1, k′
2 : J||Oα

12||k1, k2 : J〉. (9)

Here, k1 represents a set of spherical quantum numbers
(n1, l1, j1) for an orbital, similarly for k2, k′

1, and k′
2. In

the present study, k1 (and others) has the spherical quantum
numbers for 0g9/2, 1d5/2, 1d3/2, 2s1/2, and 0h11/2 orbits for
jj55 model space. The J is the allowed spin-parity of the
two decaying neutrons and created protons and Jk is the al-
lowed spin-parity of the intermediate states |k〉. The complete
expression of non-anti-symmetric reduced TBME (〈k′

1, k′
2 :

J||Oα
12||k1, k2 : J〉) for running nonclosure method is given in

Ref. [28]. The one-body transition densities (OBTD) are the
matrix elements of neutron annihilation and proton creation
operators which in the proton-neutron formalism is given
in Eq. (41) of Ref. [33]. Finally, in the running nonclosure
method, the NMEs are calculated by summing over all inter-
mediate states |k〉 with excitation energies E∗

k up to a certain
cutoff value Ec as Mα (Ec) = ∑

Jk ,J,E∗
k �Ec

Mα (Jk, J, E∗
k ) [28].

The choice of the cutoff energy Ec is important, as it affects
the convergence and accuracy of the calculation. Typically, the
NMEs are found to be almost constant for values of Ec large
enough to include all relevant intermediate states.

IV. RESULTS AND DISCUSSION

The nuclear shell model diagonalization is performed us-
ing shell model code KSHELL [46] to calculate the necessary

wave functions and energies of the initial, intermediate, and
final nuclei of 0νββ decay of 124Sn. The calculated wave
functions are further used to calculate the OBTD that appears
in the expression of NME for 0νββ decay. The shell model
Hamiltonian GCN5082 [47] of jj55 model space is used as
an input in the calculations. The GCN5082 was also used in
the shell model calculations of Ref. [27]. Another important
Hamiltonian of jj55 model space is singular value decom-
position (SVD) which is used in shell model calculations of
Ref. [9]. The SVD Hamiltonian is not publicly available at the
time of our calculations, so we are not able to use it in our
calculations. For each allowed spin-parity Jπ

k of the virtual in-
termediate state 124Sb in the 0νββ decay of 124Sn, we consider
the first 100 states. We then calculate the non-anti-symmetric
reduced TBMEs for the running nonclosure method using a
program that we have written.

Table II shows the different types of calculated NMEs for
0νββ decay of 124Sn using the nonclosure method in the
nuclear shell model. The corresponding results for NMEs in
the closure method with closure energy 〈E〉 = 3.0 MeV which
is near the optimal value (as discussed later) are also given
for comparison. The effects of FNS and HOC are included
in all of these NMEs. In addition, results of NMEs for three
different parametrizations of SRC (Miller-Spencer, CD-Bonn,
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TABLE II. Nuclear matrix elements MF , MGT , MT , and Mν for
0νββ decay of 124Sn, calculated with GCN5082 interaction using
running nonclosure and running closure methods for different SRC
parametrizations. The closure energy 〈E〉 = 3.0 MeV is used for
closure NMEs, which is near to the optimal value as discussed later.

NME type SRC type Nonclosure NME Closure NME

MF None −0.529 −0.529
MF Miller-Spencer −0.369 −0.369
MF CD-Bonn −0.564 −0.565
MF AV18 −0.520 −0.520
MGT None 1.961 1.954
MGT Miller-Spencer 1.414 1.410
MGT CD-Bonn 2.012 2.008
MGT AV18 1.860 1.854
MT None 0.016 0.015
MT Miller-Spencer 0.015 0.014
MT CD-Bonn 0.015 0.014
MT AV18 0.015 0.014
M0ν None 2.304 2.297
M0ν Miller-Spencer 1.658 1.654
M0ν CD-Bonn 2.377 2.372
M0ν AV18 2.198 2.192

and AV18) are also given. It is observed that the GT-type
NMEs dominate over the Fermi and tensor-type NMEs, and
there is a significant difference in the NMEs depending on the
type of SRC used. The SRC type: none represents the case
where only the effects of FNS and HOC are considered. For
Miller-Spencer type SRC, the impact of SRC is most promi-
nent. We see no significant difference in NMEs for closure and
nonclosure methods as the closure energy 〈E〉 = 3.0 MeV is
used which is near the optimal value for which nonclosure
and closure NME overlaps. In the latter part of the discussion,
we will describe the method to find the exact optimal closure
energy for which closure and nonclosure NMEs overlap.

In Table III, we show the total NME, calculated with ISM
in nonclosure approximation for CD-Bonn SRC and the T 0ν

1/2

(lower limit) of 0νββ decay of 124Sn for the light neutrino-
exchange mechanism along with the reported results of NMEs
and T 0ν

1/2 (lower limits) with different many-body nuclear mod-
els, SRC, and approximation. The NMEs are found to vary
in the range of 2.15–5.30. In Ref. [9], the total NME (M0ν)
for the CD-Bonn type of SRC was calculated to be 2.17 with
closure energy of 3.5 MeV using the shell model, whereas
the NME was reported to be 2.62 in Ref. [27], which was
calculated in the shell model with UCOM SRC in closure
approximation. The calculated M0ν is 2.38 in the present study
using the shell model in nonclosure approach for CD-Bonn
SRC, which is about 10% larger as compared to the results of
Ref. [9] and about 10% smaller as compared to the results
of Ref. [27]. These differences may arise from the choice
of Hamiltonian, and closure energy used in the calculations
of earlier studies. The NMEs calculated with other nuclear
models than the shell model are larger and it’s still an open
quest to minimize the gaps of this large difference of NMEs
in different models.

With the calculated NMEs and considering the upper
limit of 〈mββ〉 of 50 meV, the lower limit of T 0ν

1/2 (the light
neutrino-exchange mechanism) of 124Sn is predicted to be
7.49 × 1026 yr. The limit of 〈mββ〉 ∼ 50 meV is discussed
in detail in Ref. [5] and also in Refs. [48–50]. The fu-
ture 0νββ decay experiments for various isotopes, including
124Sn, will need a sensitivity better than 50 meV to probe
the Majorana nature of neutrinos in the inverted mass order-
ing (IO) region, extending beyond the quasidegenerate mass
region. Therefore, in the present study, the lower limit of
T 0ν

1/2(124Sn) has been estimated using the upper limit of 〈mββ〉
as 50 meV.

A. Dependence of NMEs on spin-parity (Jπ
k )

of the intermediate states of 124Sb

To study the contribution of each allowed spin-parity state
of the virtual intermediate nucleus 124Sb on the NMEs, we use

TABLE III. A comparison of NMEs (the light neutrino-exchange mechanism) and lower limits of T 0ν
1/2(124Sn) calculated with different

many-body nuclear models. The phase space factor G0ν = 9.06 × 10−15(yr−1) is used in the current study which is taken from Ref. [42].
Also, considering the upper limit of 50 meV for 〈mββ〉 from the inverted ordering (IO) band of neutrino mass from Fig. 3 of Ref. [5],

|ηvL| = 〈mββ 〉
me

≈ 10−7 is used. The lower limits of T 0ν
1/2 for other references are recalculated with the phase space factor and |ηvL| of the present

study, but with the respective NME and gA quoted in those references.

Nuclear model Reference Approximation gA SRC type NME (M0ν) T0ν
1/2 (yr) (lower limit)

ISM Current study Nonclosure 1.270 CD-Bonn 2.38 7.49 × 1026

ISM Ref. [9] Closure 1.270 CD-Bonn 2.17 9.01 × 1026

ISM Ref. [27] Closure 1.250 UCOM 2.62 6.59 × 1026

GCM Ref. [24] Closure 1.254 CD-Bonn 2.76 5.86 × 1026

IBM-2 Ref. [43] Closure 1.269 AV18 3.19 4.18 × 1026

QRPA Ref. [44] Closure 1.260 CD-Bonn 5.30 1.56 × 1026

QRPA Ref. [45] Closure 1.269 AV18 2.56 6.49 × 1026

QRPA Ref. [45] Closure 1.269 CD-Bonn 2.91 5.03 × 1026

EDF Ref. [14] Closure 1.250 UCOM 4.81 1.95 × 1026

REDF Ref. [16] Closure 1.254 None 4.33 2.38 × 1026
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FIG. 1. The figure shows the contribution through different spin-
parity of virtual intermediate states of 124Sb (Jπ

k ) in NMEs for the
light neutrino-exchange mechanism of 0νββ decay of 124Sn. The
NMEs are calculated using the running nonclosure method with
GCN5082 effective interaction and CD-Bonn SRC parametrization.

the expression of Eq. (9) and calculate the partial NMEs as

Mα (Ec, Jk ) =
∑

J,E∗
k �Ec

Mα (Jk, J, E∗
k ). (10)

Here, Jπ
k represents the spin-parity state of the intermediate

nucleus 124Sb. Figure 1 shows the dependence of the different
types of NMEs on the spin-parity states of 124Sb. We find
that for all Fermi-type NMEs, the contribution through each
Jπ

k is negative, whereas, for all Gamow-Teller-type NMEs,
the contribution is positive. In the case of tensor NMEs, the
contributions from different Jπ

k states come in the opposite
phase, reducing the total tensor NMEs.

We observe that the most dominant contribution to MF type
NMEs comes from the 2+ state, with significant contributions
from 4+, 6+, 3−, 5−, and 7−, states. For MGT type NMEs, all
Jπ

k contribute significantly, except for the 0+ state. The most
dominant contributions come through 1+ state. For MT type
NMEs, prominent negative contributions come from 3+, 5+,
and 7+ states, with the contributions from 3+ state being the
most dominant. Contributions from 2+, 4+, 6+, 3−, 5−, 7−,
and 9− states are all positive. We observe a similar pattern of
variation of different types of NMEs with Jπ

k for other types
of SRC parametrization as well.

B. Dependence of NMEs on coupled spin-parity (Jπ) of two
decaying neutrons and two created protons

We have also analyzed the dependence of NMEs on the
coupled spin-parity (Jπ ) of the two decaying neutrons and two
created protons in the decay. To do this, we use the running
nonclosure method with the CD-Bonn SRC parametrization

FIG. 2. Contribution through different coupled spin-parity of two
initial neutrons or two final created protons (Jπ ) in NMEs for the
light neutrino-exchange mechanism of 0νββ decay of 124Sn. The re-
sults show NMEs calculated in running the nonclosure method with
GCN5082 effective interaction for CD-Bonn SRC parametrization.

and write the NMEs as

Mα (Ec, J ) =
∑

Jk ,E∗
k �Ec

Mα (Jk, J, E∗
k ). (11)

The contributions of NMEs through different Jπ are shown
in Fig. 2. We observe that for all types of NMEs, the most
dominant contributions come from the 0+ and 2+ states. Addi-
tionally, the contribution from 0+ and 2+ states have opposite
signs, leading to a reduction in the total NMEs. There are also
small contributions from the 4+ and 6+ states, with almost
negligible contributions from odd-Jπ states. This is due to
the pairing effect, which is responsible for the dominance of
even-Jπ contributions [10].

C. Variation of NMEs for 0νββ with the cutoff number
of states (Nc) of 124Sb

To assess the impact of the number of states on the calcu-
lated NMEs, we examine the dependence of the NMEs on the
Nc for each allowed Jπ

k of 124Sb. We express the NMEs as a
function of Nc in the running nonclosure method as

Mα (Nc) =
∑

Jk ,J,Nk�Nc

Mα (Jk, J, Nk ), (12)

where Mα (Jk, J, Nk ) is the same as defined in Eq. (9).
The dependence of the different types of NMEs on the

cutoff number of excitation energy states (Nc) of 124Sb is
shown in Fig. 3 in both closure and nonclosure methods. In
the present study, we were able to consider Nc = 100 for each
allowed Jπ

k of 124Sb with our available computational facility.
It is observed that even with 100 intermediate states for each
spin-parity of 124Sb, the NMEs for 0νββ decay of 124Sn in
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FIG. 3. The figure shows the variation of (a) Fermi, (b) Gamow-Teller, (c) tensor, and (d) total NMEs for the 0νββ (the light neutrino-
exchange mechanism) of 124Sn with the cutoff number of excitation energy states (Nc) of the virtual intermediate nucleus 124Sb. The NMEs
are calculated using the total GCN5082 interaction for the CD-Bonn short-range correlation (SRC) parametrization in the running nonclosure
(dotted lines) and closure (solid lines) methods. The optimal value of the closure energy 〈E〉 ≈ 3.0 MeV is used for closure NMEs (see text
for details).

both closure and nonclosure methods did not exhibit full con-
vergence. However, the NME approaches near convergence
as the number of states increases. While the values of the
tensor-type NMEs are not yet saturated even at Nc = 100, this
is not a problem as the contribution from tensor-type NMEs
is negligible compared to the GT and Fermi-type NMEs. We
note that a similar dependence of NMEs on Nc is seen for other
SRC parametrizations.

It is crucial to emphasize that employing an optimal
closure energy value of 〈E〉 ≈ 3 MeV reproduced the non-
closure NMEs utilizing the closure method, across all
cutoff number of states for each spin-parity of the in-
termediate nucleus 124Sb. It is expected that the trend
of NME dependence on the cutoff number of states
for 124Sb, in both closure and nonclosure methodolo-
gies, may persist beyond 100 intermediate states for each
spin-parity of 124Sb. This further emphasizes the effectiveness
of the extracted optimal closure energy in reproducing nonclo-
sure NMEs using the closure approach, even when employing

a larger number of states for each spin-parity of 124Sb to
achieve superior convergence. This is one of the important
findings of this study.

D. Finding the optimal value of closure energy
for 0νββ decay of 124Sn

Here, we discuss the important issue of identifying the
optimal closure energy for which the NMEs in the closure
and nonclosure approaches overlap. In order to accomplish
this, we plot variations of Fermi, GT, tensor, and total NMEs
calculated using the closure approach for different SRC
parametrization with closure energy as shown in Fig. 4. The
nonclosure NMEs are also shown in Fig. 4. At the optimal
value of closure energy, there is a crossing of the nonclosure
and closure NMEs as indicated by a vertical magenta line in
Fig. 4.

The optimal closure energy for Fermi-type NMEs is
determined to be around 3.1 MeV for various SRC
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FIG. 4. The figure shows the dependence of closure NMEs of (a) Fermi, (b) Gamow-Teller, (c) tensor, and (d) total types with closure
energy 〈E〉 for different SRC parametrizations. The plot also shows the nonclosure NMEs to find the crossover of closure and nonclosure
NMEs (marked with a vertical magenta line), which is the optimal closure energy for which the closure and nonclosure NMEs overlap. The
dotted lines (all colors) represent closure NMEs and the solid lines (all colors) represent nonclosure NMEs. Also, black lines (dotted and solid)
represent SRC-none case, whereas, the red, blue, and green lines (dotted and solid) represent NMEs for Miller-Spencer, CD-Bonn, and AV18
type SRC, respectively.

parametrizations, whereas, the optimal closure energy is about
2.7 MeV for GT-type NMEs. The optimal closure energy for
tensor-type NMEs is around 0 MeV. Since the GT component
dominates the total NMEs, therefore, optimal closure energy
for total NME is about 2.9 MeV which is similar to GT-type
NMEs.

In the end, by determining the optimal closure energy, it
is easy to obtain the nonclosure NMEs using the closure ap-
proximation with fewer computational resources. We showed
the results of closure NMEs along with nonclosure NMEs in
Table II with closure energy 〈E〉 = 3 MeV which is near the
optimal value for total NMEs. Hence, closure and nonclosure
NMEs in Table II are very similar. Also, as discussed in
the previous subsection, the use of 〈E〉 = 3 MeV in the
closure method reproduced the nonclosure NME using the

closure approach across all cutoff number of states for each
spin-parity of the intermediate nucleus 124Sb.

E. NMEs for 2νββ decay and its dependence on the cutoff
number of states and excitation energy of 1+ spin-parity of 124Sb

For completeness and concluding our investigation, we fi-
nally calculate the NME and half-life for two-neutrino double
beta (2νββ) decay of 124Sn and examine the dependence of
NMEs for 2νββ decay of 124Sn on the cutoff number of
states and excitation energy of the virtual intermediate nucleus
124Sb. The 2νββ decay process is similar to 0νββ decay,
except that 2νββ is a lepton number-conserving decay where
two antineutrinos appear in the final state, along with two
electrons. The 2νββ decay of 124Sn to 124Te, along with two
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electrons and two antineutrinos, is expressed as

124Sn →124Te + e− + e− + νe + νe. (13)

The half-life of the 2νββ decay of the 0+ ground state to
the 0+ ground state transition is given by [54–56]

[
T 2ν

1
2

]−1 = G2νg4
A

∣∣mec2M2ν
GT

∣∣2
, (14)

where G2ν is the phase-space factor [54]. In this case, only the
Gamow-Teller type NME (M2ν

GT ) are relevant, and it can be
written as [54]

M2ν
GT =

∑
k,E∗

k �Ec

〈 f ||στ−
2 ||k〉〈k||στ−

1 ||i〉
E∗

k + E0
, (15)

where τ− is the isospin lowering operator. In this study, |i〉
represents the 0+ ground state of the parent nucleus 124Sn, | f 〉
represents the 0+ ground state of the grand-daughter nucleus
124Te, and |k〉 represents the 1+ states of the intermediate
nucleus 124Sb. The E∗

k and Ec are the excitation energy and
cutoff excitation energy of the 1+ states of 124Sb, respectively.
We can also use the cutoff number of states (Nc) for 1+
spin-parity of 124Sb instead of Ec to calculate NME for 2νββ

decay. The constant E0 is given by E0 = Qββ (0+)/2 + 	M.

Here, Qββ (0+) is the Q value corresponding to the ββ decay
of 124Sn, and 	M is the mass difference between the 124Sb
and 124Sn isotopes. For the calculation, the bare value of
gA = 1.27 is used.

The significance of quenching in the Gamow-Teller oper-
ator (στ−) cannot be overstated when aiming for congruence
between theoretical 2νββ NME results and experimental data.
This quenching factor (q f ) modifies the Gamow-Teller op-
erator (στ−) to q f στ−. In Ref. [9], a quenching factor of
0.74 was employed for the 2νββ NME calculation of 124Sn
within the nuclear shell model, using the SVD Hamiltonian.
Alternatively, when employing the GCN5082 Hamiltonian,
a value of q f = 0.57 was deemed more suitable for the
2νββ NME computations of 128Te and 130Te, while q f =
0.45 was found appropriate for 136Xe in Ref. [57]. Recent
investigations, as reported in Ref. [58], considered quench-
ing factors of q f = 0.48 and q f = 0.42 for the study of the
two-neutrino double electron capture (2νECEC) transition of
124Xe, employing the GCN5082 Hamiltonian in nuclear shell
model. It is evident that a specific quenching factor for 124Sn
is not yet established. Since the present study employs the
same GCN5082 Hamiltonian, a quenching factor of q f = 0.4,
a value consistent with earlier studies in the A ∼ 124 mass
region, is used for computing the NME for the 2νββ decay of
124Sn.

The calculated NME for 2νββ decay of 124Sn, including
the first 200 states of the virtual intermediate nucleus 124Sb
with Jπ = 1+, is 0.014. The corresponding T 2ν

1/2(124Sn) is pre-
dicted to be 14.14 × 1021 yr. Table IV lists the calculated
NME and T 2ν

1/2(124Sn) as well as NMEs from some of the
recent calculations.

Figure 5 illustrates the variation of the NMEs for 2νββ

decay, computed using the total GCN5082 interaction, with
the cutoff number of 1+ states (Nc) considered for the vir-
tual intermediate nucleus 124Sb. Our calculations with the

TABLE IV. The calculated NME and half-life for 2νββ decay
of 124Sn using nuclear shell model. Phase-space factor G2ν = 5.31 ×
10−19 (yr−1) is used which is taken from Ref. [9]. The half-lives for
other references are recalculated with the quoted NME and gA of
those references with the phase space factor of this study.

Nuclear NME
model Reference gA

(
M2ν

GT (MeV−1)
)

T 2ν
1/2 (yr)

ISM Current study 1.270 0.014 14.14×1021

ISM Ref. [9] 1.270 0.042 1.6×1021

ISM Ref. [51] 1.250 0.101 0.29×1021

QRPA Ref. [52] 1.254 0.193 0.078×1021

QRPA Ref. [53] 1.250 0.110 0.24×1021

QRPA Ref. [7] 1.000 0.200 0.18×1021

available computational facility were able to account for the
effects of the first 200 1+ states of 124Sb and the full conver-
gence was not observed for the 2νββ NME of 124Sn. It should
be mentioned that for higher shell-model dimensional nuclei
like 124Sn, it is imperative to use a different convergence
technique as opposed to the direct diagonalization method
employed in the present study. Some possible alternatives are
the pioneering strength function approach (see Ref. [59]). or
the approach employed in Ref. [60]. Various methodologies
and the NME convergence challenges in the context of 2νββ

decay are discussed in Ref. [61]
In Fig. 6, we demonstrate the dependence of NMEs for

2νββ decay on the cutoff excitation energy (Ec) of 1+ states
in the virtual intermediate nucleus 124Sb. Our computations,
which incorporated the effects of the first 200 1+ states of
124Sb using the KSHELL software, were able to capture excita-
tion energies up to about 4 MeV, resulting in computed NMEs
as shown in Fig. 6.

FIG. 5. Variation of the NME for the 2νββ decay of 124Sn as
a function of Nc, the cutoff number of states for 1+ spin-parity of
the virtual intermediate nucleus 124Sb. The Nc is a dimensionless
quantity.
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FIG. 6. Variation of the NME for the 2νββ decay of 124Sn as a
function of Ec, the cutoff excitation energy for 1+ spin-parity of the
virtual intermediate nucleus 124Sb.

V. SUMMARY AND CONCLUSIONS

The nuclear structure study of 124Sn is of great significance
as it is an important candidate for 0νββ, and hence of interest
to the double β decay community in India. The NMEs are a
crucial input in extracting the 〈mββ〉 from the measured T 0ν

1/2.
In the present work, the NMEs for the 0νββ decay of

124Sn (the light neutrino-exchange mechanism) are calculated
within the nuclear shell model framework employing the
nonclosure approach with improved reliability, by explicitly
including the excitation energy for 100 states of each spin-
parity of the intermediate nucleus 124Sb.

It is observed that the present method resulted in a 10%
variation in NMEs, as compared to the recent closure ap-
proach calculations with a nuclear shell model with different
input Hamiltonian and closure energy. The difference may
arise either due to the choice of the input Hamiltonian or the
choice of closure energy in the earlier studies.

The present calculation of NME predicts a lower T 0ν
1/2 limit

as 7.49 × 1026 yr, to achieve a sensitivity of 〈mββ〉 � 50 meV,
which is needed to probe the Majorana nature of neutrino in
the inverted mass ordering region.

Furthermore, we have analyzed the dependence of NMEs
on the spin-parity of intermediate states in 124Sb, as well as
that of coupled protons and neutrons. The contributions of
each spin-parity of the intermediate states were all positive
for GT-type NMEs and negative for Fermi-type NMEs. For
coupled spin-parity of protons and neutrons, the 0+ and 2+
contributed the most in all NMEs. The effect of the number
of intermediate states on the saturation of NMEs has also
been investigated. Full convergence was not achieved when
100 intermediate states were taken into account for each spin-
parity of 124Sb in the calculation of NMEs for 0νββ decay
in 124Sn.

It may be pointed out that the choice of the closure energy
is arbitrary without the knowledge of the nonclosure NMEs.
Hence, the optimal closure energy for which closure and non-
closure NMEs overlap has been calculated and found to be
about 3 MeV for 0νββ decay of 124Sn. This value successfully
reproduced the nonclosure NME using the closure approach
across all cutoff number of states for each spin-parity of
the intermediate nucleus 124Sb. This is one of the important
findings of the present study. The calculated optimal closure
energy can be used in future calculations of the closure ap-
proach, thereby eliminating the complexity of calculating a
large number of intermediate states.

Additionally, the results of variation of NMEs for 2νββ

decay of 124Sn with the cutoff excitation energy and number of
states of the intermediate nucleus 124Sb, including 200 states
for the 1+ spin-parity of 124Sb, are also presented. However,
a complete convergence for the 2νββ NME in 124Sn is not
achieved.

In the future, it will be interesting to explore how the
nonclosure approach can affect the NMEs for other beyond
standard model mechanisms, such as the left-right symmetric
mechanisms.
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