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Four-body systems at large cutoffs in effective field theory
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Four-body systems are studied using an effective-field theory with two- and three-body contact interactions.
A method to systematically address deep trimers (three-body bound states that are more tightly bound than
four-body bound or resonant states) in four-body calculations is developed using a diagrammatic approach.
Previous calculations were limited by the existence of deep trimers, which this work overcomes. For cold “He
atoms, binding energies of 526.1(5) and 128.517(1) mK are obtained at leading order for the tetramer ground
and excited states, respectively, where errors come from the truncation of three-body partial waves. Tetramer
binding energies and decay widths are also computed approaching the unitary limit. In the unitary limit, there
are two tetramers associated with each trimer of binding energy B§°>. The binding energy and decay width for
the associated tetramer ground state are Ejo) = 4.60(1)B§0) and Fio) /2= 0.0160(1)BFO), respectively, and for
the associated tetramer excited state, E{"’ = 1.0022(3)BY’ and T'{" /2 = 2.57(2) x 10~*BY”, respectively. This
calculation is a gateway to higher-order and/or more-body calculations in nuclear and atomic systems.
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I. INTRODUCTION

Quantum systems with a typical scale agys that is much
larger than the range of their underlying interaction /gy, exist
in both atomic and nuclear systems, such as cold 4He atoms,
few-nucleon systems, and nuclear halo systems. These sys-
tems share many universal features due to their proximity to
the unitary limit and can be systematically described using
effective-field theory (EFT). An EFT includes all possible
interactions allowed by the underlying symmetries. The in-
teractions are ordered by the EFT power counting with an
expansion parameter given by, for example, the ratio [/ agys.
Such power counting is usually obtained using naive di-
mensional analysis (NDA) of the interactions informed by
the requirement that the observables must be renormaliza-
tion group (RG) invariant; the latter can be accomplished by
studying the regularization dependence, e.g., loop integral de-
pendence on a cutoff.! Because of its power counting, an EFT
has the advantage of giving a model-independent prediction of
observables with a systematic error estimation at each order.

Nonrelativistic short-range EFTs have found great success
in describing few-body nuclear and atomic systems after the
power counting and regularization in such EFTs became un-
derstood [1,2]. Universal features have been found that lead
to a deeper understanding of few-body systems [3]. Three-
boson systems with short-range interactions were studied by
Bedaque et al. [4,5] using an EFT approach, who computed
the dimer (two-boson bound state) single-boson scattering
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I'The cutoff used in the loop integrals and the cutoff of the EFT are
different objects. The former will be referred to as “cutoff” in this
paper unless specified otherwise.
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amplitude diagrammatically. While diagrams for the leading-
order (LO) scattering amplitude only consist of two-boson
interactions according to NDA, the scattering amplitude is
not convergent as a function of cutoff. To maintain the RG
invariance of the scattering amplitude, a three-boson contact
interaction is promoted to LO and is fit to a three-boson
observable, e.g., a trimer (three-boson bound state) binding
energy, at each cutoff. Moreover, as the cutoff increases,
deeply bound trimer states, known as Efimov trimers, appear.
These trimers correspond to poles in the dimer-single-boson
scattering amplitude, even though their binding momenta may
be larger than the cutoff of the effective theory. The need for
a three-body contact interaction carries over to three-nucleon
systems in order to renormalize the LO spin-doublet (S =
1/2) channel [6]. In fact, the triton can be understood as an
Efimov trimer of one proton and two neutrons [7,8].
Four-boson systems with a large two-body scattering
length were studied by Platter et al. [9] using an effective
theory approach, where the Faddeev-Yakubovsky (FY) equa-
tion [10] was solved with effective potentials that have the
form of a § function at LO (and derivatives of § functions at
higher order), taken from the two- and three-boson contact
interactions in EFT. They considered cold “He atoms and
computed the trimer and tetramer (four-boson bound state)
binding energies as a function of cutoff. Their calculation,
however, only works below a threshold cutoff A,, above
which a deeply bound trimer appears and creates instabilities
in four-boson calculations. Above the threshold cutoff, the
tetramers become resonances with an open decay channel into
this deeply bound trimer. Nevertheless, they argued that the
tetramer binding energies appear to be converging for cutoffs
below A, and estimated their errors from the residual cutoff
dependence in addition to errors from the EFT expansion.
Their results were in good agreement with Blume and Greene
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[11], who used the LM2M2 potential [12] and combined
Monte Carlo methods with the adiabatic hyperspherical ap-
proximation. Platter et al. [9] concluded that there is no need
for a four-boson contact interaction at LO to renormalize the
four-boson system. A four-boson contact interaction was later
found by Bazak er al. [13] to be required at next-to-leading
order (NLO), where the two-body effective range correction
is included, in order to maintain RG invariance of the tetramer
ground-state binding energy. Another four-boson calculation
of cold “He atoms using the FY equation with the LM2M2
potential can be found in Ref. [14]. Universality in four-boson
systems was studied by Hammer and Platter [15] using two-
and three-body contact interactions. They conjectured that
there exist two (resonantly bound) tetramer states with bind-
ing energies located between the binding energies of any two
adjacent Efimov trimers due to the discrete scaling symmetry.
This conjecture was supported by von Stecher ef al. [16], who
studied the four-boson system in the unitary limit, where the
two-boson scattering length a approaches infinity. This was
also investigated theoretically by Deltuva [17] and Hadizadeh
et al. [18]. More recently, Frederico and Gattobigio [19] stud-
ied the tetramer limit cycle in the unitary limit by tuning a
four-body scale.

The study of four-boson systems was extended to four-
nucleon systems by Platter et al. [20], who used the FY
equation with two- and three-nucleon contact interactions
taken from LO pionless EFT [EFT(®)]. The binding energy of
the o particle was computed and found to scale approximately
linearly with the triton binding energy, in agreement with
the well-known Tjon line [21]. For the cutoffs considered
in their calculation, there is only one three-nucleon bound
state, i.e., no deeply bound Efimov state exists. Similar to
the four-boson case, they argued that no four-nucleon force
is required at LO to renormalize the four-nucleon system.
Nucleon-trinucleon scatterings were investigated using the
resonating group method with EFT (%) by Kirscher ef al. [22]
and Kirscher [23], who also discussed the cutoff dependence
of their results.

An alternative approach to treating four-body systems is
the diagrammatic approach [24], where the four-body integral
equations are derived from Feynman diagrams. The diagram-
matic four-boson integral equation in two and three spatial
dimensions (2D and 3D, respectively) was solved by Brod-
sky et al. [24]. However, no explicit three-boson force was
included, and the cutoff dependence of the results was not dis-
cussed. It is also noteworthy that, unlike three-body systems
where each Feynman diagram can be matched to a term in
the Faddeev equation, for four-body systems it is unclear how
to build a one-to-one correspondence between each term in
the diagrammatic and FY equations (see, e.g., Ref. [25]). For
four- and/or more-boson calculations using other methods, see
Refs. [16,26-29].

The main purpose of this paper is to investigate the cutoff
dependence of tetramer binding energies at cutoffs above A,,
where one or more deep trimers exist, in four-boson systems
with a large two-body scattering length. This LO four-body
calculation at large cutoffs is a first step to higher-order and/or
more-body calculations in nuclear and atomic systems. Using
a full EFT approach, the four-boson integral equation is first

obtained from the Feynman diagrams with two- and three-
boson contact interactions and then rewritten in terms of the
three-boson amplitudes. This facilitates the inclusion or sub-
traction of the deep trimers in the four-body calculation. For
physical systems where the deep trimers exist, it is necessary
to include them in four-body calculations in order to obtain
the binding energy and decay width of the tetramer resonances
above these deep trimers. For physical systems where the deep
trimers do not exist, such as cold *He atoms, it is necessary
to subtract them from the four-body calculation in order to
compute observables at cutoffs above A;.

As an example of the four-boson calculation, tetramer
binding energies for cold “He atoms are computed at cutoffs
above A, in this study. The convergence of the diagrammatic
results at sufficiently large cutoffs is demonstrated. This con-
vergence at large cutoffs is important to NLO or higher-order
calculations. This is because for cold “He atoms the EFT error
at NLO is only ~1% using an EFT expansion parameter of
~10% [9], while the tetramer binding energies obtained using
cutoffs below A; contain a ~5% (x2%) error from the resid-
ual cutoff dependence for the tetramer ground (excited) state
[9]. This means errors from the residual cutoff dependence
will obscure or even dominate the EFT error in an NLO or
higher-order calculation if cutoffs are limited below A;. A
similar situation happens to the four-nucleon system, where
the a-particle binding energy obtained by Platter er al. [20]
has a &5% variation in the range of their cutoff between
8 and 10 fm~!. This variation is small compared with the
LO EFT(x) error of ~30% but sizable compared with the
NLO EFT(®) error of 210%. Therefore, the convergence of
four-body observables as functions of cutoff is necessary for
minimizing uncertainties at NLO or higher order. In addi-
tion, the convergence at cutoffs above A, reaffirms that no
four-body force is required at LO. This is important since, as
demonstrated later by the cutoff dependence of the tetramer
binding energies, the results obtained with cutoffs below A,
may be misleading.’

This paper is organized as follows: In Sec. II, two- and
three-boson systems in an EFT with two- and three-boson
contact interactions are reviewed and the three-boson ampli-
tude and trimer residues are calculated. Sec. III A shows the
diagrammatic and operator forms of the four-boson integral
equation. In Sec. III B this equation is projected onto a partial-
wave basis and its kernel is expressed in terms of three-boson
amplitudes to include the trimer poles. Section III C discusses
how to implement the diagrammatic approach to cold *He
atoms and calculate tetramer binding energies and how to
approach the unitary limit in this calculation. Section IV
demonstrates the convergence of the tetramer binding energies
for cold “He atoms as a function of cutoff and the results in the
unitary limit. Section V summarizes this work and discusses
future directions. Appendixes include further details of the
four-boson calculations.

ZPrecedent in nuclear systems exists where the need for a coun-
terterm at large cutoffs can be obscured by results obtained with
relatively low cutoffs [30].

024002-2



FOUR-BODY SYSTEMS AT LARGE CUTOFFS IN ...

PHYSICAL REVIEW C 109, 024002 (2024)

FIG. 1. This equation gives the LO dressed dimer propagator, represented by the double lines on the left-hand side. The solid bar and the
single lines on the right-hand side are the bare dimer and single boson propagators, respectively. The right-hand side is a geometric sum that

can be computed analytically.

II. TWO- AND THREE-BOSON SYSTEMS

For a nonrelativistic boson system, the leading-order (LO)
two-body Lagrangian is

2
— g, + "Ad + 2t
L=y (lao-‘r 2m)w+d Ad+ 'Yy +He),
ey

where v is the single-boson field with mass m and d is
the dimer auxiliary field. The dimer auxiliary field can be
integrated out and the only free parameter in this two-body
Lagrangian is y?/A (see, e.g., Ref. [4]). The dressed dimer
propagator is given by the geometric sum (also shown dia-
grammatically in Fig. 1):

i

iDa(po, P) = - — :
A =22 (—p+ /B —mpy — ic)

where p is a nonphysical scale emerging from the linear di-
vergence of the loop integral in 3D, coming from dimensional
regularization with the power divergence subtraction [1,2].
The combination y?/A is obtained by fitting Eq. (2) to the
physical dimer pole and choosing the following parametriza-
tion for y> and A:

@

y=—, A=y-—u, 3)
m

where y is the dimer binding momentum. The dressed dimer
propagator becomes

iDy(po, p) = — ; C))
Yy =V G —mpo —ie

which does not have any regulator dependence. This means, as
discussed in Ref. [6], that the cutoff of the two-boson system
is taken to infinity before the cutoff of three- and four-boson
systems, in contrast with taking the cutoff of the two-, three-,
and four-boson systems to infinity at the same time as was
done in, e.g., Ref. [9].

One way to write the three-boson Lagrangian is

L3 =hyTd yd, %)

where h is the dimer-single-boson coupling coefficient. A
more convenient approach, as used in the rest of this paper,

__ p
. 5 S +I>E<)+k

is to introduce a trimer auxiliary field T and write the three-
boson Lagrangian as

Ly =1"Qr + w(r'yd + He.). (6)

Integrating out the trimer auxiliary field gives the matching
condition

g = h. @)
The only free parameter in the three-body Lagrangian is 4,
whose size can be determined by fitting to three-boson ob-
servables, such as the dimer-single-boson scattering length or
trimer binding energy.
Figure 2 shows diagrammatically the integral equation for
the dimer-single-boson scattering amplitude [4,5], whose op-
erator form is

t=M+Kt, ®)

where ¢ is the dimer-single-boson scattering amplitude (also
referred to as the three-boson amplitude), M is the inhomo-
geneous term, and K is the kernel of the integral equation.
To project this equation onto a momentum basis, one can
consider the four-momentum of the single boson legs in the
center-of-mass (CM) frame, as indicated in Fig. 2. For the
loop energy integrals, one can invoke the residue theorem and
pick up the single-boson poles. Upon discretization one finds
a closed system of equations corresponding to the integral
equation in Eq. (8) with single-boson momenta, p, q, and k
being on-shell, i.e., p = {p*/(2m), p}, q = {¢*>/(2m), §}, and
k = {k*/(2m), l;}. Equation (8) separates under a partial-wave
basis, and the £th partial wave gives [4,5,31]

A2
d
T E K K/ (E.q.p).
©

where E is the total energy in the three-boson CM frame and
tzh (E, k, p) is the matrix element of ¢ in the £th partial-wave
channel with an incoming (outgoing) single-boson on-shell
three-momentum k (p). The superscript £ indicates the in-
clusion of the three-boson force. A sharp cutoff A is used
in three-boson systems. M}(E, k, p) and K}(E, g, p) are the

O%¥Q).¢

i(E. k, p) = MIE. k, p) +/
0

FIG. 2. Diagrammatic representation of the integral equation for the dimer-single-boson scattering amplitude ¢. Triple line represents bare
trimer propagator, i/A, and solid dot represents three-boson coupling, iw. k (p) is the on-shell four-momentum of the incoming (outgoing)

single boson in the CM frame. q is that for the internal single boson.
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FIG. 3. S-wave three-boson scattering amplitude rewritten in terms of the trimer vertex function and the dressed trimer propagator.

matrix elements of M and K, respectively, and read

87 K+ p? —mE — ie
MIE k. p) = —0Q, P + hb,  (10)
kp kp
q2
KEh(E9q?p) = _Dd(E - 2_’6>
m

[ Qz(q + p? ;mE >+h8zo},
p
an

where the matching for the three-boson force in Eq. (7) is
used. The Q(x) are the Legendre functions of the second kind

defined as
Udu Py(u)
= — 12
0,(x) [12u+x, (12)

where P;(u) are the Legendre polynomials. Note that Eq. (12)
differs from the conventional definition of the Legendre func-
tions of the second kind by a phase of (—1)°.

Unlike two-body scattering whose analytic solution is
known, Eq. (9) has only been solved numerically. While NDA
suggests that the three-boson operator, which has a higher
mass dimension, should not be included at LO, a careful study
[4] of this integral equation shows that, without this three-
boson interaction, there exists a zero mode that leads to cutoff
dependence of the solution; in other words, the renormal-
ization of this three-boson problem requires this three-boson
interaction to appear at LO. Higher-order corrections to this
three-boson force can be included perturbatively and energy-
dependent terms are needed starting at next-to-next-to-leading
order (NNLO) [32,33]. The sizes of the three-boson forces
at each order can be determined at each cutoff by fitting to
three-boson observables, such as a trimer binding energy or
dimer-single-boson scattering length. In addition, an infinite
number of three-boson bound states occur as the cutoff goes to
infinity. When E equals the binding energy of each trimer, the
kernel matrix of the (discretized) integral equation in Eq. (9)
has an eigenvalue equal to one.

Expanding the S-wave three-boson scattering amplitude
around the trimer poles gives

tHE k, p) = 4+ 13)

Z (B(t) k, p)

E+BY

labels the trimer poles. R[(Bgi), k, p) and
—B;i) are the residues and energy locations of each pole,
respectively. R; (Bgi), k, p) needs to be determined in order to
include trimer pole(s) in four-body calculations through the
Cauchy principal value prescription, whose details are given
in Appendix D. To find the expressions of /2 and R; (B(') k, p),

where i =1,2,...

one can split ¢, "(E, k, p) into two terms [34], which are dia-
grammatically shown in Fig. 3 and read

16(E k, p) = 15~ "(E. k. p) = G(E, K)D(E)G(E. p), (14)
where the first term on the right-hand side, #!=°(E, k, p),
does not contain any three-boson contact interaction, and the
second term contains the nonperturbative contribution of the

three-boson contact interaction. G(E, p) is the three-boson
vertex function defined through the integral equation

qdq

0 (E.q.p) (15

a&m=w+/
0

where the superscript # = 0 indicates that the three-boson
force is not included. The diagrammatic representation of
Eq. (15) is shown in Fig. 4. The dressed trimer propagator
iD,(E) in Eq. (14) is given by the geometric sum in Fig. 5 and
reads

i w? i w? :
i 1

T Q1-hZ,E) (16)

where Eq. (7) is used. X (E) is defined as

2
—/ "dq (E—q ,q). (17)
0 2m

To make #(E, k, p) cutoff- mdependent one needs to fit &
at each A to the trimer poles of tO (E,k,p) at E = —Bg').
Because #J=°(E, k, p) does not have poles at E = —Bgi) ex-
cept for special cutoffs, the dressed trimer propagator, iD; (E),
and therefore also the second term on the right-hand side of
Eq. (14) are singular at E = —B(;). Fixing the location of a

trimer pole in iD;(E) at E = —Bgi) yields the expression for
h:

TAE) =

1

he — 18
Za(-BY) o

— E< + P
p p a

FIG. 4. Integral equation for the trimer vertex function G.
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FIG. 5. Equation for LO dressed trimer propagator, represented by the triple lines with a box on the left-hand side. The right-hand side is

a geometric sum that can be expressed in X, (E).

Using this three-boson force in iD,(E) and pluggmg iD,(E)
into Eq. (14) yields the expression for R; (B3 ,k, p):

G(=B5. K)9(-B5, p)

. , 19
%) (~57) "

Ri(BY k, p) = —

which is separable in k and p. See Ref. [35] for a different
derivation of the separable structure of the three-body residue.
As A goes to infinity, & shows a limit-cycle behavior [3]
whose phase is fixed by Bm At each A, the locations of
all trimer poles are fixed once # is determined. At some spe-
cial values of A, |XA(— B(’))| — 00, and |h| — 0. The trimer
poles of té’ O(E, k, p) at those cutoffs occur at E = —Bgl) and
Eqg. (19) may be ill-defined. Those special cutoffs are avoided
in these calculations to prevent numerical instabilities. It is
also noteworthy that the vertex function G (—BY, p) satisfies

. A
9(-50.r) = |
0

where Kh( B(’) q, p) includes the three-boson force. Equa-
tion (20) can be checked by plugging Eq. (11) into Eq. (20)
and using Eqs (17) and (18) to simplify the expressions. This
means G(— B3 , p) is an eigenvector, with an eigenvalue equal
to one, of the kernel of Eq. (9) in S wave.

q*dq

5 =By a)K; (=B, 4. p),

(20)

III. FOUR-BOSON SYSTEMS

A. Diagrammatic and operator form
of the four-boson integral equation

The homogeneous four-boson integral equation [24] with-
out three-boson forces is shown diagrammatically in Fig. 6.
Inhomogeneous terms are not needed for studying tetramer
binding energies, but can be added for scattering. Four-
momenta are indicated in Fig. 6 and will be explained below.

b1

P2 A2

[
if

(See Appendix A for a simpler set of four-boson diagrams and
why they are not used to form a four-body integral equation.)
The operator form of this four-boson integral equation reads

Iy = (1 + P3) (KT + K I),

2D
[y = (1 + Po)(Ka3Ts + KppT),

where I'; and I, are the four-boson amplitudes with outgoing
dlmer-two single-boson and dimer-dimer states, respectively.
‘P3 (P») is the permutation operator that interchanges the two
outgoing single bosons (dimers). Similar to the three-boson
case, one can invoke the residue theorem on loop integrals
involving I'; and pick up the single-boson poles, whose four-
momenta are p, or q,, n =1, 2, as indicated in Fig. 6.
This leads to a closed system of equations corresponding to
Eq. (21) with single-boson momenta p,, and q,, being on-shell,
ie., p, = {p;/(2m), p,} and q, = {g;/(2m), §,}. For loops
involving I';, a branch cut is associated with each of the two
dimer propagators, one in the upper half and the other in the
lower half of the energy complex plane. It is thus difficult
to use the residue theorem on energy integrals that involve
I'>. Therefore, regarding the four-momenta [ ={E/2+ Iy, 7}
and [ = {E/2 — Iy, —7}, where E is now the total energy of
the four-boson system, both /, and I are taken as integration
variables. To avoid the singularities along the real axis of
lp, one can deform the contour for /y and integrate /, from
—io0 to ioo instead. See Ref. [24] about this deformation.
Summarizing the above, at total energy E in the four-boson
CM frame, I'j depends on p; and p,, and I', depends on Iy
and I. These momenta will be referred to as single-particle
momenta. A sharp cutoff is used for these momenta in this
paper and no interpolation is needed when discretizing them.
Four-boson diagrams with a three-boson contact inter-
action, shown in Fig. 7, should be added to the kernel

FIG. 6. Homogenous part of the four-boson integral equation without a three-boson force. I'; and I'; are the four-boson amplitudes with
outgoing dimer-two-single-boson and dimer-dimer states, respectively. Four-momenta are indicated.
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%51 P1

d2 P2 D2

FIG. 7. Four-boson Feynman diagrams with a three-boson force.
These diagrams should be included on the right-hand side of the
integral equation shown in Fig. 6 when a three-boson force is needed.

of the integral equation shown in Fig. 6. However, with
single-particle momenta and their sharp cutoff A’, it is tricky
to determine the strength of the three-boson force, £, to be
used in a four-body calculation because 4 depends on the
sharp cutoff A of the relative momentum between the dimer
and single boson, as opposed to the cutoff of single-particle
momenta. (This was not a problem in Ref. [24] because no
three-body contact interaction was used.) This seems to mo-
tivate the use of Jacobi momenta instead of single-particle
momenta, similar to how Ref. [9] solved the FY equation (also
see Refs. [36,37]), although the four-boson integral equa-
tion is not closed under the discretized Jacobi momenta,
making interpolations unavoidable [36].

To address trimer poles in four-boson calculations and
avoid interpolations, this paper adopts an approach where
both Jacobi momenta and single-particle momenta are used.
Inspection of the kernel of the four-boson integral equation re-
veals that the iterations over only K33 consist of an interacting
three-boson subsystem and a spectator boson, i.e., K33 leaves
the (3 4+ 1) fragmentation invariant. This means that one can
first compute the dimer-single-boson amplitude with Jacobi
momentum and then use this amplitude as a subdiagram in
the four-boson integral equation, where the single-particle
momenta are used as integration variables. In other words,

=~

the single-particle momenta are used to close the system of
linear equations upon discretization. The modified four-boson
integral equation is shown in Fig. 8, where the single-particle
momenta are indicated, and the operator form of this integral

equation reads
I3 = (K333 + K5,1),
3 3313 /32 2 , (22)
FZ = (1 + Pz)(K23F3 + Kzzrz)’

where I'; is related to I'j through a permutation I'; = (1 +
P3)I'; and the kernels are given by

Ky = Ko (1 + T3),
K3, = P3(1 + T3)K3,,

} (23)
K, = Ko3(1 4 T33)Ks + Koo,
KéS = P51,
with
Ty = Kas(1 — K33) 7' 24

An algebraic derivation of Eq. (22) from Eq. (21) is given
in Appendix B. K33 and K3, are not further combined with
Ts3 because the single boson propagators in K»3 and K3, are
generally off-shell. This is also one reason for labeling as ¢
the oval in the top-left component of the kernel in Fig. 8 while
labeling as ¢’ the ovals in the other three components. To solve
Eq. (22), one can first solve

Iy = (14 P)IKy(1 — Ki) 'Kiy + K5ITa (25)

as long as (1 — K3;) is invertible at the energies under consid-
eration. An algebraic derivation of Eq. (25) from Eq. (21) can
be found in Appendix B. Equation (25) is numerically cheaper
to solve for the tetramer binding energies, which are the only
observables of interest here.

As will be shown in the next section, the three-boson
amplitude 7/ (E, k, p) appears in the four-boson integral equa-
tion explicitly through the matrix element of 733 defined in
Eq. (24). This echoes Weinberg’s idea of expressing four-body
amplitude in terms of two- and three-body amplitudes [38].
In addition, since the residues of tlf’(E ,k, p) at the trimer
poles are already given by Eq. (19), these trimer poles can
be included or subtracted in Egs. (22) and (25) using the

FIG. 8. Feynman diagrams for the modified four-boson integral equation in terms of dimer-single-boson scattering amplitudes, which are
labeled 7 if both single-bosons attached are on-shell, or labeled ¢ if at least one boson attached is off-shell. The definition of the kernel is given

by Egs. (22) and (23).
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Cauchy principal value prescription detailed in Appendix D.
In particular, tetramers that are bound states at low cutoffs
become resonances at large cutoffs if the deep trimer poles
are included, whereas these tetramers remain bound at large
cutoffs if the deep trimer poles are subtracted. Compared with
previous studies limited to relatively low cutoffs where no
deep trimer exists, this method makes it possible to solve for
tetramer binding energies (and decay widths if the tetramers
are considered resonances) at higher cutoffs. Scatterings can
also be studied using this method.

B. Integral equation under a partial-wave basis

This section shows the derivation of the integral form of
the four-boson integral equation in a partial-wave basis.? In
principle, the four-body integral equation could also be solved
using explicit angular variables, where the analytic form of
the four-body kernel is more straightforward. However, nu-
merically it is much more efficient to diagonalize the kernel
matrix in a partial-wave basis by including only the lowest
few partial waves that dominate at low energies. As will be
shown later, reasonably good results for four-boson binding
energies can be obtained using only the lowest three partial
waves, where the diagonalization is about 30 times faster than
using, for example, 10 points* for each angular variable. Such
speedup is far from negligible in a four-body calculation.

The transformation between Jacobi momenta p] and p; and
the single-particle momenta p, and p, are given by (similar
for §| and §3)

PP B) =B+ 5P BB =B (26)
where the superscript J refers to Jacobi momenta. i){ rep-
resents the relative momentum between the dimer with a
momentum p, + p, and the single boson with a momen-
tum p;. This dimer and single boson compose a three-boson
subsystem, and the relative momentum between this three-
boson subsystem and the remaining (spectator) boson with
a momentum p, is given by ﬁ;. The four-boson state, which
consists of one off-shell dimer and two on-shell single bosons,
is spanned by the basis |I;ll;2), where I;I and 762 are either
Jacobi or single-particle momenta in the four-boson center-
of-mass (CM) frame (the dependence on the total energy E of
the four-boson system is suppressed). The magnitude and unit
direction of p| and p} are denoted by

. I O
pi(B1.By) = P + 3P|
(T,
Pl(Pl,pz) =\pP+ gpz s 27)

3Some of the expressions in this section have been given by
Ref. [24].

“The complexity of diagonalizing an n by n matrix is O(#®) in
general.

and
Jio N 2
D>(Dy) = |P,l,
75(Dy) = D>. (28)

The dimer-two-single-boson state in the four-body partial-
wave basis is

o [ A9
Limp (0 )kiky) =Y Cly f ul

m,p

d2 ~ ~ oo
x/ 4:ng(k1>Yf(kz>|k1kz>, (29)

where £[A] and m[p] are the angular momentum and its z
component associated with 7{1 [Ez], respectively. L and my, are
the total angular momentum and its z component, respectively.
C;5fi™ is a Clebsch-Gordan coefficient, and ¥;" are spherical
harmonics. The rest of the paper focuses on the four-boson
S wave, i.e., L = my, = 0, where the bases simplify into (see
Appendix C)

|(E1)kiky) = |L = 0, my = 0, (£1)kika)
a2 d2
=/ "'/ s (D2 T
Py - To)lkeks), (30)
where Py is a Legendre polynomial. The dimer-dimer state in

the partial wave basis is

a2 ~ N
Ly E/2 4 Io. ) =/4—nlYLmL(l)|E/2+lo,l)- 31

For four-body S wave, this simplifies into

|E/2+1p, 1) =L =0,m, =0,E/2+1o1)
dQ -
= / —LE/2+ I, D). (32)
47

Note that P |E/2 + 1y, [) = |E/2 — Iy, 1).

One is now ready to compute the matrix elements of the
operators defined in Eq. (23). First, the matrix element of K33
in a partial wave basis of Jacobi momenta is given by

ere'r)
K337 (Pl’l’z"hsqz)

= ((eM)p] phIKs3 (€1 )q] q3)

272 7 2
—,)23(61§—p§)1<?<E— (622 .pldt ),

b
(33)

= 8¢,3.80 1000

where K,ﬁ' is the three-body kernel given by Eq. (11). The
subscript JJ indicates the Jacobi momentum basis. The depen-
dence on the total energy E is suppressed without ambiguity
to simplify notations. The matrix element of 733 in a partial

024002-7



XINCHENG LIN PHYSICAL REVIEW C 109, 024002 (2024)

wave basis of Jacobi momenta is given by
sy
T35 (Pl phial. @) = (@] ph| Kas (1 — Ksz) ™' [(€3)q] )

2 2 2
2 (@) (a) (2)
= —8¢,.80 2000 (q1)25(615 — p3)Da (E om0 1y E— om PLal
2
AN .o J T
= 811,)\811’,)»’82,2/?8(972 — )5, 5P a1 @) G4
a
where the definition of 733 given by Eq. (24) is used on the first line. On the second line, resolution of the identity in Jacobi
momenta is used between Ki3 and (1 — K33)~! and the resultlng expressions are simplified using Egs. (10) and (11), and the
solution to Eq. (9). On the last line of Eq. (34), T- 3 i P14, ¢5) is defined to simplify expressions later. The matrix elements of

J )2
Ts; in a partial wave basis of single-particle momenta are given in Appendix C and will be used below. Note that at £ — % =

—Bgi), 1E - (Zjn , 1, q]) is singular, and its residues are given by Eq. (19). The matrix element of K}; in a partial wave basis

of single-particle momenta reads

K (1 pasqr, 2) = (G012 PsTss | (€0 q1q2) = Ty s (p2. P13 a1 q2), (35)
where the subscript SS indicates the basis. 73(30‘52)‘) is related to Tg)}f x) through a change of basis, and the expression for

T;f’\SZSA (p2, P1:91, g2) is given by Eq. (C5). The matrix elements of K3, K>3, and K»; in a partial wave basis of single-particle

momenta can be read off the diagrams in Figs. 6 and 7, yielding
E 5
Dd 5 + lOv l

K5 (pro pailo. 1) = (€)p1pal K |E/2 + 1o, 1)
2
E P - E P>
X|:—l\/_y3DN<5—l()—p2 l+p2>DN<2+l()—p 1l — )+l«/—hyDN<——lo—p—l+p2>:|

—P,
- Z(pl Pz)

Q, dQ, dQ
=8, (=120 + 1 ///d n 482, A

2 2 2
1 12/2 —m(E/2 — | :
=5e,k(—1)f\/2z+1l o)} <p2+ / m( / 0))‘ ( + lo, )
P2
1 24+ 12)2 —m(E/2 + 1,
x|:—i\/§y3—Qg(p1+ /2= m( / * 0))+i\/§hyae,0}, (36)
Ip Ip
where Dy (py, p) is the single-boson propagator
. 1
Dn(po,p) = ———. (37)

po — 4. +ie
In Eq. (36), i€ is dropped in the argument of Q, because there is no singularity for /; integrated over the imaginary axis.

The term proportional to 4 in Eq. (36) comes from the three-boson counterterm in Fig. 7. Inspection of Egs. (22) and (25)

reveals that I', = %Fz. This suggests the redefinition K3» — K3(1 + P,)/2 and Kég}‘;s (p1, p2; 1o, 1) changes accordingly:

1
K§§T§S(p1, p2:lo, 1) — E(Kﬁfés(pl, p2ilo, D)+ Kéﬁ?gs(m, p2:—lo, D)

= Re(K3;"4s(p1, paslo, 1)) if Im(E) = 0. (38)

This redefinition is convenient (but not necessary) for numerically diagonalizing the kernel when the rest of the kernel is purely
real. One needs the matrix element of K3, in a partial wave basis:

KGO (Pl philo. 1) = (6] phl K E /2 + 1o, 1)

A2, dQ dQ
= Sua(— D)2 T /// P G5
47 4w

2
P.(p - P3)

E -
Dd<5 =+ lo, l)

2 o) P2
E ) - E &) .
X —i\/§y3DN (5 =1l — (Pz) ) +ﬁ§)DN =+l — —(p] - ) A - J

wli?i

2m 2 2m

2
E 7).
2 2m
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E AL
=80, (—D)V2e + 1‘Dd<5 + I, l)

1 D) 4122 — m(EJ2 — 1
i\/ihy&z,oon((pﬁ / lpjm( / 0)>
2 2

[T 51 1)

2 2 -
« L 5 ((p{) +12/24 (ph) )9+ (1-53)/3 — m(E/2+10>>}
7 - E 4 - 9

il + 35| i+ 35|
where the subscript JS indicates that the first two arguments (momenta in the bra) are Jacobi momenta while the last two

(momenta in the ket) are single-particle momenta. For the angular integrals on the last line, one can choose ’ﬁé along the z axis
and numerically integrate over €2;. The matrix element of 733Kj3; in a partial wave basis of single-particle momenta is given by

(39)

(T33K32)58 (1, paslo, 1) = ((€)p1pa| T K E /2 + I, 1)

(k) dkf kf) dk’ ) )
= Z// 2 (012 | Taa | (€2 KK A Vel K3 | K52 | E /2 + Do, 1)

2wy

) dk!
_5“2( 1)“‘3,/(2€+1)(2€/+1/ 1T3(fgj)(p1,p2;kj)K(”)(kj palo 1),  (40)

32,JS

where | fOA = fOA fOA and Tg éj) (p1, pa; ki) is defined implicitly in Eq. (C3). The cutoff for Jacobi momenta [e.g., k{ in Eq. (40)]

is just A that was used in the dimer-single-boson scattering amplitude. Equations (36) and (40) give the matrix element of Kj,
in a partial wave basis of single-particle momenta:

K (p1. paslo, 1) = ((€)p1 pa P3(1 + Ts3)Ksa|E /2 + o, )

= K354 (P2, prslo, D) + (TsK2)gs) (pa, pi o, 1. (41
The matrix elements of K»3 and K, in a partial wave basis of single-particle momenta can be obtained in a similar manner:

KiasUo. 1:q1. q2) = (E /2 + lo, 1| Ka3| (€M) q12)

1 - 2 2

d(q, - q») ~ _—

=ae,k<—1wzz+1/ LR @ @D (E - 5 - 24+ 3
1 2 2m  2m

, 1 24+ 12/2 —m(E/2 — 1)
xZ<—1>er’+‘lp/@-qzw@’(m : Ip : )
v 2 2

1 2120 — m(E/2+1,
x[—i\/inge(p it lpm( [2+ O)>+i~/§hy8@/,o}, (42)
1 1

and

Kz(?g‘.J(IO’l;Q{qu) (E/2+ lo, 1|1K3|(€M)q] q3)

7)? N2 129 _
5 (—)ATFT Dd( @) _ (@) qf)!iﬁhytsz,o%ge((%) + 122 = m(E/2 zo))
2

6m 2m lq,

A dQ 2N - E N2
e

y <( al)’ + P22+ (@)/9+ (-3 é)/3—m(E/2+zo))}
l .
q1|l 3qz| ‘11|l §q2|

(43)
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One also needs the matrix element of K>3733 in a partial wave basis of single-particle momenta, which can be computed similarly
to that of 733Kj3; in Eq. (40):

(K3T33)58 (o, 13 g1, q2) = (E /2 + lo, 1| Kx3 T3 (€2)q192)
ko

—6HZ< DY/ E+ D+ 1) / UKy o Lk @) T s (K g2). (44)

2 2

where igﬁs(k{ 341, ¢2) is defined in Eq. (C4). Using Eq. (42) and (44), the matrix element of K}, in a partial wave basis of
single-particle momenta is given by

Ko, 1:q1. q2) = (E /2 + I, 1| Ko (1 + Ti3)|(€1)q142)
= K3 ss(o. i1 @2) + (K Tia)ss (o, 13 g1, qo). (45)

To obtain the matrix element of K),, one needs to first compute that of K»,. Reference [24] calculated the piece without a
three-boson force. Including the contribution from the three-boson force yields

Koo (lo, 116, 1') = (E/2 + o, [| K2 |[E /2 + [, I')

1
= Z(E/Z-Ho,ll(l + P)Kn(1+P)IE/2+ 1, 1)

E N2 N dk iy* ihy?
Dd(E—HO’l) 0 ﬁ( (k2+’2+”2)_7>
(k12 1A - E2F IR\ (G 12 + P/ — E/2P — I
[(k—1/2)* +1%/4 —E/2] — I [(k—1/2?+12/4—E/2)> - 12

m2

T

(46)

where the second line again follows from I'; = ”2732 I', and a redefinition K>» — (1 + P»)K» (1 + P,) for convenience. A’ is
the sharp cutoff for single-particle momenta. Finally, using Egs. (34), (39), (43), and (46), the matrix element of K}, is given by

K3, (lo, 1315, 1)y = (E/2 + I, 1| Ko3(1 + T33)K30 + Koo |E /2 + 1, 1)

A dk’ (k3)"dk)
S CEUUEDY J[" YK ) 1, 1200 ) (o0 )

2m?

N (kKDY dk! (KD dkd (k7)) dk? ~
o3 [ LR A VO k) R 5 ). 67

Using Eqgs. (35), (41), (45), and (47), the integral form of Eq. (22) in a partial wave basis of single-particle momenta reads

A2 2 A 32 311 iAE ’
¥ _ q1dq1 ¢3dq» 1O AN . o I=dl dly (0,1) AR Y
l—‘3 (P1,P2)— //0 272 22 K33,SS (Pl,pz,CI1,6]2)F3 (6]1,6]2)4- ) W A 27TK32 55([717172,10,1)1_‘2(10,1),

A 2d 2d &
Lot ) = [ T EL I R0 B4 + o > )] (1)
0

272 2m?
12dr (e di
Koy (o, ;15,1 l —I)ITa (15, U 48
+/O — /_ZAE 2Kyl 5 1)+ o < —lo)IP20, 1), (48)
[
where of Eq. (48) directly. Alternatively, one can first decouple the
m Y ) matrix form of Eq. (48), which results in the matrix form of
P37 (p1, p2) = T3 (p1, p2i o) Eq. (25) that can be solved instead. Upon discretization, either
= ((EAM)p1p2|Tsl{a}), equation gives a closed system of linear equations.
a(l, 1) = Tallo, I; {a})
= (E/2+ by, lIT2[{a}), (49) C. Implementation of the diagrammatic approach
with an incoming four-boson state |{a}). In Eq. (48), repeated To find the binding energies (and decay widths) of the

partial-wave indices are summed over. A sharp cutoff iAg is four-boson bound states (resonances), one can either compute
used for integrating over /. One can solve the matrix form  the eigenvalues of the kernel in Eq. (48) or its alternative form
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in Eq. (25). A bound state (resonance) is found when an eigen-
value equals one. Before computing the eigenvalues of the
kernel, one first needs to specify the angular-momentum cut-
off € nax, the momentum cutoffs for Jacobi and single-particle
momenta A and A’, respectively, the energy cutoff Ag, and
the observables used to fit the two- and three-boson forces.
The calculation in this paper uses the same value for the two
momentum cutoffs, i.e., A = A’, and takes A = 4A2/m as
the energy cutoff. £,,,x = 2 is used as the angular momentum
cutoff. See Appendix E for a more detailed discussion on
cutoffs.

Grisenti ef al. [39] measured the “He dimer bond length
of (r) =5244 A. Using (r) and the zero-range approxi-
mation, they derived the *He dimer binding energy of B, =
1.11’82 mK and the *He atom-atom scattering length of asp, =
104ijf8 A, which is much greater than the typical length scale
lsye of the system set by its effective range r, &~ 7.5 A [33,40]
and van der Waals length ~5.4 A. This gives the typical
low-energy scale of the EFT that describes cold “He atoms
i / (mlfHe) ~ 400 mK [3,9], and the LO EFT prediction of
an observable is expected to be accurate to Ly, /asye & 10%.
Larger clusters of three and/or four “He atoms were studied
experimentally in Refs. [41-44].

The “He dimer binding energy has been calculated using
the TTY (Tang, Toennies, and Yiu) potential [45] by Roud-
nev and Yakovlev [46] and Kolganova ef al. [47], who both
found B, ~ 1.31 mK. The trimer ground- and excited-state
binding energies (Bgo) and Bgl), respectively) were calcu-
lated by Blume and Greene [11] using the LM2M?2 potential
[12] by combining Monte Carlo (MC) methods with the
adiabatic hyperspherical approximation. Blume and Greene
[11] obtained B} = 2.186 mK and By’ = 125.5 mK. Also
using the LM2M?2 potential, Hiyama and Kamimura [27] per-
formed a variational calculation and found Bgl) = 2.2706 mK
and Bgo) = 126.40 mK. Very similar results are obtained us-
ing the Faddeev equation with the LM2M2 potential (see,
e.g., Lazauskas and Carbonell [14], who also used the FY
equation to study four-boson systems). Using an EFT ap-
proach, Qin and Vanasse [40] obtained at LO Bgl) = 1.723B,
and B§0) = 97.12B, by fitting their two-boson force to B, =
1.312262 mK [46] and three-boson force to the “He trimer-
atom scattering length of 1.205(mB,)~'/2, as determined by
Roudnev [48] with the TTY potential.

In this paper, the three-boson force 4 is first fit to Bgl) =
1.767 B, [11,49] with B = 2.186 mK [11], similar to the
fits by Platter er al. [9]. Using this three-boson force, B§0)
converges to 103.9 B, as A — oo. Different from Platter et al.
[9], the three-boson force £ is then refit to B§0) = 103.9B, at

all cutoffs. This removes the cutoff dependence of B;O) and
its impact on the cutoff dependence of the tetramer bind-
ing energies while ensuring that Bgl) converges to 1.767 B,
at large A. Figure 9 shows the cutoff dependence of the
trimer binding energies for cold “*He atoms. £ is fit to the
trimer ground state with B§0) = 103.9B,, and Bgl) converges
to 1.767B; as A — oo. Only these two trimer states exist for
A <250/mBy ~ A,. As the cutoff increases, more trimer
states, referred to as deep (or deeply bound) trimers, appear
and their binding energies are at least two orders of magni-

FIG. 9. Trimer binding energies as a function of A for cold “He
atoms. The dashed line corresponds to the trimer ground state with
B§0) = 103.9B,, which is used to fit the three-boson force. The solid
line corresponds to the trimer excited state. The dot-dashed lines
represent the first two deeply bound trimer states. The gray bands
mark the regions where a new trimer state appears with its binding
momentum higher than the cutoff, i.e., (mBg’l))'/2 >A,n=-1, 2.

tude larger than the typical low-energy scale of the EFT of
i) (mlfHe) ~ 400 mK. This means that these deep trimers are
beglond the cutoff of the EFT, and the trimer with a binding
Bg = 103.9B; is still referred to as the trimer ground state
here. The binding energies of the first two deeply bound trimer
states are plotted as a function of A in Fig. 9 and converge to
BV =436 x 10°B, and B ¥ = 2.23 x 107B,. The bands
in Fig. 9 indicate the appearance of deeply bound trimers and
cover the range of A < (mBgn))l/z, n = —1 or —2. These two
deep trimer poles, once they appear in the four-boson calcu-
lation at large cutoffs, are included or subtracted using the
Cauchy principal value prescription explained in Appendix D.
Including them makes the eigenvalues of the four-body kernel
complex at E > —Bg_l) and the tetramers associated with the
trimer ground state become resonances. The binding energies
and decay widths of these tetramers are found perturbatively
by expanding the eigenvalues, explained in Appendix F. Their
complex binding energies are denoted by B4m) with m =0
or 1, corresponding to the tetramer ground and excited state,
respectively, with

s (m)
iry

By =E" +——

(50)

where both E{™ and T'{") are real and represent the bind-
ing energies and decay widths of the tetramers, respectively.
One can also choose to subtract the deep trimer poles, which
forbids the tetramer bound states of cold *He atoms from be-
coming resonances at large cutoffs. As shown in Appendix D,
this can be done by dropping the im terms when Cauchy
principal value prescription is used in the four-boson integral
equation.

The behavior of Ef”) and Ff‘"’) near the unitary limit is
studied by changing the ratio B, /Bgo). In the unitary limit,
B, goes to zero and there is no three-body scale due to the
Efimov effect. The three-boson force 7 is still fit to a fixed B§0)
at each cutoff and the tetramers associated with this cutoff-
independent trimer are studied. In this case, at least one deep
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FIG. 10. Cutoff dependence of Eio)(top), and (Ei” - B;O))
(bottom). The gray bands are the same as in Fig. 9.

trimer is included and the tetramers associated with Bg()) are
treated as resonances.

IV. RESULTS ON FOUR-BOSON SYSTEMS

Figure 10 shows the cutoff dependence of E}O) on the top

plot and (E il) — Bgo)) at the bottom for cold “*He atoms with
the deep trimers either included or subtracted. The tetramer
decay widths are small but nonzero when the deep trimers are
included, while the widths are zero when the deep trimers
are subtracted. In both cases, Eio) and (Eil) — B§0)) con-
verge at A 2 1000./mB,. Note that the cutoff dependence
in the range 250,/mB, < A < 10004/mB; would be missed
if the tetramer binding energies were only computed at A <
2404/mB;, as shown in Fig. 11, and one could be misled
and wrongly conclude that E{"™ have already saturated at
A =~ 240/mB;.

Table I shows the diagrammatic results, compared with
Platter et al. [9], Blume and Greene [11], and Lazauskas and
Carbonell [14]. The tetramer binding energies shown here are
those with the deep trimers subtracted to keep the tetramers as
bound states. Errors from higher partial waves are indicated
in parentheses. Numerical errors are much smaller than those
from higher partial waves and are not shown. While Platter
et al. [9] did not include contributions from partial waves
higher than § wave, they estimated their residual cutoff de-
pendence to be ~2% for Eil)and ~5% for Eio), as shown in
the square brackets in Table 1. Both the diagrammatic results
and the results of Platter er al. [9] have an additional EFT
error of &10%, which is not shown explicitly in Table I be-
cause it is irrelevant for comparing two LO EFT calculations

450

445 -
440

435

E{ (B,

430 1
425 A

420

60 80 100 120 140 160 180 200 220 240
A[\/ mBz]

60 80 100 120 140 160 180 200 220 240
A[\/mBg]

FIG. 11. Cutoff dependence of E. f”(top) and E il) — B;O) (bottom)
at A < 240,/mB,. The data and notations are the same as in Fig. 10.
For this range of A there is no deep trimer and the complex tetramer
binding energies B\" are real and equal to E.".

that should agree within numerical, momentum cutoff, and
angular-momentum cutoff errors. The diagrammatic tetramer
ground state (Eio)) and excited-state binding energy (Eil))
agree with the other three calculations shown in Table I within
~6% and ~3%, respectively, which are consistent with the
EFT error of ~10%. However, a much smaller difference is
found between E il) and Bgo), i.e., the tetramer excited state in
this calculation is extremely shallow, compared with what was
found in the other three calculations.

Figure 12 shows the correlations between the tetramer
binding energies (and decay widths) and dimer binding ener-
gies, evaluated at A = 400(mB\")!/> where one deep trimer
state with Bg_l) > F 20) exists. For the tetramer excited state,
the calculations are only performed for B, /B;O) smaller than
1/103.9, which is the value of B, /Bgo) in the diagrammatic
calculation for cold *He atoms. For a larger B2/B(0), the
binding energy of the tetramer excited state soon goes above
the trimer-single-boson threshold for Bgo). In the unitary limit
(B /Bgo) — 0), Fflo) /Bgo) and Ef)) /B;O) are larger than their
values in the physical limit for cold *He atoms.” Fittings

SIf in the numerical calculation there are not enough mesh points
for discretized momenta close to /mB,, the results for l"ff)) /Bgo) and
E f)) /B;O) will be misleadingly close to their values in the unitary limit
due to numerical errors.
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TABLE I. Trimer and tetramer binding energies for cold “He atoms with deep trimers subtracted, compared with Platter ez al. [9], Blume
and Greene [11], and Lazauskas and Carbonell [14]. The errors in the parentheses come from higher partial waves. The errors in the square
brackets come from the residual cutoff dependence estimated by Platter e al. [9]. Both the diagrammatic results and the results of Platter et al.
[9] have an additional EFT error of ~10%, which is not shown explicitly here. The values with a star are used to fit the three-boson contact

interaction.
BY" [mK] BY [mK] E\" [mK] (E\" — BY) [mK] E\” [mK]
Diagrammatic results 2.186 *128.5 128.517(1) 0.017(1) 526.1(5)
Platter et al. [9] *2.186 127 128[3] 113] 492[25]
Blume and Greene [11] 2.186 125.5 132.7 7.2 559.7
Lazauskas and Carbonell [14] 2.268 126.39 127.5 1.1 557.7
(dashed lines) of the results in Fig. 12 yield The diagrammatic results around the unitary limit, along
S50 v&tflith other;alc%atiors fror;ll Refs. 1[9,'1 1,1{)1—18,26—2?5]21 )are
- shown in Fig. 13, where the correlation between —
4 0 3 —0.0463 — 0.361 x sgn(a) B(O) BO) /Em)]l/zg and (B /E©)2 are pl L(E .
3 3 4 3 JE, plotted as was done in
Refs. [18,50]. Hyperspherical and/or variational methods with
E(()) various potential models are used by von Stecher et al. [16],
W =4.60 — 5.51 x sgn(a) (0) +2.96| — (0) , von Stecher [16], Gattobigio er al. [28], and Hiyama and
B; Kamimura [27]. Blume and Greene [11] combined MC and
(51 the adiabatic hyperspherical approximation using the LM2M2
and potential (MC + LM2M?2); Platter et al. [9] solved the
FY equation using EFT contact interactions (FY + EFT);
F(l) B, Lazauskas and Carbonell [14] solved the FY equation using
@ = =247 x 107* = 0.00187 x sgn(a) —ol the LM2M2 potential (FY 4+ LM2M?2); Deltuva [17] solved
233 A\ B; the Alt, Grassberger, and Sandhas (AGS) equation [51], which
is equivalent to the FY equation, using a Gaussian-like two-
0 B, body potential that also simulates many-body forces (AGS
W = 0.0160 — 0.0216 x sgn(a) (0) +0.0112 30 + 2B Gaussian-like); Hadizadeh er al. [18] solved the FY
3 3 equation using a two-body contact interaction and the sub-
(52)  tractive regularization scheme [52] for three- and four-boson
Vﬂﬂi o154 X Unitary limit g:i: T, X Unitary limit
— "-““ A Cold *He atoms 5. gg e .. . A Cold *He atoms
S i SSeay Linear fit 07 B uadratic fit
g o I =i —_
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sen(a) x 1/|Ba/BY)| sgn(a) x 1/|Ba/BY)
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—— 25 <
—~ 754 TNl X Unitary limit — T, X Unitary limit
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sgn(a) x \/|Ba/BY|

sgn(a) x 1/ |Ba/BY|

FIG. 12. Correlations between the tetramer and dimer binding energies (top), and between the tetramer decay width and the dimer binding
energies (bottom) for the tetramer excited (left) and ground (right) states. The dots represent the numerical results from the diagrammatic
approach evaluated at A = 400(mB§0))1/ 2, where one deep trimer state with Bgﬁl) > Ejo) exists. The numerical results in the unitary (physical)
limit are indicated by the cross (triangle). Dashed lines represent linear or quadratic fittings to the numerical results.
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0.14 : ; . -
eseee  Diagrammatic results near unitary limit
A Cold *He atoms with Bz/BgO) =1/103.9
0.12 4 X By=0
@ﬂ Hadizadeh et al. 2011 (FY + 2B contact + SRS):
K 010 —- By =0.02B” (a>0)
™~ == By =0.02B” (a <0)
By =0
S 008 :
CQ Hammer and Platter 2007 (FY + EFT):
O a>0
0064 e di
\'__-'/mq( o © interpolation 1/a — 0
0.04
— O  Platter et al. 2004 (FY + EFT)
B &  von Stecher et al. 2009
0.02 {) von Stecher et al. 2009 (Supp.)
¢ von Stecher 2010
0.00 . V  Blume and Greene 2000 (MC + LM2M2)
. T T T T T T T
. A Lazauskas and Carbonell 2006 (FY + LM2M2)
=
Gds 040 082 Gdd 045 1LA8 - 050 [0 Deltuva 2010 (AGS + 2B Gaussian-like)
B(O) E(O) $3  Hiyama and Kamimura 2012
3 / 4 + Gattobigio et al. 2012

FIG. 13. Correlations between the trimer and tetramer binding energies. Similar figures in Ref. [18,50] are supplemented with the
diagrammatic results. The diagrammatic results plotted here are the same as those in Fig. 12 and are compared with previous calculations
by Blume and Greene [11], Platter et al. [9], Lazauskas et al. [14], Hammer and Platter [15], von Stecher ef al. [16], von Stecher [26], Deltuva
[17], Hadizadeh et al. [18], Hiyama and Kamimura [27], and Gattobigio et al. [28].

propagators (FY + 2B contact + SRS). Most of the data
shown in Fig. 13 are compiled in Refs. [50,53,54]. Each curve
for Hadizadeh et al. [18] shown in Fig. 13 uses a fixed value
of B, /Bgo) and is driven by a four-body scale introduced in
their calculations, while their different curves use different
values of B; /Bgo). This is in contrast with Hammer and Platter
[15] and the diagrammatic calculation in this paper, where no
four-body scale is introduced and each value of B,/ Bgo) corre-
sponds to a single point (as opposed to a curve) in Fig. 13. The
diagrammatic result in the unitary limit, represented by “x.,”
as well as the three points nearest to it from other calculations
in Fig. 13 are also shown in Table II, where the uncertainties
for the diagrammatic results, shown in the parentheses, are
from higher partial waves.

The diagrammatic tetramer binding energies E 4(1) /Bgo) and
E io) /Bgo) align with the other three calculations shown in
Table II. Moreover, the diagrammatic results of Ff‘o) / (2Bg0) )

and Fi])/(2B§O)) show great agreement with Deltuva [17]
while only Deltuva [17] and this paper have computed the

tetramer decay widths in the unitary limit among the calcu-
lations shown in Fig. 13.

Another noteworthy point in Fig. 13 is that, as sug-
gested by the data from the diagrammatic calculation and
Hammer and Platter [15], (Ef) - B;O))/Ejo) decreases and
Bgo)/Ef)) increases when Bz/Béo) flows from the unitary
limit to the physical limit of cold “*He atoms with a > 0.
In fact, the diagrammatic result of E4(1) /Bgo) = 1.0022(3) in
the unitary limit is very close to that for cold “He atoms,
Ef) /Bgo) = 1.00013(1). This is not surprising because, as
already known, the system of cold *He atoms with a large
atom-atom scattering length asy, 3> liyy, is close to the unitary
limit. Furthermore, while E f) /B;O) decreases from the unitary
limit to the physical limit of cold “He atoms with a > 0,
the beginning diagrammatic value of Ef) /Bgo) = 1.0022(3)
in the unitary limit is much closer to one, compared with,
for example, Eil) /Bgo) = 1.01 found by Hammer and Platter
[15]. This feature carries over to the physical limit of cold
“He atoms and partially explains why for cold *He atoms the

TABLE II. Tetramer binding energies and decay widths in or close to the unitary limit. The first row shows the diagrammatic results
obtained with B, /Bgo) = 0. The numbers in the other three rows correspond to the three data points closest to the diagrammatic result in the
unitary limit among all the points in Fig. 13. The numbers in the last row were presented in the supplementary information of von Stecher et al.
[16] using a Gaussian two-body potential V, and a Gaussian three-body potential Vsy,.

EJ"/BY" ry"/(By") E;"/BY" ry"/(By")
Diagrammatic results 4.60(1) 0.0160(1) 1.0022(3) 2.57(2) x 1074
Deltuva [17] 4.6108 0.01484 1.00228 2.38 x 10~
von Stecher [26] 4.55 1.003
von Stecher et al. (Supp. with V, and V3,) [16] 4.55 1.001
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diagrammatic result of Ef) is much closer to E3(0> than the
other calculations in Table I. An NLO EFT calculation in the
future can also help to better understand the tetramer excited
state.

V. SUMMARY AND OUTLOOK

This paper examined the cutoff dependence of tetramer
binding energies for cold *He atoms at large cutoffs where one
or more deep trimers exist. The four-boson calculation in this
paper is a gateway to NLO and higher-order calculations and
nuclear systems with four or more bodies. A four-boson inte-
gral equation was constructed via Feynman diagrams using an
EFT with two- and three-boson contact interactions. This inte-
gral equation was written in terms of three-boson amplitudes,
whose poles and residues were calculated and then included
or subtracted through the Cauchy principal value prescription.
In this way, the tetramer binding energies at cutoffs above A,
were calculated. In particular, while reaffirming that no four-
boson contact interaction is required at LO, the diagrammatic
results also demonstrated the necessity of going above A, for
the tetramer binding energies to converge. Furthermore, the
converged diagrammatic results do not have errors from the
residual cutoff dependence, which can be sizable compared
with the EFT error at NLO or higher orders.

For cold *He atoms, a tetramer ground-state binding en-
ergy of 526.1(5) mK and a tetramer excited state only
0.017(1) mK below the trimer ground state with a binding
energy Bél) = 128.5 mK are obtained. These diagrammatic
results have converged sufficiently as functions of cutoff
and agree with previous calculations [9,11,14]. In the uni-
tary limit, the two tetramers associated with the trimer
with a (arbitrary) binding energy Bgo) by setting B, = 0 fit-
ting the three-boson force to B(30) at all cutoffs. For the
tetramer ground state, a binding energy Ef)) /B§0) =4.60(1)
and decay width I'\"/(2B’) = 0.0160(1) are obtained.
For the tetramer excited state, Ef) /B§0) = 1.0022(3) and

Fftl) / (23(30)) = 2.57(2) x 10~* are obtained. These tetramer
binding energies and decay widths in the unitary limit show
good agreement with previous studies [16,17,26].

The four-body diagrammatic approach with trimer poles
addressed provides several possible directions for future four-
body calculations. First, while Ref. [13] found the need for
a four-boson force at NLO to maintain the RG invariance
of the tetramer binding energies, their calculation is limited
at relatively low cutoffs where no deeply bound trimer state
exists. Using the integral equation developed in this paper, it is
possible to perform an NLO four-boson calculation at higher
cutoffs. Moreover, instead of fitting the four-boson force to
Eio) as was done in Ref. [13], it would also be interesting
to fit it to Ef). One motivation for this is that, even though
the values of Ef) found in different calculations are close

to each other, the differences between Eil) and Bgo) vary
significantly, as shown in Table I and Fig. 13. This may be due
to different values for the two-body range correction, which
is zero in a LO EFT calculation. (See, e.g., Refs. [19,50,55]
for discussions on the effect of range corrections.) An NLO

EFT calculation at large cutoffs with minimized errors from
cutoff variations can provide further insights into the effect
of a nonzero effective range and four-boson force on the
tetramer excited state, trimer-single-boson scattering length,
and possibly the tetramer limit cycle. Second, while this pa-
per focuses on tetramer binding energies, the technique of
addressing trimer poles can also be applied to study scatter-
ings. One can then obtain the four-body contribution to the
loss rate of trapped atoms. Last, the diagrammatic four-boson
integral equation can be extended to four-nucleon systems by
including spin and isospin degrees of freedom. Four-nucleon
calculations can be performed at large cutoffs by subtracting
deep three-nucleon poles using the method described in this
paper. For example, one may use EFT(%) to perform form-
factor-like calculations in four-nucleon systems at cutoffs
above 2000 MeV and benchmark previous potential-model
calculations and effective-theory calculations at lower cutoffs.
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APPENDIX A: OTHER EXAMPLES
OF FOUR-BOSON DIAGRAMS

Four examples of four-boson Feynman diagrams are shown
in Fig. 14. For these diagrams, p; = {E,, p;} and q; =
{E,;, ;) are the off-shell four-momenta of the single-boson
states in the four-boson CM frame. Although it may be tempt-
ing to construct a four-boson integral equation using diagrams
(a), (b), and (c) in Fig. 14 as the kernel, there are two dif-
ficulties. First, iterations over diagrams (b) and (c) in Fig. 14
will overcount the number of the two-boson loops. Second, an

o

P1 F2 P1
d2 P2 P2

(a) (b)
) P

Fg di FQ

IAN "

(c) (d)

1
FIG. 14. Examples of four-boson Feynman diagrams.
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integral equation that is closed under on-shell p; and p, is pre-
ferred to minimize the number of integration variables. This,
however, cannot be constructed directly using these three
diagrams as the kernel of the integral equation. To see this,
consider diagram (d) which is obtained by attaching diagram
(a) without I'} to the right side of diagram (b). [Diagram (d)
is part of the kernel of the integral equation shown in Fig. 6.]
The energy loop integral in diagram (d) has a branch cut from
each dimer propagator attached to I'», one in the upper half
and the other in the lower half of the complex energy plane,
which makes it difficult to invoke the residue theorem on this
loop energy integral. Thus, one of the two nucleon lines in
diagram (b) is generally off-shell.

APPENDIX B: FOUR-BOSON INTEGRAL EQUATION
IN OPERATOR FORM

This Appendix shows the derivation of Egs. (22) and (25)
from Eq. (21). Equation (21) reads

Iy = (14 P3) (KT + K3 I),

[y = (1 4+ Po) (Ko + KnT). (B1)
The first line can be used to write I'} in terms of I';:
Fy=[1— (1+Ps)K] ™ (1 + P3)Kl2,  (B2)

which can be plugged into the second line in Eq. (B1), yield-

ing

[y = (1+P2){Kas[1 — (1 +P3)Ks3] ™ (14 P3)Ksz + K},
(B3)

as long as [ — (1 + P3)K33] is invertible at the energy under
consideration. To further rewrite the equation two identities
are needed. The first one is

[1—(1+P3)Ks]"!
= {[1 — P3K33(1 — K33) "' 1(1 — K33)} ™!
= (1 — K33) " '[1 — P3K33(1 — K33)~ 117!

= (1+ Ts3)(1 = P3T3) 7", (B4)

where
T3 = Kn(1 — K33) ™' (B5)
The second one is
(1 —PsT53) "' (1 + Ps)
=[14 (1 = Ps3T53) ' PsTss] + (1 — PsTs3) "' Ps
=14 (1 = PsT53) ' P31 + Tsa). (B6)

Using Egs. (B4) and (B6), one can write Eq. (B3) as
Ty = (14 Po)[Kx3(1 + Ts3)(1 — PsTs3) "' (1 + Ps)Kx
+ K»n]l'
= (1 + Po)[Kxs(1 + T3)(1 — P3Ts3) "' Ps(1 + T33)K3,
+ Ko3(1 + T33)K3, + Ko 12

= (1 + P)[K) (1 — Ki3)'KSy + K5 1T, (B7)
where
Kyy = Ky (1 + T33),
K3, = P3(1 4 T33)K3,,
32 (BS)

K}, = Kx3(1 + T53)K3 + Koo,

K33 = P3153,
as claimed in Eq. (23). Note that Eq. (B7) is just Eq. (25)
and has the same form as Eq. (B3). Similarly, one can use

Egs. (B4) and (B6) to rewrite Eq. (B2) in terms of the quanti-
ties defined in Eq. (BS8):

APPENDIX C: MOMENTUM AND PARTIAL-WAVE BASIS, AND CHANGE OF BASIS

For a four-boson system with zero total angular momentum, states in the angular-momentum basis are given by

Ay [ dQ
IL=0,m, =0, ((\kk) = / k / b
/ asy, koz

dszkz

/ Ay,

Iy = (1+P3)(1 — Kj3) 'K3,T (B9)
= (1+ P33, (B10)
where I'; satisfy
T3 = Ki3T3 + KTy, (B11)
Combining Egs. (B11) and (B7) gives
I'; = K§3F3 + Kézr‘z,
Iy = (14 P2)(K5Is + KT), (B12)
as claimed in Eq. (22).
1)
mXp:sz A8m—p ﬁym(kl>yp<k2>|k 1k2)
- —px
Z 220, p¢—+Y k)Y, " (o) ferk)
Ses (=12 + 1Pk, - ko)lk 1 K»), (CD)
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where the addition theorem of spherical harmonics is used on the last line. The overlap between four-body states under different
momentum bases (i.e., Jacobi or single-particle momenta) is given by

, 272
(1P €N )PIP3) = 80280 (1) (20 + )20 + 1)#3@2 —p2)
2

X/dQ L d2p,
4w 4w

Py, - PPy (P1 (P1.B,) - P> (P, ). (C2)

The matrix element of 733 under single-particle momenta is related to 7"3(31Z Alf (pl, pliq!. qb), given by Eq. (34), through a
change of basis:

I (pr pial ah) = ((“)P1P2|T33|(5 gl )
) dp) (p3)dp) .
// 2 22) 2 (@) P (. Pl )

i
2

, 27
= 80,80 (=D Q20+ D20 + 1)@_)25(172 —q3)
2

A2, dQ2 N .
X// ye 4P2Pe(171 Pz)Pzr(pl(pl,pz) é(pz))Tf&H(p{(pl,pz);q{,qé)

2

, 2
= 802800 (D QU+ DO+ D——
(p2)

8(1’2 - qz)T3(3 sJ (171’1’2"11) (C3)

where ﬁg;,e/sj(pl ;q1, q3) is defined implicitly on the last line. ]~”3Z3 1s (P73 41, q2) can be defined in a similar manner:

Th L dQ‘”P P -q,)P, T C4
33,78 P1"11a‘12 (4 P1 ) Z/(‘11(‘117‘12) ‘12(‘12)) 33, JJ(phql(ql’qZ) ‘Iz(‘lz)) (C4)

The matrix element of 733 in a partial wave basis of single-particle momenta is related to T;fllf » )( Pl, Py ql, g5) by a change of

basis:

Tz(;)\sék )(Pl’ P2: 41, q2)

(L)1 2| T331 (€' )))q142)

//// (»l) dpf Pz) dlfé (ql) dql (qz) qu

5,0 X
X ((EN)p1 pal P PTG 1 A1) TS (0], phsl, )

/ 2m? -
= 80a80 (=D QU+ DU+ D=—=8(g2 — p2) Y_(2L+1)
(92) 7
A2, d2,, dQ,, d2
X//// Aw dn dm dn PP, - PP (P (B1. B) - P(P))
x Pi(il\{@lv‘?z) '71\5@2))100@ '71\2)713%,11(174@1’172)#1{(‘71"72)’ qé@z))- (©5)

For the angular integrals above, one can choose p,(g,) along the z axis and numerically integrate over €2, (€2,,).

APPENDIX D: INCLUDING OR SUBTRACTING SIMPLE POLE(S) IN AN INTEGRAL EQUATION

Consider the following integral equation:®

A
Fl) = /O K ) f (). (D1

The ideas used here are similar to the so-called K-matrix method (see, e.g., Refs. [33,56] for the K-matrix method in three-body systems),
which is not to be confused with the kernels [e.g., K(x, y), K", and K},] of the integral equations in this paper.
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Suppose the kernel of the integral equation K (x, y) only contains one simple pole at y = y & ie with a corresponding residue
R(x, y9) and yj is real. (Multiple poles can be treated in a similar manner.) Adding and subtracting the pole gives

A R ) A R )
£ = f (K(x, VIO - (x—yO).f(yo))dy + / ROV vy, (D2)
0 y— (yo £ ie) o y— (yo+Eie)

(-1=£ ie)), (D3)

The second term can be evaluated using the Cauchy principal value prescription:

A —yo

AR
/0 L()))f(yo)dy = R(x, yO)f(y0)<:|:i719(A —Yo)+In Yo

y— (o L ie

A=y

= R(x, yo)f (yo)In (

where 6 is the step function. The logarithm function on the second line has a branch cut on (—o0, 0] and is continuous from
above on it. Plugging Eq. (D3) into Eq. (D2) gives

R(-x’ )’0)
y— (o £ i€)

A —yo

A
fx) = /0 <K(x, ) — f(yo)>dy + R(x,y0)f(yo) In ( (-1+£ ie)>. (D4)

One can then discretize x and y with a finite-dimensional vector ¥ with its ith component denoted by v;. The resulting matrix
equation can be written compactly in a block matrix form:

[f(v,.)] _ |:K(v,-, v)w,  RQi.yo){In[A20(=1+ie)] - 3, vk“ikyo}} [f(uj)}

o] | Ko, vi)w;  RGo, yo){In[A52(=1£ie)] = 3 72-} [Lf00)

(D5)

where w; is the weight associated with the v;. In Eq. (D5), f(v;), f(v;), and K(yo, y;)w; are understood as column vectors,
R(v;, yo) is understood as a row vector, and K (v;, v;)w; is understood as a block matrix. Note that one can always choose ¥ that
does not contain the pole yg. If A > yg, Eq. (D5) includes the contribution from the simple pole properly and is numerically
stable. If A < yo, the logarithm in Eq. (D5) automatically cancels with ), [w i/ (Vk — ¥0)] up to numerical errors and Eq. (D5)
still holds.

Subtracting the contribution from simple poles is accomplished by dropping the iz term from the integral and only keeping
the Cauchy principal value for each pole. To illustrate how this works in the four-boson calculation, consider Kj};T'3 in the
four-boson integral equation (22). This illustration will only use Jacobi momenta and consider pair-wise S waves between the
dimer and either of the two single bosons, but the same method also works for different momentum bases. The four-boson state
with total energy E, and pair-wise S wave states is denoted

|Es, kik) = |[E4, L=0,m; =0, (€ =0,1 =0), kikz), (D6)

where the notation is the same as of Eq. (29) but also indicates E4. The matrix element of K;I'; with an incoming four-boson
state |{a}) and an outgoing state |Ey4, k1k;) reads

A (] 2d J (] 2d J
(Es, p1plK3sTsl{a)) = f /0 (q;)nqu (qzz)nzq2<E4,p{pé|P33K33(1 — K33)"'|Es, g1 q3)Ts(q!, 43)

(E3(p)), pIK (1 = K) "M Es(p]), ¢T3 (a0, ). (D7)

- /A (41)"da]
0

22

where Eqgs. (23) and (24) are used to obtain the right-hand side of the first line. On the second line, K33 have been expressed in
terms of the three-boson kernel K, introduced in Eq. (8), and the Dirac-6 function from the spectator boson has been integrated
over. The matrix element of K is given by Eq. (11). E3 (p{ )=E4 — 2(p{ )?/(3m) is the energy of the three-boson subsystem in
its CM frame. The spectral decomposition of K (including the measure in the momentum integral) restricted to S waves at a
three-boson CM energy Ej is

A 2 2

5 pdp q-dq Z

K(I; = // |E37 p) 27_[2 K(?(E:% pv Q) 27t2 <E37 CI| = |E37 va>)\a(E3)<E3’ Ualv (D8)
0 a

where A;(E3) are the eigenvalues and v;(Es, p) = (p|Es, v;) are the eigenvectors of I?S’ and the sum over a could include an

integral for the continuous part of the spectrum. When E5 equals a trimer binding energy —B;i), an eigenvalue, denoted Aj,
equals one. The corresponding eigenvector v (E3, p) is just the trimer vertex function G(E3, p), as shown in Eq. (20). Plugging
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Eq. (D8) into Eq. (D7) gives

*a(E3(p1))

(Eq, piP3IK5Tsl{ed) = )

_ v talEs(p))
:Xa: E3( 1 F(p

1 — 2q(

r))

which has a pole at E3(p] .

A (q])’dq]

a —l_Aa(Ea(p{))va(&(PJl)’Pé)/o Tz'vj(&(p{),q{)m(q{,p{)

p3), (D9)

) = —BY that comes from A,(—BY’) = 1, assuming F(p], pj}) is well behaved’ around p] =

Pl pole- A general integral over pi that involves (E4, p| 3| K3 T3{e}) can be written as

ka(E3(p1))

/OA dpif(pl. p) Xa: WF(P

p{.pulc_e 1’11, pole T€ A
0 17{ pole —€ 7, pole T€

dpif(pl. p) Y

p3)

)»a(E3(p{)) F p{,pﬁ),

) (D10

where f(p], p}) is an arbitrary function that is smooth around p| = p{ pole and € is an infinitesimal positive number. The integral
over p/ has been split into three parts, and the sum of the first and third parts gives the Cauchy principal value of the integral.

The second part has zero measure as € — 0 and its only contribution comes from the pole where A (E3( p{

words,
r

1, pole T€

dpif(pl. ph) Y

1, polc7E a#l

MBS g
1= xa(E3(p1))

pOle)) = 1. In other

F(p|.p}) =0. (D11)

Therefore, if one subtracts the deep trimers, i.e., removes A (—Bgi)) and | — Bg ) , v1) corresponding to the deep trimers from the
spectral decomposition of K in Eq. (D8), then what is left in Eq. (D10) is just the Cauchy principal value. Note that the pole

only exists at p{ = p] pole- Therefore, no subtraction is needed at Pl #pl

contribute.

APPENDIX E: DISCUSSION OF MOMENTUM
AND ANGULAR-MOMENTUM CUTOFFS

In principle, the cutoff A used in the integral equation (9)
for the dimer-single-boson scattering amplitude can be dif-
ferent from the cutoff A’ of the single-particle momenta in
the four-boson integral equation (48). This is similar to using
a cutoff Ajpeqy for the two-body subsystem of a three-body
system with a different cutoff A # Aopody; taking Aspogy —
oo while keeping A finite is discussed in Ref. [6]. In four-
boson calculations, the relationship between A and A’ is
similar but slightly more complicated due to the deep trimer
poles. If the deep trimers are properly addressed, the four-
body vertex should not depend on A for A > A’ at large
A and A’ since the dimer-single-boson scattering amplitude,
tlh(E, k, p) in Eq. (9), converges for p,k < A as A — oo.
Furthermore, to compute the kernel of the four-boson inte-
gral equation (48), tIh(E , k, p) needs to be evaluated at, e.g.,
p=pl =P, +P,/3] S4A'/3 [see Egs. (C4) and (34)], but
tM(E, k, p) may not be cutoff-independent for p,k ~ A’ if
A’ ~ A. However, the contribution from the single-particle
momenta py, p, ~ A’ to the four-boson loop integrals is ex-
pected to be suppressed compared with the contribution from

7F (p, p}) could have poles at some pj = p} . from iterations of
three-boson amplitudes, but it is well behaved in p{ at all other values

of p.

pole> and all states |E3 (le ) # —Bfi), v,) with any a still

(

p1, p2 of the typical scale of the system under consideration.
This also aligns with the diagrammatic results using A’ = A
as shown in Fig. 10 where a good convergence of tetramer
binding energies is found. A quantitative and analytic study
on the impact of using different values for A and A’ requires
a more detailed asymptotic analysis of the four-boson integral
equation, which is beyond the scope of this paper.

Regarding the cutoff Ag of the energy loop integral, the
choice Ax = 4A%/m is found to be sufficiently large to com-
pute tetramer binding energies. To justify the choice of £;,.x =
2, Table III shows Eio) as a function of £, calculated at
A = A’ = 4000/mB,. It is found that E{" only receives a
small correction from ¢ > 2 and therefore ¢,,,x = 2 is used
in this paper to reduce numerical expenses. For example, in
the matrix element of K;, given by Eq. (47), the contribution
from K>3(1 4 T33)K3;, which corresponds to diagrams with
two or more boson exchanges between the dimer and single

TABLE III. Tetramer binding energies for different angular-
momentum cutoff £, evaluated at A = 4000./mB, for cold “He
atoms with deep trimers subtracted.

Limax 0 1 2 3 4 5

EQL[JmB;) 4162 4246 4255 4258 4259 4259
(E" — B)[/mB;] Unbound 0.0099 0.0135 0.0143 0.0150 0.0152
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boson in the three-boson subsystem, is approximated using
partial waves below £;,,x = 2. On the other hand, the angular
integrals in K5,, which corresponds to a diagram with only one
boson exchange in the three-boson subsystem, are evaluated
directly without partial waves. This is because the angular
integrals in K>, are much easier to evaluate exactly, as given
by Eq. (46), than using partial-wave projections. Although this
means the matrix element of K»,, compared with other com-
ponents of the kernel with a finite partial-wave cutoff £,
always contains contamination from higher partial waves, the
matrix element of K, is independent of £,,x. Therefore, a
convergence of four-boson observables as a function of €.«
is still expected. This is also demonstrated in Table III.

APPENDIX F: COMPLEX EIGENVALUES
AND LOCATIONS OF THE RESONANCES

Consider an eigenvalue A(E + iI"/2) of the kernel of an in-
tegral equation as a function of a complex energy variable E +
il"/2, where both E and I are real. When A(Ep + il/2) =1
with I'g # 0, a resonance is identified with a binding energy
Ey and a decay width I'y. In general, a resonance is much
more difficult to locate than a real bound state since the former
requires solving for Ey 4 il'g/2 in the complex plane. How-
ever, for I'g/(2Ey) < 1 one can find Ej and I' perturbatively.
Assuming A(E + iI"/2) is analytic around Ej, with a radius of
convergence larger than I'y/2, one can expand A(Ey + i[9/2)
around Ey:

| = 3(Ey + iTo/2) = M(Eo) + Eg 2 il

= MEp +ilo/2) = AM(Ep) + 0y E=E02_E0

ir
= A(Ey) + EoA (Eg)—2 + .- . (F1)
2E,

To find Ey and I'y perturbatively, one can treat the imaginary
part of A(Ey) as a perturbation:

o = Im(A(Ep)) K< Re(A(Ep)) ~ O(1) (F2)

and use the following series expansions of Ey and ['y:

Ey = Z a"ES", (F3)
n=0,1,--

To= Y o'y, (F4)
n=1,2,-

where the expansion for Iy starts at n = 1 because 'y K Ey
and thus I'y should be driven by Im(A(Ejy)). The real (gart of
Eq. (F1) to the lowest order can be used to solve for E; ).

Re(A(EY)) = 1. (F5)

The imaginary part of Eq. (F1) to the lowest nonvanishing
order reads

(1)
al’,

o + Re(2'(ES")) 5

-0, (F6)

which gives
orf)  Im(x(EL))
27 Re(M(E)
To find the next-order corrections and/or the error of the

first-order approximations above, one can take the real part of
Eq. (F1) and first collect terms of order «:

Re(M'(ES"))aE" = 0. (F8)

(F7)

To find the first nonvanishing correction to E(O), one can
collect terms of order o for the real part of Eq. (F1):

Im(k’(E(O))) al(P

R )»/ E(O) 2E(2)_ 0 0

e((Ey))a’E, Im(A(EéO))) )

(ary")’
4

where all vanishing terms have been dropped. azEéz) is given
by

1
— 5Re(x" (E5")) =0, (F9)

I (g + LR (55")) 1)’
2Re(i ()

2(2) _
a’Ey” =

(F10)

Similarly, keeping the imaginary part Eq. (F1) with terms
of order a? yields F(()z) = 0. To find the first nonvanishing

correction to Fél), one can take the imgginary part of Eq. (F1).
The nonvanishing terms of order o give

. Im(x' (E")) T
Im(%(Ey”)) 2

N (g )\ 2
sy 2 el 1 Im(1"(Ey")) (aTg
+Re(V'(Ey ")) E, 3~ 5¢ m( (") | 2

o”Eg” + Re (X (ES"))

(F11)

m\?

~ Re("(E) (%) o0,
which can be solved for a3F(()3).

In practice, one can first solve for Eéo) and F(()l) /2, then
compute )J(E(()O)) numerically to find perturbatively E(()z) and
F(()3), and at last use Eéz) and F(()3) to estimate the uncertainties
of Eéo) and F(()]) /2, denoted by Err(E(()O)) and EI"I’(OlF(()l) /2),
respectively. This gives

Im(x' (ES”))Im (A (E"))
[Re(w(ES)]’

W | (MEE)) m(E))
Err(aro )/2) ~ (Re()»/(E(gO)))> RC(A’(ESO))) .

En(£") ~

(F12)

This uncertainty estimation works as long as the second and
higher derivatives of A(E) at E = Eéo) are of a similar size as,
or smaller than, the first derivative. Note that Eq. (F5) may
not have a solution. In that case, one may pick a real number
B < 1, add and subtract it on the left-hand side of Eq. (F1),
solve Re(A(EéO))) = 1 — B instead of Eq. (F5), and treat 8 as
a correction term.
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