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Background: Recent measurements indicate that the previously established upper limit for the γ -decay branch
of the 3−

1 resonance in 12C at Ex = 9.641(5) MeV may be incorrect. As a result, the 3−
1 resonance has been

suggested as a significant resonance for mediating the triple-α reaction at high temperatures above 2 GK.
Accurate estimations of the 3−

1 contribution to the triple-α reaction rate require accurate knowledge of not only
the radiative width, but also the total width.
Purpose: In anticipation of future measurements to more accurately determine the γ -decay branch of the 3−

1

resonance, the objective of this work is to accurately determine the total width of the 3−
1 resonance.

Method: An evaluation was performed on all previous results considered in the current ENSDF average of
46(3) keV for the physical total width (FWHM) of the 3−

1 resonance in 12C. A new R-matrix analysis for the 3−
1

resonance was performed with a self-consistent, simultaneous fit of several high-resolution 12C excitation-energy
spectra populated with direct reactions.
Results: The global analysis performed in this work yields a formal total width of �(Er ) = 46(2) keV and an
observed total width of �obs(Er ) = 38(2) keV for the 3−

1 resonance.
Conclusions: Significant unaccounted-for uncertainties and a misstated result were discovered in the previous
results employed in the ENSDF for the physical (or observed) total width of the 3−

1 resonance. These previously
reported widths are fundamentally different quantities, leading to an invalid ENSDF average. An observed total
width of �obs(Er ) = 38(2) keV is recommended for the 3−

1 resonance in 12C. This observed total width should
be employed for future evaluations of the observed total radiative width for the 3−

1 resonance and its contribution
to the high-temperature triple-α reaction rate.

DOI: 10.1103/PhysRevC.109.015806

I. INTRODUCTION

At high temperatures of above 2 GK, the triple-α reaction
proceeds through resonances above the Hoyle state. Such
high-temperature conditions are significant for astrophysical
environments such as the shock front of type II supernovae.
In this temperature region, there is significant uncertainty in
the triple-α rate, owing to the complexities of disentangling
the broad resonances, which intrinsically overlap and interfere
[1–7]. In contrast, the triple-α reaction at medium tempera-
tures (between 0.1 and 2 GK) proceeds almost exclusively
through the narrow primary peak of the Hoyle state. In order to

*k.c.w.li@fys.uio.no

understand the significance of correctly including the broader
resonances above the Hoyle state for the triple-α rate at high
temperatures, consider the differences in the triple-α rates cal-
culated by Angulo et al. and Fynbo et al. [8,9]. At the time of
publication of both Refs. [8] and [9], the 2+

2 resonance was not
yet conclusively observed. Consequently, the 2+

2 resonance
was omitted in the revised rate [9]. In contrast, the NACRE
rate [8] assumed the existence of the 2+

2 resonance at Ex = 9.1
MeV with � = 0.56 MeV, yielding an increase in the triple-α
rate (above ≈6 GK) by several orders of magnitude relative to
Ref. [9]. In the past few decades, the nuclear-physics com-
munity has invested significant effort in the search for the
2+

2 rotational state, culminating in its eventual identification
[3,10–13]. While this state has now been firmly established
to exist at Ex ≈ 9.9 MeV, its exact properties are still
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TABLE I. The reported results for the 3−
1 resonance in 12C,

which are employed in the current ENSDF average [17]. The ENSDF
definition for the listed total width is the full width at half-maximum
(FWHM) intensity for a resonance. �(Er ) is the formal total width
[see Eq. (3)]. �obs is the observed total width [see Eq. (8)]. �FWHM

is the FWHM of the intrinsic lineshape. Averaging the total widths
reported in Refs. [18–21] yields an average of 45(3) keV: This minor
discrepancy with the currently listed 46(3) keV is “due to a rounding
judgment” [22]. Details of the uncertainty policy for the ENSDF can
be found in Refs. [23,24]).

Resolutiona �(Er ) �obs(Er ) �FWHM

Ref. (keV) (keV) (keV) (keV)

Douglas et al. [18] – – – 30(8)
Browne et al. [19] ≈40 – – 36(6)b

Alcorta et al. [20] 60–120 – – 43(4)
55–85

Kokalova et al. [21] 54(2)c 48(2) – –

aReported as FWHM.
bThe abstract and body of Ref. [19] inconsistently report 35(6) and
36(6) keV, respectively; the ENSDF employs the latter [17].
cDetermined from Ref. [21], which incorrectly reports the Gaussian
standard deviation of σ = 23(1) keV as the FWHM.

somewhat uncertain due to it being submerged under the
broad, surrounding 0+ strength [6,7].

An even greater source of uncertainty exists in the triple-α
rate at high temperatures above 2 GK, where the Gamow
window enables the reaction to proceed through the 3−

1 res-
onance in 12C. In the past, the contribution from the 3−

1
resonance has been largely neglected given the reported upper
limit on the radiative branching ratio of �rad/� < 8.3 × 10−7

(95% C.L.) [14]. Recent measurements have indicated that
this upper limit may be incorrect. The first indication of this
possible error was reported in a study by Tsumura et al. [15],
which yielded a branching ratio of �rad/� = 1.3+1.2

−1.1 × 10−6,
though the resolution in Ref. [15] for the 3−

1 resonance was
low (≈ 800 keV FWHM) and the identification/quantification
of the 3−

1 peak is difficult given the complex and significant
background. Specifically, it is the branching ratio for the
E1 γ -ray transition between the 3−

1 and 2+
1 states, which is

expected to dominate the total γ decay of the 3−
1 resonance;

the probability of the E3 γ decay (3−
1 → 0+

g.s.) being deter-
mined in Ref. [15] as 6.7(10) × 10−9 using the associated
0.31(4) meV width from an (e, e′) measurement [16] and
the ENSDF average for the total width of the 3−

1 resonance
of � = 46(3) keV [17]. Since 2017, the ENSDF average
for the 3−

1 total width has employed Refs. [18–21], yield-
ing an uncertainty-weighted average of 46(3) keV [17] (see
Table I). A subsequent result of �rad/� = 6.4(51) × 10−5 was
reported by Cardella et al. [25], however, the resolution is
also relatively low and only ≈3 counts corresponding to the
3−

1 resonance were observed. Unfortunately, the uncertainties
from both measurements are substantial and lead to large
uncertainties in the associated contribution to the triple-α rate
at high temperatures. However, what is clear is that if the
order of magnitude of these results is correct, the previously
established upper limit of �rad/� < 8.3 × 10−7 (95% C.L.)

TABLE II. Summary of the experimental parameters for the in-
clusive excitation-energy spectra analysed in this work.

Angle E beam Target Fitted Ex

Reaction (deg) (MeV) (µg/cm2) range (MeV)

12C(α, α′)12C 0 118 natC (1053) 5.0–14.8
0 160 natC (300) 7.3–20.0
10 196 natC (290) 7.15–21.5

14C(p, t )12C 0 100 14C (280) 6.0–15.3
21 67.5 14C (300) 6.8–14.5

12C(p, p′)12C 16 66 natC (1000) 6.0–15.3

may be incorrect. The upward trend for the associated radia-
tive branching ratio for the 3−

1 resonance [15,25] suggests that
the 3−

1 contribution may not only be significant, but dominant
at temperatures above 2 GK. The significant uncertainties in
Refs. [15,25] do not enable the 3−

1 contribution to be meaning-
fully constrained and new, more sensitive measurements are
required. Accurate estimations for the observed total radiative
width of the 3−

1 resonance, as well as its contribution to the
triple-α reaction rate, require accurate knowledge of not only
the γ -decay branching ratio, but also the total width. In antic-
ipation of future measurements to more accurately determine
the γ -decay branch, the primary objective of this work is to
provide a new analysis for the total width of the 3−

1 resonance.
A secondary objective is to perform a meta-analysis on the
previous results considered in the current ENSDF average for
the 3−

1 total width.

II. DATA ANALYSIS AND RESULTS

In this work, the primary analysis considers inclusive
excitation-energy spectra from six different measurements
(see Table II). The 12C(α, α′)12C and 14C(p, t )12C data have
been previously employed in a previous investigation for
the predicted breathing-mode excitation of the Hoyle state
[6,7]. The 12C(p, p′)12C spectrum studied in this work is
an independently analyzed subset of the data employed in
a previous study of the 3−

1 total width [21]. These spectra
were simultaneously fitted with phenomenological line shape
parametrizations from multilevel, multichannel R-matrix the-
ory. The underlying formalism of the fit analysis is detailed in
Sec. II A and the details of this primary analysis are presented
in Sec. II B. In addition, a meta-analysis was also performed
on the previous studies considered on this current ENSDF av-
erage [17], with the exception of Ref. [18]. These assessments
are detailed in Secs. II C, II D, and II E. A quantitative assess-
ment of the 3−

1 total width reported in Ref. [18] was deemed
unfeasible within the scope of this work as the methodology
in Ref. [18] is significantly different from this work.

A. R-matrix formalism

A comprehensive description of the phenomenological R-
matrix formalism for this analysis is given in Ref. [7], with
the pertinent components described here. For this analysis of
direct-reaction data, consider a direct reaction populating a
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recoil nucleus, which subsequently decays, represented as

A + a → B + b (B → C + c), (1)

for the target (A), projectile (a), recoil (B), ejectile (b), and
decay products from the recoil (C and c). The intrinsic line
shape observed for excitations of a particular spin and parity
is given by

Nab,c(E ) = Pc

∣∣∣∣∣∣

N∑

λ,μ

G
1
2
λabγμcAλμ

∣∣∣∣∣∣

2

, (2)

where γ is the reduced-width amplitude and Aλμ is an element
of the level matrix. Subscript ab denotes the A + a → B + b
reaction channel and subscript c denotes the B → C + c de-
cay channel. Pc is the penetrability of the decay channel and
the feeding factor, Gab, captures the population strength and
excitation-energy dependence for the incoming reaction chan-
nel (see Ref. [7] for details). The total width of the μth level
is expressed as a sum over the decay-channel widths

�μ(E ) =
∑

c′
2γ 2

μc′Pc′ (�, E ), (3)

where γ 2 is the reduced width and c′ is a summation index
over the decay channels. The penetrability for decay chan-
nel c, with an orbital angular momentum of the decay, �, is
expressed as

Pc(�, E ) = kac

Fl (η, kac)2 + Gl (η, kac)2
, (4)

where Fl (η, kac) and Gl (η, kac) are the regular and irregular
Coulomb functions, respectively; k is the wave number, ac is
the fixed channel radius and η is the dimensionless Sommer-
feld parameter [26].

In the case of an isolated resonance, the corresponding line
shape corresponds to a single-level approximation [27] of the
form

Nab,c(E ) = Gab �c

(E − Er − 	)2 + 1
4�2

, (5)

where Er is the resonance energy and 	 ≡ 	11 is expressed
as a sum over the decay channels, and

	λμ =
∑

c′
−(Sc′ − Bc′ )γλc′γμc′, (6)

where Sc and Bc are the shift factors and boundary condition
parameters, respectively. For this work, the natural boundary
condition, Bc = Sc(Er ), was employed. The shift factors are
expressed as

Sl (E ) = kac[Fl (η, kac)F ′
l (η, kac) + Gl (η, kac)G′

l (η, kac)]

Fl (η, kac)2 + Gl (η, kac)2
,

(7)
where F ′

l and G′
l are the derivatives of the regular and irregular

Coulomb functions, respectively.
As this study is focused on precisely extracting the physical

total width of the 3−
1 resonance, it is important to understand

the nuances between the various width definitions relevant
to R-matrix analyses. For the case of an isolated resonance,
the full width half-maximum (FWHM) for the intrinsic line

shape of a resonance is referred to as the physical (or intrinsic)
total width. The physical total width is model independent and
corresponds to the ENSDF definition of the total width. The
formal total width [Eq. (3)] is a highly model-dependent R-
matrix quantity, which is correlated with, yet distinct from the
physical total width. This is predominantly due to the energy
dependence of the energy shift (	) in Eq. (5). However, for
a given formal total width, the corresponding physical total
width can be well approximated by what is known as the
observed total width, defined as

�obs,μ(E ) =
∑

c′ 2γ 2
μc′Pc′ (�, E )

1 + ∑
c′ γ 2

μc′
dSc′
dE

∣∣
E=Er

. (8)

This approximation is valid under the aforementioned natural
boundary condition, and the approximation of the shift factor
to be linear in the vicinity of the resonance energy (known as
the Thomas approximation [27]) as:

	μ(E ) ≈ 	μ(Er ) + (Er − E )
∑

c′
γ 2

μc′
dSc′

dE

∣∣
E=Er

. (9)

As long as the shift factor and penetrability vary slowly over
the resonance range, the observed total width well approxi-
mates the physical total width for a Breit-Wigner resonance.
The formal total width is therefore a fundamentally different
quantity from the observed total width and the physical total
width (FWHM) of an isolated resonance; the latter two widths
converging when the Thomas approximation is accurate. This
Thomas approximation is poor for highly clustered reso-
nances located near particle threshold (an example is given in
Sec. II C 1). In such cases, the corresponding shift factors are
significantly nonlinear across the range of the resonance and
the reduced widths are large, which further amplifies the effect
of the 	λμ parameter [see Eq. (6)]. In general, the formal
total width should therefore not be compared with the physical
width observed for a resonance (although these quantities can
be very similar under certain conditions). This feature for this
parametrization of R-matrix theory has been detailed in the
seminal work of Lane and Thomas [27] as well as in more
recent studies such as Refs. [28,29]. It is therefore standard
practice for only the physical resonance properties (i.e., the
observed parameters) to be stored in evaluated nuclear data
libraries such as the ENSDF. This ensures the portability of
results between different analyses (e.g., for ENSDF evalua-
tions), which often employ different channel radii to produce
formal parameters which cannot be directly compared. This
is particularly appropriate for R-matrix parametrizations, for
which there is no particular correct channel radius. Instead,
there is a range of channel radii (related to the physical
particles sizes of the partition) which enable data to be well
parameterized. In the context of R-matrix cross-section cal-
culations for nuclear astrophysics, it is standard to treat the
ENSDF parameters as observed parameters. These evaluated
quantities can then be transformed to their formal counterparts
for any particular channel radius for subsequent calculations.
For completeness, the R-matrix formalism discussed thus
far, that requires the choice of arbitrary boundary condition
and channel-radius parameters, corresponds to the Wigner-
Eisenbud parametrization of R-matrix theory. Alternative
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TABLE III. Optimized fit results for the global analysis of all considered data (see Fig. 1).

α0 decay α1 decay Total width

8Bea AICb Er aα0 θ 2
α0

�α0 (Er ) aα1 θ 2
α1

c �α1 (Er ) �(Er ) �obs(Er ) �FWHM

widths (MeV) (fm) (keV) (fm) (keV) (keV) (keV) (keV)

Discrete 15088 9.641(2) 4.8 0.291(2) 46(2) 4.8 0.0(1) 0(2) 46(2) 38(2)d 38(2)
Finite 15179 9.641(2) 4.8 0.316(3) 47(2) 4.8 0.00(7) 0(2) 47(2) 39(2) 39(2)

aThis indicates the prescription employed for the penetrability and shift factor: “Discrete” is the standard prescription, which assumes the 8Be
states to be infinitely narrow. “Finite” indicates that the intrinsic widths of the 8Be states were accounted for [7].
bThe AIC estimator is used to determine the best quality model as maximum likelihood estimation is employed to fit the data. Minimum χ2

red

estimation is not used as there are several regions in the spectra, which have very low counts (<10); Ref. [7] presents the full fit ranges for a
subset of the considered data.
cThe Wigner limit is applied for the α1 decay channel; see text for details.
dCorresponds to the optimal fit for the 3−

1 resonance in this work.

R-matrix parametrizations have been proposed by Brune [30],
as well as Ducru and Sobes [31], which elegantly mitigate am-
biguities stemming from these arbitrary parameters. However,
the Wigner-Eisenbud parametrization applied in this work is
still widely employed.

B. Primary analysis of inclusive spectra

In this work, a simultaneous, self-consistent analysis was
performed on the data corresponding to Table II. The two
main contributions to the broad underlying background are
the 2+

2 rotational excitation of the Hoyle state as well as an
intricate monopole strength, which consists of the ghost of
the 0+

2 Hoyle state as well as the 0+
3 and 0+

4 resonances (see
Refs. [6,7] for a recent experimental investigation). The 0+

3
resonance at Ex ≈ 9 MeV has been suggested to correspond
to the breathing-mode excitation of the Hoyle state [32–37],
with the higher-energy 0+

4 excitation mode at Ex ≈ 11 MeV
corresponding to a predicted bent-arm 3α structure [5,35,38–
40]. Two versions of the fits were also explored: the first
implements the standard prescriptions for the penetrability
and shift factor [Eqs. (4) and (7)], which assume the 8Be
daughter states to be infinitesimally narrow. The second ac-
counts for the intrinsic widths of the 8Be states (see Ref. [7]
for details). To investigate the channel-radius dependence for
the 3−

1 resonance, a range of channel radii from ac = 4–11 fm
was explored in 0.1 fm increments. In these fits, the Wigner
limit was applied to the α1 decay channel of the 3−

1 reso-
nance as the corresponding branching ratio is known to be
extremely small [20,41,42]. The optimal fit results from the
simultaneous analysis of all the data corresponding to Table II
are presented in Fig. 1 and Table III, yielding �(Er ) = 46(2)
keV with �obs(Er ) = 38(2) keV for the 3−

1 resonance.

C. 3−
1 total width from Kokalova et al. Assessing the 3−

1 total
width from Ref. [21]

To assess the 3−
1 total width reported by in Ref. [21],

an isolated analysis was performed on the subset of the
12C(p, p′)12C data from Ref. [21]. These 12C(p, p′)12C data
are the same that were included in the primary analysis of
this work (see Sec. II B and Table II). This analysis was
repeated for a 14C(p, t )12C excitation-energy spectrum with

better resolution to confirm whether the same observed sys-
tematic trends are independent of the data (see Sec. II C 2).

1. Isolated analysis of 12C(p, p′ )12C data

Reference [21] reported only the formal total width for the
3−

1 resonance, which was incorrectly compared to the physi-
cal total width of the state reported in other works currently
employed in the ENSDF average [18–20]. As previously
mentioned in Sec. II A, the formal total width is a model-
dependent quantity which is distinct from the physical total
width (FWHM) of a resonance. Consequently, this misstated
formal total width of � = 48(2) keV reported by Ref. [21] was
mistakenly considered in the ENSDF average for the physical
total width (FWHM) of the 3−

1 resonance [17]. The current
ENSDF average is thus invalid for determining the observed
total radiative width for the 3−

1 resonance. Determining the
observed total radiative width requires knowledge on the ob-
served total width, in addition to the E1 (3−

1 → 2+
1 ) γ -decay

branching ratio and the physical E3 (3−
1 → 0+

g.s.) γ -decay
width of 0.31(4) meV [16] (see Ref. [15] for a more detailed
discussion). To clarify why this misstated result is particularly
problematic for the 3−

1 state in 12C, an analysis is given:
Figs. 2(a) and 2(b) present the channel-radius dependence of
the 3−

1 intrinsic line shapes with the formal and observed total
widths being kept constant at 40 keV, respectively. The clear
channel-radius dependence of the formal width is apparent, in
contrast to the observed total width, which is weakly depen-
dent of the channel radius. This effect is predominantly due
the channel-radius dependence of the shift function near the
α0 decay threshold. In general, the shift function at a particular
energy becomes more constant towards larger channel radii
(equivalently for the energy shift, 	) and thus, the formal total
width converges with the observed total width at large channel
radii, as shown in Figs. 2(c) and 2(d).

For completeness, a counterexample for the channel-radius
independence of the observed total width [defined in Eq. (8)]
is provided by the broad 2+

2 rotational excitation of Hoyle
state, which underlies the 3−

1 resonance (see Fig. 3). Over the
broad range of the 2+

2 resonance, which has an experimentally
observed FWHM of ≈1 MeV, the energy shift is observed to
be nonlinear. Over the range of explored channel radii shown
in Fig. 3, the Thomas approximation is inappropriate for the
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FIG. 1. Decomposition of the optimal fit for the inclusive
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1 resonance is
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and the instrumental background. For each spectrum, the reaction,
measurement angle, and beam energy are indicated in the top right
of the corresponding panel. On panel (d), the contaminant state from
61Cu (Ex = 4.756 MeV) is indicated; see Ref. [7] for details of the
contaminants.

2+
2 resonance and thus, �obs(Er ) is no longer an accurate mea-

sure for the intrinsic FWHM of the resonance. This general
effect manifests strongly for resonances, which are located
near a particle threshold and exhibit significant clustering (i.e.,
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stant �obs(Er ) = 40 keV, (c) the energy shift, and (d) the FWHM of
the intrinsic lineshape.

large reduced widths). For such cases, we thus encourage
the reporting of not only the formal and observed width, but
also the FWHM (�FWHM) to facilitate model independence
in comparisons to data and between analyses. For R-matrix
derived line shapes, the FWHMs reported in this work are nu-
merically determined for the intrinsic line shape. For �FWHM

to be consistent between different direct-reaction data sets,
�FWHM is determined for intrinsic line shapes without feeding
factors.

In this work, the formal total width of the 3−
1 resonance of

�(Er ) = 48(2) keV reported by Ref. [21] has been converted
to the observed total width of �obs(Er ) = 39(4) keV, which is
appropriate for the ENSDF average. This observed total width
matches the numerically determined FWHM of �FWHM =
39(4) keV (see Table I). The overall uncertainties for these
converted values include previously unaccounted-for system-
atic errors stemming from the approximations employed in
Ref. [21]. To estimate these unaccounted-for systematic er-
rors, a comprehensive, isolated analysis was also performed

) 
[M

eV
]

E(Δ F
W

H
M

 [M
eV

]

Excitation energy [MeV] Channel radius [fm]
8.5 9 9.5 10 10.5 11 11.5

1−

0

1

2

6 7 8 9 10 11 12

0.5

0.6

0.7

0.8

0.9

1

 = 9.870 MeVrE,2
+2

) = 1 MeVrE(Γ
) = 1 MeVrE(obsΓ

(a)

(b)

FIG. 3. The channel-radius dependence of the 2+
2 resonance for

(a) the energy shift and (b) the numerically determined FWHM of
the intrinsic lineshape.
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FIG. 4. The differences in the (a) intrinsic and (b) experimen-
tally observed line shapes caused by the considered approximations
(relative to the peak maximum). The observed line shapes were pro-
duced by convoluting the intrinsic line shapes with the experimental
response observed in the 12C(p, p′)12C data analyzed in this work.

on the subset of the data employed in Ref. [21]. This subset ex-
hibits a better experimental resolution of 48(1) keV (FWHM)
and fewer experimental artifacts than in Ref. [21]. The study
of Ref. [21] parameterized the intrinsic line shape for the
3−

1 resonance with that of a single, isolated level [Eq. (5)].
This is a reasonable approximation given the relatively nar-
row width of ≈40 keV with respect to the next closest 3−
resonance at Ex = 18 350(50) keV. Furthermore, the single
(decay) channel approximation employed by Ref. [21] is ap-
propriate as the 3−

1 resonance is understood to decay almost
exclusively through the α0 (� = 3/ f -wave) decay channel to
the 0+ ground state of 8Be [20,41,42]. The R-matrix-derived
line shape employed in Ref. [21] is functionally the same as
Eq. (5), with Ref. [21] having employed a degenerate sign
difference in the definition of both 	 and the first term of
the denominator in Eq. (5). Perhaps the most critical ap-
proximation made by Ref. [21] concerns the description of
the broad background components beneath the 3−

1 resonance
with a second-order polynomial and a 2+ resonance situated
at Ex ≈ 9.6 MeV with � ≈ 600 keV. The effect of target-
related energy loss for the ejectile is also ignored. Finally,
the feeding factor for the direct populating channel (Gab) was
also implicitly approximated to be constant. Reference [21]
also investigated whether the intrinsic 3−

1 line shape can be
well parameterized with a standard (symmetric) Lorentzian in
comparison to the R-matrix line shape given by Eq. (5). In
this investigation, we also consider the somewhat common
approximation of employing a pseudo-R-matrix line shape
where the energy shift [	 in Eq. (5)] is neglected. A system-
atic sensitivity study of these approximations was performed
for both the intrinsic and experimentally observed line shapes
of the 3−

1 resonance, see Fig. 4. A Gaussian experimental
resolution of σ = 20 keV was employed, which is similar
to the σ = 23(1) keV resolution reported in Ref. [21]. For
the R-matrix line shape of Eq. (5), an observed total width
of �obs(Er ) = 40 keV at Er = 9.641 MeV was employed.
For the test of a standard (symmetric) Lorentzian, an energy-
independent width of � = 40 keV was implemented. It is
observed that the inclusion (or lack) of an energy-dependent

feeding factor is negligible. This is unsurprising given the typ-
ical slowly varying energy dependence of the feeding factor
[7], which is well approximated to be constant over the ≈40
keV width of the 3−

1 resonance. The effects of employing a
standard Lorentzian and neglecting the target-related energy
loss are more significant given the small statistical errors for
the high yields at the peak of the 3−

1 resonance in Ref. [21]
(≈20000 counts per 5 keV bin). The 	 = 0 approximation
was observed to have the most dramatic effect on both the
intrinsic and experimentally observed line shape for the 3−

1
resonance. In general, this approximation is particularly poor
for resonances near threshold, which exhibit a high degree of
clustering, and thus large reduced widths and quickly varying
energy shifts. To clarify this, the 	 = 0, pseudo-R-matrix
approximation to the intrinsic line shape was not explored in
Ref. [21], however, it is detailed here as a caution for future
studies, which may seek to apply it. It is clear that several
of these approximations may individually have a significant
effect on the observed line shape. However, the combined
effect from these approximations on the extracted observed
total width for the 3−

1 resonance is dependent on the features
of the data. To gauge the systematic errors associated with
these various approximations, an exhaustive test for various
combinations of these approximations was performed on a
subset of the 12C(p, p′)12C data in Ref. [21] and the most
revealing combinations are presented as different cases in
Table IV. The associated fits were performed with χ2 min-
imization given the limited fit range (which approximately
matches that in Ref. [21]) in which the data is approximately
normally distributed.

In terms of background systematics, it is observed that the
choice of parametrization for the underlying 2+

2 contribution
is significant. First-order and second-order polynomial back-
grounds were found to yield almost identical fits, thus the
results from the former are omitted from Table IV.

Case (1): The observed total width for the 3−
1 resonance

is larger when approximating the underlying 2+
2 reso-

nance with simplified Gaussian and standard Lorentzian
line shapes and larger still when not including a broad
component for the 2+

2 resonance at all.
Case (2): In terms of the line shape for the 3−

1 resonance
itself, a standard (symmetric) Lorentzian line shape [case
(2)] yields a poor fit and exhibits a significantly smaller
�FWHM than other scenarios.
Case (3): A comparison of case (3) to case (4) cases
shows that ignoring the energy shift naturally affects the
extracted formal width, however, the FWHM of the 3−

1
resonance is consistent.
Case (4): This case most closely matches the fit method-
ology employed in Ref. [21] and the corresponding fit
in Fig. 5 yielded �(Er ) = 51(1) keV and �obs(Er ) =
41(2) keV, with the formal total width being in reason-
able agreement with the corresponding value reported in
Ref. [21] (see Table I). In this work, the formal total
reported in Ref. [21] was converted to the appropriate
observed total width for the ENSDF. By comparing the fit
of case (4) to the best fit of case (8), the unaccounted-for
systematic error due to the background approximation
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TABLE IV. Summary of analysis configurations and results for the 12C(p, p′)12C reaction at E beam = 66 MeV. χ 2
red is the reduced χ 2

statistic. The Landau energy-loss parameters were fitted to the intrinsically narrow Hoyle state in the subset of 12C(p, p′)12C data from Ref. [21]
analyzed in this work. The channel radius for all R-matrix derived lineshapes is the same as that employed by Ref. [21]: ac = 1.3(41/3 + 81/3) ≈
4.7 fm. The reported errors contain the fitting errors and a minimum focal-plane detection error of 1 keV, added in quadrature, with no other
systematic errors included (e.g., channel-radius dependence).

3−
1

Intrinsic Energy Energy Feeding Er �(Er ) �obs(Er ) �FWHM

Case Background line shape, 3−
1 shift, 	 loss factors χ 2

red (MeV) (keV) (keV) (keV)

(1) Quadratic R-matrix
√

1.669 9.645(1) 54(1) 43(1) 43(1)
(2) Quadratic + Gaussian Lorentzian 7.209 9.646(1) 36(1) 36(1)
(3) Quadratic + Gaussian R-matrix 1.310 9.645(1) 41(1) 41(1) 41(1)
(4) Quadratic + Gaussian R-matrix

√
1.341 9.645(1) 51(1) 41(2) 41(1)

(5) Quadratic + Gaussian R-matrix
√ √

1.321 9.644(1) 50(1) 41(2) 41(1)
(6) Quadratic + Gaussian R-matrix

√ √ √
1.321 9.644(1) 50(1) 41(2) 41(1)

(7) Quadratic + Lorentzian R-matrix
√

1.358 9.645(1) 51(1) 41(2) 41(1)
(8) Quadratic + 2+

2 [Eq. (5)] R-matrix
√

1.269 9.645(1) 47(2) 38(2) 38(2)

in Ref. [21] can be roughly estimated at 3 keV for both
�obs(Er ) and �FWHM. This error has been included for the
corrected values of �obs(Er ) = 39(4) keV and �FWHM =
39(4) keV, which we recommend for future evaluations
that consider the result of Ref. [21].
Case (5): The inclusion of the target-related energy loss
improves the quality of the fit, however, the extracted
formal and observed widths are not strongly affected
given the energy resolution of the data.
Case (6): The feeding factors have a negligible effect on
the fits in general. This is to be expected given the typical
slowly varying energy dependence of the feeding factor
[7], which is well approximated to be constant over the
≈40 keV width of the 3−

1 resonance.
Case (7): Approximating the underlying 2+

1 resonance as
a symmetric Lorentzian yields a poorer fit in comparison
to the Gaussian approximation for the 2+

1 resonance in
case (4). This may be due to the fact that the intrinsic
shape of the 2+

1 is asymmetric, with the low-energy tail
being strongly suppressed by the penetrability; a feature

9.5 10

210

310

)p'p,C(12

° = 16labθ
66 MeV

C
ou

nt
s 

/ 1
0 

ke
V

Excitation energy [MeV]

2
+2 1

−3 1
−Total contribution beneath 3 Polynomial Total fit

FIG. 5. Decomposition of the fit for case (4) in Table IV. The 3−
1

resonance is superimposed on the total contribution of the 2+
2 reso-

nance (parameterized with a Gaussian line shape) and a polynomial
background. The reaction, measurement angle and beam energy are
indicated.

that the longer tails of a Lorentzian (in comparison to a
Gaussian) are less suited to approximate.
Case (8): This provides the best fit of the considered
cases, employing the single-level, single-channel approx-
imation of Eq. (5) for both the 3−

1 resonance and the
underlying broad 2+

2 resonance, yielding a formal to-
tal width of �(Er ) = 47(2) keV, with an observed total
width of �obs(Er ) = 38(2) keV. To further emphasize the
inappropriate nature of comparing the channel-radius-
dependent formal total width to the observed total width
(see Fig. 2), a fit with case (8) using a channel-radius of
4 fm was performed as opposed to the choice of 4.7 fm
(see caption of Table IV) in Ref. [21], yielding a much
larger formal total width of �(Er ) = 65(4) keV, while
the observed total width of �obs(Er ) = 40(2) keV is in
good agreement with the optimal fit in this work, which
yielded �obs(Er ) = 38(2) keV.

To emphasize the significant channel-radius dependence of
the formal total width for the 3−

1 resonance (in contrast to the
observed total width), fits were performed with case (4) over a
range of channel radii from ac = 4–8 fm in 0.1 fm increments
(see Fig. 6). The optimal channel radius for this isolated fit
was determined as ac = 4.5 fm, with all explored channel
radii providing a similar quality fit. As previously mentioned,
while the difference between formal and observed widths can
sometimes be quite small, the difference can be significant
under certain conditions. This is precisely the case for the
3−

1 resonance, for which a choice of ac = 4.0 is demonstrated
to describe the data similarly well in Fig. 6(a), would yield
a formal width greater than 60 keV that is unrelated to the
physical total width of the state. The observed fluctuations in
the χ2

red for some channel radii between ac = 4.6–5.4 fm is a
consequence of small numerical inaccuracies for the Coulomb
functions calculated with the GNU Scientific Library (GSL)
in this work [43]. As such, the fits with strongly deviating
channel radii (e.g., ac = 5.0–5.2 fm) were disregarded as the
numerical inaccuracies for these cases were more significant.
An example of how these numerical inaccuracies affect the
intrinsic and experimental line shapes for the 3−

1 resonance is
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FIG. 6. For the 3−
1 resonance: The channel-radius dependence of

(a) χ 2
red, (b) �(Er ), and (c) �obs(Er ). The range of channel radii which

yield significant discontinuities (4.6–5.4 fm) is highlighted in filled
gray. (d) and (e), respectively, present the intrinsic and observed line
shapes corresponding to the channel radii of 4.5, 5.1, and 6.0 fm (see
legend), corresponding to (a)–(c). The fit results at different channel
radii correspond to the fit conditions of case (4) (see Table IV),
with the exception of ac = 4.7 fm in (e), which includes the Landau
energy loss of case (5).

presented in Figs. 6(d) and 6(e), respectively. It is observed
that the numerical error for ac = 5.1 presents as a jagged
discontinuity in the intrinsic line shape near Ex = 9.625 MeV.
The scale and location of these numerical inaccuracies are
highly dependent on the affected ac values, however, these
features are generally more prevalent towards lower energies.
For most cases, these numerical inaccuracies are orders of
magnitude below the statistical errors of the considered data
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FIG. 7. Decomposition of the fit for case (4) in Table IV. The 3−
1

resonance is superimposed on the total contribution of the 2+
2 reso-

nance (parameterized with a Gaussian line shape) and a polynomial
background. The reaction, measurement angle, and beam energy are
indicated.

and therefore do not affect the conclusions of this work. This
is supported by the intrinsic line shapes for ac = 4.5 and
6.0 fm, which do not present such numerical discontinuities
and are almost identical, see Fig. 6(d). Furthermore, it is
observed that the observed line shapes in Fig. 6(e), which
include a Gaussian convolution, are in significantly better
agreement than the 1σ uncertainty of the data. Neverthe-
less, the optimal fits presented in the primary analysis in
Sec. II B were checked to not exhibit such numerical dis-
continuities in the range of the 3−

1 resonance. For future
studies, an alternative algorithm detailed is planned to be
implemented for lower-energy resonances where data may
warrant such precision [44]. For completeness, the fits in
Fig. 6(d) employing ac = 4.5, 5.1, and 6.0 fm all systemat-
ically underestimate the data between Ex = 9.61–9.65 MeV.
This is because these fits employ the conditions of case (4)
(see Table IV), which closely mimics the fitting procedure in
Ref. [21], that ignores target-related energy-loss effects. By
including a Landau energy loss in the experimental response,
corresponding to case (5), this discrepancy is drastically
reduced.

2. Isolated analysis of 14C(p, t )12C (θlab = 21◦) data

The same systematic fitting procedure detailed in
Sec. II C 1 was repeated for the 14C(p, t )12C (θlab = 21◦) data,
which exhibits the highest resolution from the considered data
of 32(1) keV FWHM. Furthermore, the 14C(p, t )12C (θlab =
21◦) data exhibits the most selective population for the 3−

1
resonance relative to the surrounding 2+

2 and monopole con-
tributions. The same systematic trends were observed; Fig. 7
presents the corresponding fit under the same analysis condi-
tions as Ref. [21]: Case (4). Case (4) for 14C(p, t )12C (θlab =
21◦) similarly yields �(Er ) = 48(2) keV with �obs(Er ) =
38(2) keV. The results of this isolated analysis for the
14C(p, t )12C (θlab = 21◦) data mirror those from the isolated
analysis of the 12C(p, p′)12C data. This indicates that the
approximations employed in Ref. [7] are all appropriate and
that the corresponding observed width of �obs(Er ) = 39(4)
keV (converted in this work) should be included in future
evaluations.
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FIG. 8. (a) and (b) present artificial spectra which mimic the
relevant data in Figs. 1(a) and 2(a) in Ref. [20], respectively. The
purpose of this analysis is to estimate the unaccounted-for systematic
error in Ref. [20]. See text for details.

D. Assessing the 3−
1 total width from Ref. [20]

The fit of the 3−
1 resonance in Ref. [20] does not employ

any R-matrix-derived line shapes. Instead, the fit analy-
sis in Ref. [20] was performed with a standard/symmetric
Lorentzian (that does not capture the intrinsic asymmetry
of the 3−

1 resonance), which was convoluted with a Gaus-
sian experimental resolution. The analysis in Sec. II C and
Table IV shows that such a Lorentzian line shape may provide
a reasonable estimation of the total width, albeit possibly with
a poorer quality fit. However, Ref. [20] does not implement the
2+

2 background, which has been observed to not only improve
the fit, but also affect the extracted 3−

1 total width. The sim-
plified background and symmetric 3−

1 line shape implemented
by Ref. [20] thus introduces an unaccounted-for systematic
error, which is dependent on the relative population of the 2+

2
and 3−

1 resonances. In this work, this systematic error is con-
servatively estimated by simulating the 10B(3He, pααα) and
11B(3He, dααα) spectra, which correspond to Figs. 1(a) and
2(a) in Ref. [20], respectively (see Fig. 8). The simulated data
was generated using two isolated (single-channel) levels: The
3−

1 resonance with �obs(Er ) = 38 keV at Er = 9.641 MeV
and the 2+

2 resonance with �obs(Er ) = 850 keV at Er = 9.870
MeV (corresponding to the current ENSDF evaluation [17]).
To roughly mimic the relevant range of the 10B(3He, pααα)
spectrum, the 2+

2 and 3−
1 resonances were populated with

2.8 × 104 and 2.0 × 104 counts, respectively. Similarly for
the 10B(3He, pααα) spectrum, the 2+

2 and 3−
1 resonances are

populated with 2.8 × 104 and 3.0 × 104 counts, respectively.
The artificial 10B(3He, pααα) and 10B(3He, pααα) spectra
were convoluted with 55 and 60 keV Gaussian resolutions,
respectively (corresponding to the best resolutions for each
measurement reported in Ref. [20]). The fits in Fig. 8 were
performed with symmetric Lorentzian functions for the 3−

1
resonance (convoluted with the aforementioned experimental
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FIG. 9. The simulated spectrum which mimics the nuclear-
emulsion-plate data in Fig. 2 of Ref. [19]. The purpose of this
analysis is to estimate the unaccounted-for systematic error in
Ref. [19]. See text for details.

resolutions) and second-order polynomials. The total ob-
served width of the 3−

1 resonance were extracted as 45 and
43 keV for the artificial 10B(3He, pααα) and 11B(3He, dααα)
spectra, respectively. These widths are systematically higher
than the simulated observed total width of 38 keV; a sim-
ilar difference is observed between the optimised observed
width of �obs(Er ) = 38(2) reported this work and the original
width of � = 43(4) reported in Ref. [20]. The systematic error
within the 3−

1 total width extraction of Ref. [20] is therefore
conservatively estimated to be 45 − 38 = 7 keV. Adding this
systematic error in quadrature yields a modified value of
� = 43(8) keV, which is recommended for future evaluations,
which consider Ref. [20].

E. Assessing the 3−
1 total width from Ref. [19]

In Ref. [19], the width of the 3−
1 resonance was obtained

by fitting the spectra corresponding to the 10B(3He, p)12C
reaction. For the width of the 3−

1 resonance, the corresponding
peak was directly fitted with a Lorentzian line shape (with no
Gaussian/experimental convolution). The resultant FWHM
of the Lorentzian peak was assumed to correspond to the
intrinsic FWHM of the 3−

1 resonance added in quadrature with
the experimental resolution. This basic approximation yields a
systematic error: this is tested by convoluting a �obs(Er ) = 38
keV 3−

1 resonance with a Gaussian resolution of ≈100 keV
FWHM observed in Fig. 2 of Ref. [19]. The numerical convo-
lution yields an FWHM of 122 keV while adding the widths
in quadrature yields an FHWM 107 keV. Another source of
systematic error is the fitting methodology in Ref. [19], which
employed a symmetric Lorentzian with no Gaussian convo-
lution component for the experimental resolution. Finally, the
underlying 2+

2 resonance is not accounted for in Ref. [19]; a
consequence of Ref. [19] being performed roughly half a cen-
tury before the existence of the underlying 2+

2 resonance was
confirmed [3,10–13]. To estimate the overall unaccounted-for
systematic error from these intertwined approximations, the
10B(3He, p)12C spectrum in Fig. 2 of Ref. [19] has been
artificially simulated in Fig. 9 of this work. As in Sec. II D,
the simulated data employed two isolated (single-channel)
levels: The 3−

1 resonance with �obs(Er ) = 38 keV at Er =
9.641 MeV and the 2+

2 resonance with �obs(Er ) = 850 keV at
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TABLE V. The results for the 3−
1 resonance in 12C, which are

recommended for future ENSDF evaluations. For analyses which
employed the R-matrix formalism, ac denotes the channel radius.
The formal, observed and FWHM widths are summarized, respec-
tively denoted as �(Er ), �obs, and �FWHM. For the physical total
widths of previous works (i.e., �obs and/or �FWHM), the total uncer-
tainties were modified in this work.

ac �(Er ) �obs(Er ) �FWHM

Ref. (fm) (keV) (keV) (keV)

Browne et al. [19] – – – 36(11)
Alcorta et al. [20] – – – 43(8)
Kokalova et al. [21] 4.7a 48(2) 39(4)b 39(4)b

This work 4.8 46(2) 38(2) 38(2)

aThe exact channel radius being ac = 1.3(41/3 + 81/3) fm [21].
bNot reported in Ref. [21]; converted from �(Er ) in this work.

Er = 9.870 MeV (corresponding to the current ENSDF eval-
uation [17]). To roughly mimic the 10B(3He, p)12C data in
Ref. [19], the 2+

2 and 3−
1 resonances were each populated with

250 counts. The fitted Lorentzian yielded a total width of 110
keV and following the procedure in Ref. [19] of “removing the
instrumental width by taking the square root of the difference
of the squares” to yield

√
1102 − 1002 ≈ 47 keV, producing a

total systematic error of approximately 47 − 38 = 9 keV. This
systematic error is added in quadrature to the width reported
in Ref. [19] to yield a modified value of � = 36(11) keV,
which is recommended for future evaluations, which consider
Ref. [19].

III. DISCUSSION

The primary analysis in this work (Sec. II B) yields
�(Er ) = 46(2) keV with �obs(Er ) = 38(2) keV for the 3−

1
resonance in 12C. The observed width from this work is sig-
nificantly smaller than the current ENSDF average of 46(3)
keV, which has been employed in Ref. [15]. A meta-analysis
was performed on the results considered in the current ENSDF
evaluation [19–21] (see Secs. II C, II D, and II E). In this
work, the misstated formal total width in Ref. [21] was con-
verted to the appropriate observed total width for the ENSDF.
The unaccounted-for uncertainties in Refs. [19–21] were es-
timated to yield modified values, which we recommend for
future evaluations. A quantitative assessment of Ref. [18]
was deemed unfeasible within the scope of this work as the
experimental methodology in Ref. [18] is significantly differ-
ent from this work. However, the systematics in Secs. II C,
II D, and II E show that not accounting for the asymmetric
background from the underlying 2+

1 resonance gives rise to
a systematic error. Therefore, until the analysis of Ref. [18]
is appropriately reviewed, we recommend the associated re-
sult be omitted from future evaluations. A summary of the
recommended results for the 3−

1 resonance in 12C is given in
Table V. To reiterate: �obs(Er ) and �FWHM are equivalent for
the 3−

1 resonance, see Sec. II C.
The nuclear structure of the 3−

1 state also serves as an
important test of theoretical models for 12C. The 3−

1 state

has been suggested as a candidate for the Kπ = 3− band-
head [5,39] and is understood to exhibit significant α-cluster
structure [21] with a dominant α0 decay mode [20,41,42].
Interestingly, a recent ab initio calculation using nuclear lat-
tice effective field theory has predicted the 3−

1 and 2+
1 states

to exhibit equilateral triangle symmetry for the constituent α

clusters [37]. The degree of clustering of a resonance for a
particular decay partition can be gleaned from the associated
Wigner ratio given by θ2 = γ 2/γ 2

W , where γ 2
W = 3h̄2/2μa2,

with μ and ac being the reduced mass and channel radius,
respectively [45]. The optimal fit in Fig. 1 yields an α0

Wigner ratio of ≈30%, which indicates a large degree of
clustering/preformation for the 12C → 8Be(0+

g.s. ) + α (l = 3)
partition. This Wigner ratio, which is highly dependent on the
channel radius, is in agreement with that reported in Ref. [21]
as Kokalova et al. employed an α0 channel radius of ≈4.7 fm,
which is very similar to the optimized 4.8 fm channel radius
in this work. The total observed width of �obs(Er ) = 38(2)
is in reasonable agreement with the theoretical prediction of
30 keV by Uegaki et al. [46], with the total width of 68 keV
predicted by Álvarez-Rodríguez et al. being somewhat larger
[47].

IV. CONCLUSIONS

In this work, the physical total width of the 3−
1 resonance in

12C was studied with a global analysis of high-resolution spec-
tra populated with direct reactions. A simultaneous fit analysis
yielded a formal total width of �(Er ) = 46(2) keV and an
observed total width of �obs(Er ) = 38(2) keV. This result is
significantly discrepant with the current ENSDF average of
46(3) keV for the total width of the 3−

1 resonance [17]. To
investigate this inconsistency, a meta-analysis was performed
on all previous results considered in the current ENSDF
evaluation for the 3−

1 resonance [17] (with the exception of
Ref. [18]). It was concluded that all these previous results
[17] contain unaccounted-for systematic errors, with a single
study reporting a misstated total width [21]. An uncertainty-
weighted average of the recommend observed (physical) total
widths for the 3−

1 resonance yields a total width of �FWHM =
38(2) keV (see Table V). This physical width is recommended
for future evaluations of the observed total radiative width for
the 3−

1 resonance and its contribution to the high-temperature
triple-α reaction rate.

ACKNOWLEDGMENTS

This work is based on the research supported in part by
the National Research Foundation of South Africa (Grants
No. 85509, No. 86052, No. 118846, and No. 90741). The
authors acknowledge the accelerator staff of iThemba LABS
for providing excellent beams. The computations were per-
formed on resources provided by UNINETT Sigma2 - the
National Infrastructure for High Performance Computing and
Data Storage in Norway. K.C.W. Li would like to thank H.
O. U. Fynbo, R. J. deBoer, C. R. Brune, A. C. Larsen, and
A. S. Voyles for useful discussions, as well as S. Basunia
and J. H. Kelley for communicating details of the ENSDF
evaluations.

015806-10



UNDERSTANDING THE TOTAL WIDTH OF THE … PHYSICAL REVIEW C 109, 015806 (2024)

[1] S. Hyldegaard, C. Aa. Diget, M. J. G. Borge, R. Boutami, P.
Dendooven, T. Eronen, S. P. Fox, L. M. Fraile, B. R. Fulton,
H. O. U. Fynbo, J. Huikari, H. B. Jeppesen, A. S. Jokinen, B.
Jonson, A. Kankainen, I. Moore, G. Nyman, H. Penttilä, K.
Peräjärvi, K. Riisager et al., Branching ratios in the β decays
of 12N and 12B, Phys. Rev. C 80, 044304 (2009).

[2] S. Hyldegaard, M. Alcorta, B. Bastin, M. J. G. Borge, R.
Boutami, S. Brandenburg, J. Büscher, P. Dendooven, C. Aa.
Diget, P. Van Duppen, T. Eronen, S. P. Fox, L. M. Fraile, B. R.
Fulton, H. O. U. Fynbo, J. Huikari, M. Huyse, H. B. Jeppesen,
A. S. Jokinen, B. Jonson et al., r-matrix analysis of the β decays
of 12N and 12B, Phys. Rev. C 81, 024303 (2010).

[3] M. Itoh, H. Akimune, M. Fujiwara, U. Garg, N. Hashimoto, T.
Kawabata, K. Kawase, S. Kishi, T. Murakami, K. Nakanishi,
Y. Nakatsugawa, B. K. Nayak, S. Okumura, H. Sakaguchi, H.
Takeda, S. Terashima, M. Uchida, Y. Yasuda, M. Yosoi, and J.
Zenihiro, Candidate for the 2+ excited Hoyle state at Ex ∼ 10
MeV in 12 C, Phys. Rev. C 84, 054308 (2011).

[4] M. Freer and H. Fynbo, The Hoyle state in 12C, Prog. Part. Nucl.
Phys. 78, 1 (2014).

[5] M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, and Ulf-G.
Meißner, Microscopic clustering in light nuclei, Rev. Mod.
Phys. 90, 035004 (2018).

[6] K. C. W. Li, F. D. Smit, P. Adsley, R. Neveling, P. Papka,
E. Nikolskii, J. Brümmer, L. Donaldson, M. Freer, M. N.
Harakeh, F. Nemulodi, L. Pellegri, V. Pesudo, M. Wiedeking,
E. Z. Buthelezi, V. Chudoba, S. V. Förtsch, P. Jones, M.
Kamil, J. P. Mira et al., Investigating the predicted breathing-
mode excitation of the Hoyle state, Phys. Lett. B 827, 136928
(2022).

[7] K. C. W. Li, P. Adsley, R. Neveling, P. Papka, F. D. Smit, E.
Nikolskii, J. W. Brümmer, L. M. Donaldson, M. Freer, M. N.
Harakeh, F. Nemulodi, L. Pellegri, V. Pesudo, M. Wiedeking,
E. Z. Buthelezi, V. Chudoba, S. V. Förtsch, P. Jones, M. Kamil,
J. P. Mira et al., Multiprobe study of excited states in 12C:
Disentangling the sources of monopole strength between the
energy of the Hoyle state and Ex = 13 MeV, Phys. Rev. C 105,
024308 (2022).

[8] C. Angulo, M. Arnould, M. Rayet, P. Descouvemont, D. Baye,
C. Leclercq-Willain, A. Coc, S. Barhoumi, P. Aguer, C. Rolfs,
R. Kunz, J. Hammer, A. Mayer, T. Paradellis, S. Kossionides,
C. Chronidou, K. Spyrou, S. Degl’Innocenti, G. Fiorentini, B.
Ricci et al., A compilation of charged-particle induced ther-
monuclear reaction rates, Nucl. Phys. A 656, 3 (1999).

[9] H. O. U. Fynbo, C. Aa. Diget, U. C. Bergmann, M. J. G. Borge,
J. Cederkäll, P. Dendooven, L. M. Fraile, S. Franchoo, V. N.
Fedosseev, B. R. Fulton, W. Huang, J. Huikari, H. B. Jeppesen,
A. S. Jokinen, P. Jones, B. Jonson, U. Köster, K. Langanke, M.
Meister, T. Nilsson et al., Revised rates for the stellar triple-α
process from measurement of 12C nuclear resonances, Nature
(London) 433, 136 (2005).

[10] M. Itoh, H. Akimune, M. Fujiwara, U. Garg, H. Hashimoto, T.
Kawabata, K. Kawase, S. Kishi, T. Murakami, K. Nakanishi,
Y. Nakatsugawa, B. K. Nayak, S. Okumura, H. Sakaguchi, H.
Takeda, S. Terashima, M. Uchida, Y. Yasuda, M. Yosoi, and J.
Zenihiro, Study of the cluster state at Ex = 10.3 MeV in 12C,
Nucl. Phys. A 738, 268 (2004).

[11] M. Freer, H. Fujita, Z. Buthelezi, J. Carter, R. W. Fearick, S. V.
Förtsch, R. Neveling, S. M. Perez, P. Papka, F. D. Smit, J. A.
Swartz, and I. Usman, 2+ excitation of the 12C Hoyle state,
Phys. Rev. C 80, 041303(R) (2009).

[12] M. Freer, M. Itoh, T. Kawabata, H. Fujita, H. Akimune, Z.
Buthelezi, J. Carter, R. W. Fearick, S. V. Förtsch, M. Fujiwara,
U. Garg, N. Hashimoto, K. Kawase, S. Kishi, T. Murakami,
K. Nakanishi, Y. Nakatsugawa, B. K. Nayak, R. Neveling, S.
Okumura et al., Consistent analysis of the 2+ excitation of the
12C Hoyle state populated in proton and α-particle inelastic
scattering, Phys. Rev. C 86, 034320 (2012).

[13] W. R. Zimmerman, M. W. Ahmed, B. Bromberger, S. C. Stave,
A. Breskin, V. Dangendorf, T. Delbar, M. Gai, S. S. Henshaw,
J. M. Mueller, C. Sun, K. Tittelmeier, H. R. Weller, and Y. K.
Wu, Unambiguous identification of the second 2+ state in 12C
and the structure of the Hoyle state, Phys. Rev. Lett. 110,
152502 (2013).

[14] D. Chamberlin, D. Bodansky, W. W. Jacobs, and D. L. Oberg,
Upper limit on the radiative width of the 9.64-MeV state of 12C,
Phys. Rev. C 10, 909 (1974).

[15] M. Tsumura, T. Kawabata, Y. Takahashi, S. Adachi, H.
Akimune, S. Ashikaga, T. Baba, Y. Fujikawa, H. Fujimura, H.
Fujioka, T. Furuno, T. Hashimoto, T. Harada, M. Ichikawa, K.
Inaba, Y. Ishii, N. Itagaki, M. Itoh, C. Iwamoto, N. Kobayashi
et al., First experimental determination of the radiative-decay
probability of the 3−

1 state in 12C for estimating the triple alpha
reaction rate in high temperature environments, Phys. Lett. B
817, 136283 (2021).

[16] H. Crannell, T. Griffy, L. Suelzle, and M. Yearian, A determina-
tion of the transition widths of some excited states in 12C, Nucl.
Phys. A 90, 152 (1967).

[17] J. Kelley, J. Purcell, and C. Sheu, Energy levels of light nuclei
a=12, Nucl. Phys. A 968, 71 (2017).

[18] R. A. Douglas, J. W. Broer, R. Chiba, D. F. Herring, and E. A.
Silverstein, Electrostatic analysis of nuclear reaction energies,
Phys. Rev. 104, 1059 (1956).

[19] C. P. Browne, W. E. Dorenbusch, and J. R. Erskine, High-
resolution study of the B10(He3, p)C12 reaction, Phys. Rev. 125,
992 (1962).

[20] M. Alcorta, M. J. G. Borge, M. Cubero, C. A. Diget, R.
Domínguez-Reyes, L. M. Fraile, B. R. Fulton, H. O. U.
Fynbo, D. Galaviz, S. Hyldegaard, H. Jeppesen, B. Jonson,
O. S. Kirsebom, M. Madurga, A. Maira, A. Muñoz-Martín, T.
Nilsson, G. Nyman, D. Obradors, A. Perea et al., Properties
of 12C resonances determined from the 10B(3He,pααα) and
11B(3He,dααα) reactions studied in complete kinematics, Phys.
Rev. C 86, 064306 (2012).

[21] Tz. Kokalova, M. Freer, Z. Buthelezi, J. Carter, R. W. Fearick,
S. V. Förtsch, H. Fujita, R. Neveling, P. Papka, F. D. Smit,
J. A. Swartz, and I. Usman, Precision measurement of the 9.641
MeV, 3− state in 12 C, Phys. Rev. C 87, 057307 (2013).

[22] J. H. Kelley (Private Communication).
[23] J. K. Tuli, Evaluated Nuclear Structure Data File, A Manual for

Preparatiom of Datasets, https://nds.iaea.org/public/documents/
ensdf/ensdf-manual.pdf.

[24] M. Birch, Visual Averaging Library (V.AveLib) User Man-
ual, https://github.com/IAEA-NSDDNetwork/V.AveLib/blob/
main/AveLib_userManual.pdf.

[25] G. Cardella, F. Favela, N. S. Martorana, L. Acosta, A. Camaiani,
E. De Filippo, N. Gelli, E. Geraci, B. Gnoffo, C. Guazzoni, G.
Immè, D. J. Marín-Lámbarri, G. Lanzalone, I. Lombardo, L. Lo
Monaco, C. Maiolino, A. Nannini, A. Pagano, E. V. Pagano, M.
Papa et al., Investigating γ -ray decay of excited 12C levels with
a multifold coincidence analysis, Phys. Rev. C 104, 064315
(2021).

015806-11

https://doi.org/10.1103/PhysRevC.80.044304
https://doi.org/10.1103/PhysRevC.81.024303
https://doi.org/10.1103/PhysRevC.84.054308
https://doi.org/10.1016/j.ppnp.2014.06.001
https://doi.org/10.1103/RevModPhys.90.035004
https://doi.org/10.1016/j.physletb.2022.136928
https://doi.org/10.1103/PhysRevC.105.024308
https://doi.org/10.1016/S0375-9474(99)00030-5
https://doi.org/10.1038/nature03219
https://doi.org/10.1016/j.nuclphysa.2004.04.044
https://doi.org/10.1103/PhysRevC.80.041303
https://doi.org/10.1103/PhysRevC.86.034320
https://doi.org/10.1103/PhysRevLett.110.152502
https://doi.org/10.1103/PhysRevC.10.909
https://doi.org/10.1016/j.physletb.2021.136283
https://doi.org/10.1016/0375-9474(67)90745-2
https://doi.org/10.1016/j.nuclphysa.2017.07.015
https://doi.org/10.1103/PhysRev.104.1059
https://doi.org/10.1103/PhysRev.125.992
https://doi.org/10.1103/PhysRevC.86.064306
https://doi.org/10.1103/PhysRevC.87.057307
https://nds.iaea.org/public/documents/ensdf/ensdf-manual.pdf
https://github.com/IAEA-NSDDNetwork/V.AveLib/blob/main/AveLib_userManual.pdf
https://doi.org/10.1103/PhysRevC.104.064315


K. C. W. LI et al. PHYSICAL REVIEW C 109, 015806 (2024)

[26] G. Breit and M. E. Ebel, Nucleon transfer and virtual Coulomb
excitation, Phys. Rev. 104, 1030 (1956).

[27] A. M. Lane and R. G. Thomas, R-matrix theory of nuclear
reactions, Rev. Mod. Phys. 30, 257 (1958).

[28] R. J. deBoer, J. Görres, M. Wiescher, R. E. Azuma, A. Best,
C. R. Brune, C. E. Fields, S. Jones, M. Pignatari, D. Sayre,
K. Smith, F. X. Timmes, and E. Uberseder, The 12C(α, γ ) 16O
reaction and its implications for stellar helium burning, Rev.
Mod. Phys. 89, 035007 (2017).

[29] C. R. Brune, Spectroscopic factors, overlaps, and isospin sym-
metry from an R-matrix point of view, Phys. Rev. C 102,
034328 (2020).

[30] C. R. Brune, Alternative parametrization of r-matrix theory,
Phys. Rev. C 66, 044611 (2002).

[31] P. Ducru and V. Sobes, Definite complete invariant
parametrization of r-matrix theory, Phys. Rev. C 105, 024601
(2022).
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