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Chiral effective field theory calculation of neutrino reactions in warm neutron-rich matter
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Neutrino scattering and absorption rates of relevance to supernovae and neutron star mergers are obtained
from nuclear matter dynamical structure functions that encode many-body effects from nuclear mean fields and
correlations. We employ nuclear interactions from chiral effective field theory to calculate the density, spin,
isospin, and spin-isospin response functions of warm β-equilibrium nuclear matter. We include corrections
to the single-particle energies in the mean field approximation as well as vertex corrections resummed in the
random phase approximation (RPA), including both direct and exchange diagrams. We find that correlations
included through the RPA redistribute the strength of the response to higher energy for neutrino absorption
and lower energy for antineutrino absorption. This tends to suppress the absorption rate of electron neutrinos
across all relevant energy scales. In contrast, the inclusion of RPA correlations enhances the electron antineutrino
absorption rate at low energy and suppresses the rate at high energy. These effects are especially important at
high-density and in the vicinity of the neutrino decoupling region. Implications for heavy element nucleosyn-
thesis, electromagnetic signatures of compact object mergers, supernova dynamics, and neutrino detection from
galactic supernovae are discussed briefly.
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I. INTRODUCTION

Neutrinos dominate energy, momentum, and lepton num-
ber transport in extreme astrophysical phenomena. Their
scattering and absorption rates in hot and dense nuclear matter
play a critical role in core-collapse supernovae [1–4], pro-
toneutron star cooling [5,6], and neutron star mergers [7–11].
The effects of nuclear mean fields and correlations on neutrino
reaction rates are encoded in dynamical structure functions
related to the imaginary part of nuclear response functions.
In the past, nuclear matter response functions have been
studied using a variety of nuclear interactions and many-
body approximations, including nonrelativistic and relativistic
mean field models [12–18], Fermi liquid theory [1,19,20], the
virial expansion [21–23], and pseudopotentials [23,24]. Re-
cent studies [15,16,24] have highlighted the important role of
nuclear mean fields for calculating charged-current reactions,
such as neutrino and antineutrino absorption, in the supernova
neutrinosphere. Here, the large asymmetry between proton
and neutron densities leads to a strong splitting of the proton
and neutron mean fields that enhance neutrino absorption and
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suppresses antineutrino absorption. This, in turn, affects the
composition of matter ejected from supernovae and neutron
star mergers as well as neutrino flavor and energy distributions
that terrestrial neutrino detectors may observe.

In addition, the use of high-precision nucleon-nucleon
interactions [24–26] to calculate neutrino scattering and re-
action cross sections in hot and dense matter has illustrated
the important role of contributions beyond one-pion-exchange
together with nonperturbative resummations of the nucleon-
nucleon interaction in the particle-particle channel (see also
Ref. [27] for the role of these effects on neutrino produc-
tion). At zero energy transfer, the momentum dependence of
the static density response function of neutron-rich matter is
related to the poorly known isovector gradient contribution
in nuclear energy density functionals used to model neutron
star crusts [28,29]. Recent quantum Monte Carlo simulations
of neutron matter using high-precision nuclear forces have
provided constraints on the isovector gradient contribution
through studies of neutron drops [30] and the static density
response function [31].

In this study, we employ nuclear forces based on chiral
effective field theory to investigate beyond-mean-field cor-
rections to spin and density response functions of nuclear
matter under ambient conditions typical of supernova and neu-
tron star merger neutrinospheres, where the nucleon number
density varies in the range n = 1011–1013 g/cm3 and the tem-
perature varies in the range T = 5–10 MeV. Specifically, we
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FIG. 1. Zeroth-order and first-order diagrammatic contributions to the nuclear response function. The zeroth-order diagram is labeled (a),
the first-order direct and exchange mean field contributions are labeled (b) and (c), and the first-order direct and exchange vertex corrections
are labeled (d) and (e). Solid lines represent nucleons, wavy lines represent the coupling to an external probe, and dashed lines represent the
nucleon-nucleon interaction.

calculate Hartree-Fock mean field corrections as well as re-
summed particle-hole vertex corrections in the random phase
approximation (RPA). In contrast to naive order-by-order
perturbation theory, the RPA with self-consistent Hartree-
Fock mean fields provides a thermodynamically consistent
“conserving approximation” [32,33] for which the computed
dynamic structure function is guaranteed to respect sum rules,
detailed balance, and positivity for all values of the energy and
momentum transfer. We find that at the densities of relevance,
RPA vertex corrections can be as important as the mean field
effects studied in earlier work and should be included in a
consistent description of nuclear matter response functions
for astrophysical applications. The paper is organized as fol-
lows. In Sec. II, we present expressions for density and spin
response function in isospin-asymmetric nuclear matter at
finite temperature with mean field and RPA vertex corrections.
In particular, we outline an exact matrix inversion method
[33] for calculating RPA response functions, including both
direct and exchange terms for an arbitrary nucleon-nucleon
potential. In Sec. III we calculate neutral-current and charged-
current density and spin response functions for a range of
thermodynamic conditions in β-equilibrium matter. Finally,
we conclude with a summary and outlook in Sec. IV.

II. RESPONSE FUNCTIONS IN ISOSPIN-ASYMMETRIC
NUCLEAR MATTER

In the present section we derive expressions for the first-
order mean field and vertex corrections to the response
functions of homogeneous nuclear matter at nonzero temper-
ature. We also outline the calculation of the RPA response
function employing a matrix eigenvalue method. In the re-
gion of the supernova or neutron star merger neutrinospheres,
where neutrinos decouple from nuclear matter and their free-
streaming energy spectrum is set, the proton fraction is small
Yp ≈ 0.05–0.10, the temperature is warm T = 5–10 MeV, and
the matter is dilute ρ ≈ 1011–1013 g/cm3. We assume β equi-
librium, which provides the restriction

μn − μp − μe = 0 (1)

on the proton and neutron chemical potentials and, hence,
their number densities

ni = 2

(2π )3

∫
d3k

1

1 + e(ei (k)−μi )/T
, (2)

for i = {n, p, e}. Together with charge neutrality ρe = ρp, the
above equations must be solved self-consistently to determine

the proton, neutron, and electron chemical potentials for a
fixed baryon number density and temperature.

In the mean field approximation, one also has to calculate
the nucleon energy-momentum dispersion relation for pro-
tons ep(k) = k2/(2Mp) + �p(k), and likewise for neutrons,
where �p(k) is the self-energy. The Hartree-Fock conserving
approximation [33] consists of computing the irreducible self-
energy to first order in perturbation theory and the response
function to all orders in the random phase approximation. The
resulting perturbative approximation to the response function
is then guaranteed to satisfy properties of the exact response
function, such as sum rules and strictly positive dynamical
structure functions.

In the present work we employ nucleon-nucleon (NN)
potentials derived from chiral effective field theory (ChEFT)
[34–36], which provides a systematic expansion of nuclear
two and many-body forces. In ChEFT the long-range part
of the nuclear force comes from pion-exchange processes
constrained by chiral symmetry, while the short-range part is
encoded in a set of contact terms fitted to nucleon-nucleon
scattering and deuteron properties. The high-momentum com-
ponents of the ChEFT nuclear potentials employed in this
study are regulated by exponential functions with a charac-
teristic momentum scale � and smoothness parameter n:

f (p, p′) = exp[−(p′/�)2n − (p/�)2n], (3)

where �p and �p ′ are the incoming and outgoing relative mo-
menta of the two nucleons. We employ ChEFT potentials
with cutoff scales � = 414, 450, 500 MeV and associated
smoothness parameters n = 10, 3, 2, respectively. When sup-
plemented by the ChEFT three-body force that appears at
next-to-next-to-leading order (N2LO) in the chiral expansion,
this set of nuclear potentials has been shown to predict well
the properties of nuclear matter, such as the equation of state
[37,38], optical potential [39], and quasiparticle interaction in
Fermi liquid theory [40]. In dilute neutron-rich matter, three-
body forces give negligible contribution to single-particle
and response properties of the medium. We therefore neglect
three-body forces in the present work.

A. Nuclear matter response functions at zeroth
order in perturbation theory

In Fig. 1 we show the zeroth-order and first-order per-
turbation theory contributions to nuclear response functions.
The wavy lines denote the coupling to a W or Z boson
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defined in the nonrelativistic limit by its vector/axial vector
and isoscalar/isovector nature. The dashed lines in Fig. 1
represent the nucleon-nucleon interaction.

The zeroth-order contribution to the neutral-current den-
sity response function χρ , the neutral-current spin response

function χσ , the charged-current density response function
χτρ for electron-neutrino absorption, and the charged-current
spin response function for electron-neutrino absorption χτσ in
isospin-asymmetric nuclear matter at nonzero temperature are
given by

χ (0)
ρ (�q, ω) =

∑
s1s2t1t2

∫
d�k

(2π )3

f�k,t1
− f�k+�q,t2

ω + e�k,t1
− e�k+�q,t2

+ iη
δs1,s2δt1,t2 ,

χ (0)
σ (�q, ω) =

∑
s1s2t1t2

∫
d�k

(2π )3

f�k,t1
− f�k+�q,t2

ω + e�k,t1
− e�k+�q,t2

+ iη
|〈s1|σz|s2〉|2δt1,t2 ,

χ (0)
τρ (�q, ω) =

∑
s1s2

∫
d�k

(2π )3

f�k,n − f�k+�q,p

ω + e�k,n − e�k+�q,p + iη
δs1,s2 ,

χ (0)
τσ (�q, ω) =

∑
s1s2

∫
d�k

(2π )3

f�k,n − f�k+�q,p

ω + e�k,n − e�k+�q,p + iη
|〈s1|σz|s2〉|2, (4)

where the sums are over the single-particle spin projections
s1, s2 and isospin projections t1, t2 of the particle-hole pair,
f�k,t is the Fermi-Dirac distribution function for a nucleon with

momentum �k and isospin projection t , and e�k,t is the single-

particle energy for a nucleon with momentum �k and isospin
projection t .

In the case of noninteracting protons and neutrons, the
density and spin response functions in the neutral-current
or charged-current channels are identical since

∑
s1s2

δs1,s2 =∑
s1s2

|〈s1|σz|s2〉|2 = 2. In addition, the single-particle ener-
gies in Eq. (4) are simply the free-space kinetic energies
e�k = k2/(2M ). Including effects from momentum-dependent
mean fields for protons �p(k) and neutrons �n(k), the single-
particle energies that enter in the Fermi-Dirac distribution
functions and the energy denominators of Eq. (4) become

e�k,n = k2

2M
+ �n(k), e�k,p = k2

2M
+ �p(k). (5)

At the Hartree-Fock level (first-order perturbation theory),
the proton and neutron single-particle potentials can be well
described by the effective mass approximation

e�k,n = k2

2M∗
n

+ Un, e�k,p = k2

2M∗
p

+ Up. (6)

In the case that M∗
n,p � M, the mean field strengths Un and Up

modify only the energy denominators in Eq. (4), which results
in a shift of the imaginary part of the response functions.
Although the mean field energies e�k,n and e�k,p also enter in the
definition of the Fermi-Dirac distribution functions, a simple
mean field shift will be absorbed into a redefinition of the
chemical potential. The inclusion of nuclear mean fields at
the Hartree-Fock level in the calculation of the zeroth-order
response functions χ (0,MF)(q, ω) corresponds to iterating dia-
grams of type (b) and (c) in Fig. 1 to all orders in perturbation
theory. For neutrino scattering and absorption, the main effect
will be a shift of the ω-dependent imaginary response for
fixed momentum transfer �q. For additional technical details

regarding the calculation of nucleon single-particle potentials
starting from realistic nucleon-nucleon interactions, the reader
is referred to Refs. [24,41].

B. Random phase approximation (RPA)

In many-body perturbation theory, an order-by-order cal-
culation of response functions can lead to unphysical dynamic
structure functions that do not satisfy constraints, such as pos-
itivity and sum rules that relate the long-wavelength response
to thermodynamics. The formal solution to this problem ob-
tained by Baym and Kadanoff [32] is to construct so-called
“conserving approximations” that relate the one-body and
two-body propagators in such a way as to maintain con-
servation laws of energy, momentum, angular momentum,
and particle number. In the Hartree-Fock conserving ap-
proximation, the one-body propagator is constructed at the
self-consistent mean field level, while the two-body propaga-
tor resums to all orders the direct and exchange particle-hole
diagrams in the RPA. The RPA leads to a linear inhomoge-
neous integral equation for the particle-hole vertex function.
The discretized version of this equation can be re-expressed
[33] as a linear algebraic equation that can be solved through
matrix inversion. In the rest of this section, we will outline
the solution of the RPA response function and present several
benchmarks to test the method.

In Fig. 2, we show the class of response function diagrams
to be resummed in the RPA, which includes all particle-hole
bubble diagrams, ladder diagrams, and combinations thereof
with dressed intermediate-state propagators in the mean field
approximation. This infinite set of diagrammatic contributions
to nuclear matter response functions cannot be resummed
directly but instead must proceed through the resummed
particle-hole vertex function L(�k1s1; �q ω), which for the case
of the charged-current density response function is defined by

χτρ (�q, ω) =
∑

s

∫
d�k

(2π )3
Lτρ (�ks; �q ω). (7)
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The zeroth-order and first-order vertex functions are therefore given by

L(0)
τρ (�ks; �q ω) =

f�k,n − f�k+�q,p

ω + e�k,n − e�k+�q,p + iη
,

L(1)
τρ (�ks; �q ω) =

f�k,n − f�k+�q,p

ω + e�k,n − e�k+�q,p + iη

∑
s′

∫
d�k′

(2π )3

( f�k′,n − f�k′+�q,p)〈�k�k′ + �q, ss′, np|Ṽ |�k + �q �k′, ss′, pn〉
ω + e�k′,n − e�k′+�q,p + iη

, (8)

where Ṽ is the antisymmetrized nucleon-nucleon interaction. Summing the higher-order particle-hole bubble and ladder
diagrams, one obtains the integral equation

Lτρ (�ks; �q ω) = L(0)
τρ (�ks; �q ω) + L(0)

τρ (�ks; �q ω)
∑

s′

∫
d�k′

(2π )3
〈�k�k′ + �q, ss′, np|Ṽ |�k + �q �k′, ss′, pn〉Lτρ (�k′s′; �q ω), (9)

shown diagrammatically in Fig. 3. For a spin-saturated system, the vertex function for the density response function is
independent of spin. One can then average Eq. (9) over the spin to obtain

Lτρ (�k; �q ω) = L(0)
τρ (�k; �q ω) + L(0)

τρ (�k; �q ω)
∫

d�k′

(2π )3

[
1

2

∑
ss′

〈�k�k′ + �q, ss′, np|Ṽ |�k + �q �k′, ss′, pn〉
]

Lτρ (�k′; �q ω), (10)

where for convenience we will define V (�k, �k′) = 1
2

∑
ss′ 〈�k�k′ +

�q, ss′, np|Ṽ |�k + �q �k′, ss′, pn〉, suppressing the explicit depen-
dence on �q. Writing the integral in Eq. (10) as a summation
over a discrete set {�k1, �k2, . . . } of momentum-space mesh
points with associated mesh weights {w1, w2, . . . }, one can
rewrite Eq. (10) as a matrix equation whose formal solution is

L̄ = [N̄−1
(
Ē + (ω + iη)1

) − V̄]−1B̄, (11)

where L̄ is a vector with elements

L̄ =

⎡
⎢⎣L(�k1; �q ω)

L(�k2; �q ω)
...

⎤
⎥⎦, (12)

N̄ is a diagonal matrix with elements

N̄ =

⎛
⎜⎝

f�k1,n
− f�k1+�q,p 0 · · ·

0 f�k2,n
− f�k2+�q,p · · ·

...
...

. . .

⎞
⎟⎠, (13)

FIG. 2. Diagrammatic contributions to the RPA response func-
tion. Solid lines represent nucleons, wavy lines represent the
coupling to an external probe, and the dashed lines represent the
nucleon-nucleon interaction.

Ē is a diagonal matrix with elements

Ē =

⎛
⎜⎝

e�k1,n
− e�k1+�q,p 0 · · ·

0 e�k2,n
− e�k2+�q,p · · ·

...
...

. . .

⎞
⎟⎠, (14)

V̄ is the matrix

V̄ =

⎛
⎜⎝w1V (�k1, �k1) w2V (�k1, �k2) · · ·

w1V (�k2, �k1) w2V (�k2, �k2) · · ·
...

...
. . .

⎞
⎟⎠, (15)

and B̄ is a vector whose elements are all 1.
Our goal will be to extract the imaginary part of the vertex

function, which is related to nuclear matter dynamical struc-
ture functions and neutrino scattering cross sections. In order
for the imaginary part of Eq. (11) to be nonzero, the matrix
N̄−1(Ē + ω1) − V̄ must be singular, which occurs when ω

takes on the values defined by the eigenvalue equation

(N̄V̄ − Ē )|〉 = ω|〉, (16)

where |〉 is the eigenvector corresponding to eigenvalue ω.
In the vicinity of ω, one can write

[N̄−1(Ē + (ω + iη)1) − V̄]−1

= 1

〈|N̄−1|〉
[

Pr

ω − ω

− iπδ(ω − ω)

]
|〉〈|, (17)

FIG. 3. Vertex function in the random phase approximation. The
wavy line represents the weak current, the dashed line is the nucleon-
nucleon interaction carrying energy and momentum, and the dark
square is the dressed vertex. The solid lines represent propagating
nucleons.
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FIG. 4. Imaginary part of the charged-current density response
function at zeroth order (blue dots) and computed from the RPA re-
summation of the direct term analytically (black dots) and within the
eigenvalue formalism described in Sec. II B (red line). A smearing
length ε = 70 × 10−5 fm−1 in Eq. (20) is employed.

where Pr denotes the principal value. The imaginary part of
the response function is then given by

Im χRPA
τρ (�q, ω) = −iπ

∑


〈B̄|〉2

〈|N̄−1|〉δ(ω − ω). (18)

In terms of the discrete momentum-space mesh points and
weights, we have

Im χRPA
τρ (�q, ω) = −iπ

∑


(∑
i wi|〉i

)2∑
i(wi|〉i )2(wiNi )−1

δ(ω − ω),

(19)
where |〉i denotes the ith element of the eigenvector |〉. In
practice, the finite number of δ functions in Eq. (19) obtained
by discretizing the integral in Eq. (10) must be appropriately
smeared to obtain a continuous response function. We employ
the approximation

δε (ω) = 1√
2πε2

e−ω2/2ε2
. (20)

and find that it is always possible to choose a smearing length
ε that leads to a converged result.

The above eigenvalue method is suitable to resum both
the direct and exchange RPA bubble diagrams to all orders.
To benchmark the method, we consider the simplified case
of iterating just the direct part of the nuclear potential to all
orders, which for a local potential V (q) can be computed
analytically through

χRPA(�q, ω) = χ (0)(�q, ω)

1 − V (q)χ (0)(�q, ω)
. (21)

In Fig. 4 we show the energy dependence of the charged-
current density response function in β-equilibrium nuclear
matter at density n = 50 × 1011 g/cm3 and temperature T =
7 MeV for a momentum transfer q = 21 MeV assuming a
scalar-isovector interaction

V (q) = g2

m2 + q2 �τ1 · �τ2, (22)

where we take g = 5 and m = 700 MeV. In Fig. 4 we plot
the response function in the approximation of noninteract-
ing particles (blue dots), the exact analytical RPA result
(black dots), and the numerical eigenvalue RPA result (red
line). For the eigenvalue RPA calculation, we employ a δ

function smearing length of ε = 70 × 10−5 fm−1. In prac-
tice, the three-dimensional Cartesian integral in Eq. (10) is
converted into spherical coordinates, which has the advan-
tage that the azimuthal angular integration over the potential
matrix elements can be performed separately. All other quan-
tities depend explicitly on both the momentum magnitude
k′ and polar angle cos θ ′. Then the dimensionality of the
matrices in Eq. (11) is equal to the product of mesh points
for the momentum magnitude and polar angle, which we
choose to be 50 × 50 over the range 0 � k′ � 2.0 fm−1 and
−1� cos θ ′ � 1. The actual calculation of the potential matrix
elements is performed in a partial-wave basis. Employing
these approximations, one sees excellent agreement between
the exact and numerical RPA resummations.

The treatment of the σzσz spin response functions pro-
ceeds similarly, except that we obtain a pair of coupled
equations for the spin-up and spin-down vertex functions,
{L(�k ↑; �q ω), L(�k ↓; �q ω)}, which effectively doubles the di-
mensionality of the vectors and matrices in Eqs. (12)–(15).
Specifically, we have

χτσ (�q, ω) =
∑

s

∫
d�k

(2π )3
Lτσ (�ks; �q ω)〈s|σz|s〉 (23)

for the spin response function and

Lτσ (�ks; �q ω)

= L(0)
τσ (�ks; �q ω)〈s|σz|s〉 + L(0)

τσ (�ks; �q ω)
∑

s′

∫
d�k′

(2π )3

× 〈�k�k′+ �q, ss′, np|Ṽ |�k+ �q �k′, ss′, pn〉Lτσ (�k′s′; �q ω)
(24)

for the RPA vertex equation. For the spin response func-
tions, we also do not use the spin-averaging approximation
employed to obtain Eq. (10). In Fig. 5 we show the energy
dependence of the neutral-current spin response function in
β-equilibrium nuclear matter at density n = 50 × 1011 g/cm3

and temperature T = 7 MeV for a momentum transfer q =
21 MeV assuming an isoscalar spin-spin interaction

V (q) = g2

m2 + q2 �σ1 · �σ2, (25)

where we take g = 10 and m = 700 MeV. In Fig. 4 we plot
the response function in the approximation of noninteracting
particles (blue dots), the exact analytical RPA result (black
dots), and the numerical eigenvalue RPA result (red line) with
a δ function smearing length of ε = 70 × 10−5 fm−1. Again
we find excellent agreement between the exact and numerical
RPA resummations.

C. Dynamic structure functions

Neutrino opacities are a key input to numerical simulations
of core-collapse supernovae, protoneutron star evolution,
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FIG. 5. Imaginary part of the neutral-current spin response func-
tion at zeroth order (blue dots) and computed from the RPA
resummation of the direct term analytically (black dots) and within
the eigenvalue formalism described in Sec. II B (red line). A smear-
ing length ε = 70 × 10−5 fm−1 in Eq. (20) is employed.

and neutron star mergers. Both neutral-current and charged-
current weak reactions are important sources of neutrino
opacity across a wide range of densities and temperatures.
Matter effects on neutrino scattering and absorption cross sec-
tions on baryons are encoded in dynamical structure functions
related to the imaginary part of nuclear response functions.

1. Neutral-current neutrino scattering

The double differential cross section for low-energy neu-
trinos to scatter in a nonrelativistic gas of nucleons is given
by

1

V

d2σ

d cos θ dω
= G2

F

4π2
(Eν − ω)2

[
c2

V (1 + cos θ )Sρ (q, ω)

+ c2
A(3 − cos θ )Sσ (q, ω)

]
, (26)

where Sρ is the neutral-current density structure function
and Sσ is the neutral-current spin structure function. The
energy transfer is given by ω = Eν − E ′

ν and the momen-
tum transfer is given by �q = �pν − �p ′

ν with magnitude q =√
E2

ν + E ′
ν

2 − 2EνE ′
ν cos θ . The structure functions in Eq. (26)

are related to the imaginary parts of the associated response
functions by

S(q, ω) = −2 Imχ (q, ω)

1 − e−ω/T
. (27)

2. Charge-current neutrino absorption

The double differential cross section for electron neutrino
absorption is given by [6,16,19]

1

V

d2σ

d cos θdEe

= G2
F cos2 θc

4π2
peEe(1 − fe(Ee))[(1 + cos θ )Sτρ (ω, q)

+ g2
A(3 − cos θ )Sτσ (ω, q)], (28)

FIG. 6. Imaginary part of the charged-current density response
function for a noninteracting gas (dotted blue line) and including the
effects of nuclear mean fields in the Hartree-Fock approximation for
different chiral nuclear potentials labeled by their momentum-space
cutoff value: 414 MeV, 450 MeV, and 500 MeV.

where Sτρ is the charged-current density structure function
and Sτσ is the charged-current spin structure function. The
energy transfer is given by ω = Eν − Ee and the momen-
tum transfer is given by �q = �pν − �pe with magnitude q =√

E2
ν + E2

e − 2EνEe cos θ . The structure functions in Eq. (28)
are related to the imaginary part of the associated response
functions by

Sτ (q, ω) = − 2 Imχ (q, ω)

1 − e−(ω+μn−μp)/T
, (29)

where the detailed balance factor depends explicitly on the
proton and neutron chemical potentials μp and μn.

III. RESULTS

A. Response functions in the mean field approximation

In Fig. 6 we show mean field effects on the charged-current
density response function of nuclear matter for different
choices of the nuclear potential: N3LO-414, N3LO-450, and
N3LO-500. In the top panel, we consider β-equilibrium nu-
clear matter at density n = 0.002 fm−3, temperature T =
5 MeV, and assuming a momentum transfer of q = 15 MeV.
In the bottom panel, we consider beta-equilibrium nuclear
matter at density n = 0.02 fm−3, temperature T = 8 MeV,
and assuming a momentum transfer of q = 24 MeV. In all
cases, the chemical potentials and proton fractions are com-
puted self-consistently from Eqs. (1), (2), and (5) and found
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to be rather small Yp(n = 0.002 fm−3) = 1.92%–2.20% and
Yp(n = 0.02 fm−3) = 2.55%–2.62% for different choices of
the nucleon-nucleon interaction. The mean field shifts in the
imaginary part of the response function shown in Fig. 6 are
larger for smaller values of the momentum-space cutoff. A
similar effect was observed in the context of the nuclear
equation of state [37] and the nuclear single-particle potential
[41,42]. Namely, low-cutoff potentials are more perturbative
and therefore generate more attraction at first order in pertur-
bation theory, even though the sum of first- and second-order
perturbation theory contributions to the nuclear equation of
state or single-particle potential are similar. As argued in
Sec. II, the largest effect of mean field corrections in the imag-
inary part of the neutrino absorption charged-current response
is to shift the strength by an amount Up − Un in the energy
transfer ω. At the lower value of the density, n = 0.002 fm−3,
the mean field splitting is on the order of 1 MeV, while at the
larger density n = 0.02 fm−3, the mean field splitting is nearly
10 MeV for the N3LO-414 chiral nucleon-nucleon potential.
However, such mean field splittings are still about a factor
of 2 less than those generated from typical phenomenological
mean field models [16,43].

B. Response functions in the random phase approximation

The random phase approximation for the vertex function
together with the Hartree-Fock approximation for the single-
particle energies represents a conserving approximation that
is guaranteed to preserve sum rules and the positivity of dy-
namical structure functions. In addition, it is able to capture
the presence of collective oscillations such as the giant-dipole
and Gamow-Teller resonances that are known to play a role in
the response of nuclei [14]. In Fig. 7 we show a contour plot of
the imaginary part of the neutrino-absorption charged-current
spin response as a function of the energy ω and momen-
tum q transfer for beta-equilibrium matter with density n =
0.002 fm−3 and temperature T = 5 MeV. The top panel shows
the imaginary part of the response including mean field (MF)
corrections alone, while the bottom panel shows the combined
effect of RPA correlations and mean fields (RPA + MF). We
see that the MF response exhibits a relatively broad distribu-
tion already at low momentum transfers that peaks at a nearly
constant energy ω � −2 MeV. In contrast, the RPA + MF re-
sponse remains sharply peaked for longer, up to a momentum
transfer q � 0.04 fm−1 � 8 MeV, and peaks at a value ω �
−1 MeV that increases slowly with q. The sharper structure
of the RPA + MF response is indicative of a collective mode.
This feature is even more evident in Fig. 8, where we show the
contour plot of the imaginary part of the neutrino-absorption
charged-current spin response for β-equilibrium matter with
density n = 0.02 fm−3 and temperature T = 8 MeV. Here, the
collective mode (now at positive energy) remains sharp up
to a momentum transfer q � 0.2 fm−1 � 40 MeV. The shift
in peak energy of the imaginary response from −7.5 MeV
in the mean field approximation to 2 MeV in the RPA +
MF approximation will have an important effect on electron
neutrino absorption in dilute β-equilibrium nuclear matter.
The shift will push the outgoing electron energy to smaller
values where Pauli blocking acts to reduce the available phase

FIG. 7. Imaginary part of the charged-current spin response
function of β-equilibrium nuclear matter at a density n = 0.002 fm−3

and temperature T = 5 MeV. (Top panel) spin response function
including mean field “MF” corrections from the N3LO-414 chiral
nuclear potential. (Bottom panel) spin response function including
random phase approximation vertex corrections plus nuclear mean
fields “RPA+MF”.

FIG. 8. Imaginary part of the charged-current spin response
function of β-equilibrium nuclear matter at a density n = 0.02 fm−3

and temperature T = 8 MeV. (Top panel) spin response function
including mean field “MF” corrections from the N3LO-414 chiral
nuclear potential. (Bottom panel) spin response function including
random phase approximation vertex corrections plus nuclear mean
fields “RPA+MF”.
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FIG. 9. Energy-dependent neutral-current (left) and charged-current (right) dynamic structure functions of β-equilibrium nuclear matter at
density n = 0.02 fm−3 and temperature T = 8 MeV for a momentum transfer of q = 24 MeV. We plot both the density (top) and spin (bottom)
structure functions, including the effects of nucleon mean fields (dashed lines) and RPA correlations (black curves).

space, thereby suppressing the absorption cross section and
increasing the mean free path.

In the left panels of Fig. 9 we plot the neutral-current
density (top) and spin (bottom) dynamic structure factors
for β equilibrium nuclear matter under the ambient condi-
tions T = 8 MeV, n = 0.02 fm−3, and momentum transfer of
q = 24 MeV. For both the neutral-current density and spin
response functions, the mean field corrections play only a very
minor role. Mean fields change slightly the proton and neutron
densities for beta equilibrium matter, and the effective mass
has only a small effect on the Fermi distribution functions
and energy denominators. The energy shifts in the single-
particle potentials are absorbed into redefinitions of the proton
and neutron chemical potentials for the Fermi distribution
functions, and the mean field shifts cancel in the response
function energy denominators. The inclusion of RPA corre-
lations, however, is very important, enhancing the density
structure function and suppressing the spin structure function,
a feature already observed [23] including first-order vertex
corrections starting from a pseudopotential defined in terms of
nucleon-nucleon scattering phase shifts. This behavior can be
traced to the large neutron-neutron attraction in the 1S0 partial
wave.

In the right panels of Fig. 9 we plot the charged-current
density (top) and spin (bottom) dynamic structure functions
in β-equilibrium nuclear matter under the ambient condi-
tions T = 8 MeV, n = 0.02 fm−3, and momentum transfer of
q = 24 MeV. Whereas mean fields drive absorption strength
to lower energy transfers, RPA correlations significantly
shift strength to larger energy transfers. This is due to the
existence of giant dipole and Gamow-Teller collective modes
in the isovector-density and isovector-spin channels. The com-
bined effect of nuclear mean fields and RPA correlations is a

redistribution of strength to energies above that of the non-
interacting charged-current response functions. We conclude
that the inclusion of vertex corrections is crucial for an accu-
rate description of nuclear matter response functions at and
above neutrinosphere densities.

C. Energy-dependent neutrino absorption cross section

Integrating Eq. (28) over the scattering angle θ , we obtain
the differential energy-dependent neutrino absorption cross
section

1

V

dσ

dEe
= G2

F cos2 θc

4π2
peEe(1 − fe(Ee))

∫
d cos θ [(1 + cos θ )

× Sτρ (ω, q) + g2
A(3 − cos θ )Sτσ (ω, q)], (30)

where Sτρ and Sτσ are the density and spin dynamic structure
functions. In Figures 10 and 11 we plot the differential cross
section for electron neutrino absorption, keeping only the
spin dynamic structure function in Eq. (30) for β-equilibrium
matter at two densities n = 0.002 fm−3 and n = 0.02 fm−3.
The incoming neutrino energy is Eν = 3T . We show the cross
section assuming noninteracting nucleons (blue dotted line),
the cross section keeping only nuclear mean fields at the
Hartree-Fock level (blue dashed line), and finally the cross
section including RPA correlations and Hartree-Fock mean
fields (black solid line). The nuclear force is taken to be the
N3LO-414 chiral two-body interaction. One finds that the
inclusion of nuclear mean fields enhances neutrino absorption
since the response is shifted to lower energy transfers ω and,
therefore, higher electron energies for which the Pauli sup-
pression factor is reduced. However, RPA correlations provide
a stronger shift in the response function toward higher energy
transfers, leading to a reduced absorption cross section whose

015804-8



CHIRAL EFFECTIVE FIELD THEORY CALCULATION OF … PHYSICAL REVIEW C 109, 015804 (2024)

FIG. 10. Differential neutrino absorption cross section per unit
volume as a function of the outgoing electron energy Ee computed
from the spin response function of beta-equilibrium nuclear matter at
density n = 0.002 fm−3 and temperature T = 5 MeV. The incoming
neutrino energy is set to be Eν = 3T = 15 MeV. Curves are shown
for the case of noninteracting nucleons (blue dotted line), nuclear
mean fields computed from the N3LO-414 chiral nuclear potential
(blue dashed lines), and in the RPA + mean field approximation
(black solid line) also employing the N3LO-414 potential.

peak in electron energy can be shifted below that of the non-
interacting Fermi gas.

D. Mean free path

The inverse of the electron and antielectron neutrino mean
free path due to their charged current interactions is obtained
by integrating the differential absorption cross section per unit
volume over the final-state lepton energy, e.g.,

1

λ
=

∫
1

V

dσ

dEe
dEe. (31)

We now present and discuss results for the mean free
path of electron and antielectron neutrinos in the vicinity
of the neutrinosphere due to charged current interactions.
Differences between these mean free paths directly impact
several key observable aspects of supernovae and neutron star
mergers including dynamics, nucleosynthesis, and neutrino

FIG. 11. Same as Fig. 10 except for a density n = 0.02 fm−3,
temperature T = 8 MeV, and incoming neutrino energy Eν =
24 MeV.

FIG. 12. Inverse neutrino and antineutrino absorption mean free
paths as a function of energy Eν in β-equilibrium nuclear matter
at density n = 0.002 fm−3 and temperature T = 5 MeV. Shown are
results for (i) noninteracting nucleons (dotted lines), (ii) mean field
corrections (dashed lines), and (ii) RPA + mean field corrections
(solid lines) all calculated using the N3LO-414 chiral nucleon-
nucleon potential.

oscillations. In Figs. 12 and 13 we plot the inverse mean free
paths of electron neutrino and antineutrino absorption as a
function of the incident energy for two sets of ambient condi-
tions (n, T ) = (0.002 fm−3, 5 MeV) and (0.02 fm−3, 8 MeV).
The dynamic structure functions are computed from the as-
sociated charged-current spin response functions in three
approximations. First, the inverse neutrino mean free paths
neglecting interactions between nucleons is shown by the
dotted curves. Second, we show as the dashed lines the ef-
fect of introducing proton and neutron mean fields in the
Hartree-Fock approximation. Finally, the solid curves show
the combined effects of nucleon mean fields and vertex

FIG. 13. Inverse neutrino and antineutrino absorption mean free
paths as a function of energy Eν in β-equilibrium nuclear matter
at density n = 0.02 fm−3 and temperature T = 8 MeV. Shown are
results for (i) noninteracting nucleons (dotted lines), (ii) mean field
corrections (dashed lines), and (ii) RPA + mean field corrections
(solid lines) all calculated using the N3LO-414, N3LO-450, and
N3LO-500 chiral nucleon-nucleon potentials.
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FIG. 14. Imaginary part of the antineutrino absorption charged-
current spin response function χ̄τσ of β-equilibrium nuclear matter
at a density n = 0.02 fm−3 and temperature T = 8 MeV. (Top panel)
spin response function including mean field “MF” corrections from
the N3LO-414 chiral nuclear potential. (Bottom panel) spin response
function including random phase approximation vertex corrections
plus nuclear mean fields “RPA+MF”.

corrections obtained in the random phase approximation. In
Fig. 12 we show results only from the N3LO-414 chiral NN
potential, while in Fig. 13 we employ three different chi-
ral nucleon-nucleon interactions: N3LO-414, N3LO-450, and
N3LO-500. In all cases, we find that the mean-field effects
significantly enhance the electron neutrino absorption cross-
section across all energies considered, in agreement with
earlier studies. The effects are largest for the most perturba-
tive chiral potential, N3LO-414. In contrast, RPA correlations
redistribute strength to the vicinity of the positive-energy col-
lective mode. This significantly reduces the outgoing electron
energy into a region where Pauli blocking suppresses the re-
action. This redistribution of strength due to a broad collective
mode shifts the response to higher energy and undoes the
enhancement of the inverse mean free path due to mean-field
effects. Remarkably, correlations suppress the electron neu-
trino absorption cross-sections over the entire energy range
and are especially large for low-energy neutrinos. Whereas
the inclusion of nuclear mean fields resulted in a clear split-
ting of the electron neutrino absorption cross section with
varying nuclear potential, the fact that the order and relative
magnitude of the splitting remains intact after the inclusion
of RPA correlations suggests these effects are less sensitive
to the choice of NN potential. In particular, RPA correlations
suppress the inverse mean free path by approximately two
orders of magnitude for all three chiral potentials.

In Fig. 14 we show the imaginary part of the spin response
function for antineutrino absorption in β-equilibrium nuclear
matter at density n = 0.02 fm−3 and temperature T = 8 MeV.
For electron antineutrinos, nuclear mean fields shift the

response to higher energies. The absorption cross section is
therefore greatly reduced because the threshold energy to
convert protons into neutrons is increased to such an extent
that there is little phase space available for the reaction. As
observed in Fig. 13, the corresponding mean free path in-
creases dramatically at low energies in agreement with earlier
work. However, the presence of the negative-energy collective
mode due to RPA correlations, shown in the lower panel of
Fig. 14, lowers the energy required for the process. It provides
a reaction pathway even at low antineutrino energies, thereby
increasing the cross section. The reaction at low energies can
be viewed as a process involving the absorption of a posi-
tively charged collective mode by the antielectron neutrino to
produce a positron in the final state. At higher antineutrino
energies, the strong coupling to the negative-energy collec-
tive mode weakens the absorption cross section through the
detailed balance factor (1 − e−(ω+μp−μn )/T )−1. The response
function is also narrowly peaked in this region, which limits
the available phase space for final-state positron energies.
Overall, at high energies the antineutrino absorption total
cross section is reduced relative to both the noninteracting and
mean field approximations as seen in Fig. 13.

IV. CONCLUSION

We have developed the framework to calculate the neutrino
scattering and absorption rates in a warm neutron-rich matter
that consistently includes mean-field effects and correlations
through the random phase approximation (RPA). We employ
nuclear interactions derived from chiral effective field theory
and, for the first time, include direct and exchange contribu-
tions to the mean field energies and RPA vertex functions. The
combination of Hartree-Fock self-energies and RPA vertex
corrections to the response function constitutes a “conserving
approximation” that guarantees thermodynamic consistency
and the positivity of dynamic structure functions. The integral
equation for the RPA vertex function was discretized, leading
to a matrix eigenvalue problem that could be solved through
standard diagonalization.

We find that including RPA correlations produces a broad
collective mode that shifts the strength of the charged-current
neutrino response to higher energy transfer. For a fixed inci-
dent neutrino energy, this lowers the outgoing electron energy
into a region of Pauli-blocked suppression, thereby reducing
the total cross section. In contrast, electron-antineutrino ab-
sorption is enhanced at low energies because the same broad
collective mode lowers the threshold energy needed to convert
protons into neutrons. For higher antineutrino energy, this
enhancement is absent because of kinematic constraints.

Our consistent treatment of nuclear mean fields and RPA
correlations has important implications for charged current
reactions near the supernova and neutron star merger neu-
trinospheres. When only mean-field effects are included,
we confirm the results of previous studies that found a
large enhancement of electron-neutrino absorption cross sec-
tion and a reduction in antineutrino absorption cross section.
However, correlations included through RPA qualitatively
change the picture. As discussed in the previous section,
the absorption cross sections for electron neutrinos are
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reduced over the entire range of relevant energies. This would
imply an increased luminosity and average energy of electron
neutrinos emitted in supernovae and mergers. For antielec-
tron neutrinos, the absorption cross section is enhanced at
low energy and suppressed at high energy. This implies that
the lepton number flux carried by neutrinos can be strongly
energy-dependent when RPA correlations are included. Since
neutrino oscillations and nucleosynthesis are especially sen-
sitive to the neutrino lepton number flux and its energy
dependence [44,45], our findings will likely impact both.

Our finding that vertex corrections suppress differences
between νe and ν̄e absorption rates in the vicinity of the
neutrinosphere implies that the emerging spectra of νe and ν̄e

will be more similar than previously expected [15,16]. This
will likely inhibit the production of neutron-rich r-process
nuclei in the neutrino driven ejecta from core-collapse super-
novae and dynamical ejecta in neutron star mergers (for recent
reviews see [46,47]). However, collective neutrino flavor os-
cillations, which are also sensitive to the energy dependence
of the lepton number flux, impact the final spectra at the nu-
cleosynthesis site (see reviews [48,49] and references therein).
To gauge if corrections to mean free paths calculated in this
work can alter nucleosynthesis it is critical to include their
effect on flavor transformation by modifying the two-point
Feynman diagrams for electron neutrino absorption and emis-
sion processes in quantum kinetic equation (QKE) treatments
[50,51], and collisional instabilities [52,53]. Further, larger
mean free paths for both electron and antielectron neutrinos
at higher energy imply an increase in the total luminosity and
average energy. We speculate that this may increase the net
neutrino energy deposition behind the shock in core-collapse
supernova and aid the explosion. However, we caution the
reader that feedback often plays an important role, and our
findings need to be incorporated into simulations before one

can assess their relevance to the explosion mechanism. The
results of this work can be tabulated and included in simula-
tions of core-collapse supernovae, neutron star mergers, and
neutron star cooling.

Finally, we mention the limitations of our study and
identify directions for future work. First, although our anal-
ysis provides a consistent treatment of excitations above the
Hartree-Fock ground state, it neglects two-body currents and
correlations beyond one-particle–one-hole RPA. At the low
density, we expect both two-body currents and two-particle–
two-hole excitations to be small because they appear at higher
order in the density expansion, but more work is needed
to assess their importance at densities of relevance to the
neutrino sphere. It is well known that the interplay between
short-range correlations and two-body currents, especially in
the axial vector channel, plays an important role in nuclear
weak interactions. In addition, error estimates for neutrino in-
teraction rates require systematic order-by-order calculations.
These quantitative issues warrant further work before one can
draw definite conclusions about νe and ν̄e charged current
reactions in the neutrino sphere and their emergent spectra.
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