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Variational and parquet-diagram calculations for neutron matter. V. Triplet pairing
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We apply a large-scale summation of Feynman diagrams, including the class of parquet-diagrams plus
important contributions outside the parquet class, for calculating effective pairing interactions and subsequently
the superfluid gap in P-wave pairing in neutron matter. We employ realistic nucleon-nucleon interactions of the
v8 type and perform calculations up to a Fermi momentum of 1.8 fm−1. We find that many-body correlations
lead to a strong reduction of the spin-orbit interaction, and, therefore, to an almost complete suppression of the
3P2 and 3P2-3F2 gaps. We also find pairing in 3P0 states; the strength of the pairing gap depends sensitively on the
potential model employed. Our results for triplet pairing are relevant for assessing superfluidity in neutron star
interiors, whose presence can affect the cooling of neutron stars.
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I. INTRODUCTION

Pairing is manifest in the spectra of finite nuclei, as
recognized long ago [1], and is predicted to develop at var-
ious densities in nucleonic matter found in compact stars
[2–6]. The most basic type of calculations of pairing and
superfluidity or superconductivity in nuclear matter rely on
mean-field-like (or Hartree-Fock-like) implementations of
Bardeen-Cooper-Schrieffer (BCS) theory. It was recognized
long ago that the BCS equations can be solved not only for soft
interactions but also for interactions with a repulsive hard core
[7]. To what extent a mean-field theory captures the essential
physics of the nucleonic system is an important question.

In the case of pure neutron matter, theoretical approaches
generally agree that the value of the S-wave pairing gap value
should reach a maximum of roughly 2 MeV (within about 1
MeV) at a Fermi momentum somewhat below 1 fm−1, cor-
responding to subsaturation densities [5,6,8–17]. There still
remain some quantitative discrepancies. This is not surprising
given the extreme sensitivity of the pairing gap to the inter-
action and also in view of the different ways effects beyond
mean-field theory are taken into account, if at all. Similar
conclusions seem valid for β-equilibrated matter [18].

The situation in the case of triplet P-wave pairing in
neutron matter is much more uncertain. It is not even clear
whether a pairing gap develops in this channel. The question
is of particular astrophysical significance since triplet pairing
is expected to be most favored at densities found in the outer
liquid core of neutron stars and its presence would affect
the cooling curves of neutron stars, i.e., the evolution of sur-
face temperature with time [3,6,19]. Clarifying the question
of triplet pairing is necessary in order to make the most of
modern observational capabilities.

Microscopic calculations employing realistic nuclear
potentials generally predict, at the mean-field level, a

nonvanishing triplet pairing gap [11,12,16,20,21]. However, at
the high densities involved, effects beyond mean-field approx-
imations cannot be neglected. For example, it has been found
that realistic nucleon effective masses [20] and short-range
correlations [22,23] can reduce or eliminate the gap [11].
Three-nucleon interactions of the Urbana IX family can also
lead to vanishing gaps [24,25]. The effect of three-nucleon in-
teractions derived within chiral effective field theory (χEFT)
has been studied, too, and was found to be regulator de-
pendent but potentially significant in the triplet channel
[11,16].

Studies of polarization and screening effects in the triplet
channel have been scarce. The in-medium spin-orbit and ten-
sor interaction components are especially important, but they
are not well understood. Even working with bare nucleon-
nucleon potentials, the results for the triplet channel depend
on the interaction type (e.g., Argonne, Bonn, χEFT, etc).
A study of polarization contributions to the spin-dependent
nuclear interaction in the medium has suggested a suppression
of the 3P2 gap [26].

It is the purpose of this work to apply a comprehensive
diagrammatic theory to the problem of triplet pairing in neu-
tron matter. Our method is based on an evaluation of Feynman
diagrams that include self-consistently ring and ladder di-
agrams, i.e., the parquet class, but also totally irreducible
diagrams, dubbed “twisted chains,” which become important
when the interactions between particles in spin-singlet and
spin-triplet states are very different. The method has been
developed and applications were presented in a series of pre-
vious papers [17,27–29]. In Ref. [17], it was applied to the
pairing gap problem in the singlet channel, and the effect of
the correlations was discussed. The method was generalized
in Ref. [29] to spin-orbit forces. It was demonstrated that
many-body correlations affect dramatically the in-medium
spin-orbit component, which in turn affects the triplet pairing
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gap. The above result forms the motivation for the present
work.

This paper is organized as follows. The theoretical back-
ground and details of the formalism for v8 bare potentials are
presented in Sec. II. Results are presented and discussed in
Sec. III. We summarize our findings in Sec. IV. The appen-
dices contain additional information and technical details as
well as some results with bare interactions for comparison
with earlier work.

II. MICROSCOPIC THEORY

A. Interactions: Semiempirical nucleon-nucleon forces
in operator representation

Accurate representations of the nucleon-nucleon potentials
[30–33] are constructed to fit the interactions in each partial
wave to scattering data and deuteron binding energies. For the
purpose of identifying specific physical effects and of high-
level many-body calculations, an interaction given in the form
of a sum of local functions times operators acting on the spin,
isospin, and possibly the relative angular momentum variables
of the individual particles is preferred [32,34,35], i.e.,

v̂(i, j) =
n∑

α=1

vα (ri j ) Ôα (i, j), (2.1)

where ri j = |ri − r j | is the distance between particles i and j.
According to the number of operators n, the potential model
is referred to as a vn model potential. Semirealistic models for
nuclear matter keep at least the six to eight base operators

Ô1(i, j; r̂i j ) ≡ Ôc = 1,

Ô3(i, j; r̂i j ) ≡ σ i · σ j,

Ô5(i, j; r̂i j ) ≡ Si j (r̂i j )

≡ 3(σ i · r̂i j )(σ j · r̂i j ) − σ i · σ j,

Ô7(i, j; ri j, pi j ) ≡ ri j × pi j · S,

Ô2α (i, j; r̂i j ) = Ô2α−1(i, j; r̂i j )τ i · τ j, (2.2)

where S ≡ 1
2 (σ i + σ j ) is the total spin, and pi j = 1

2 (pi −
p j ) is the relative momentum operator of the pair of
particles. In the following, we will also use the no-
tation α ∈ {(cc), (cτ ), (σc), (στ ), (Sc), (Sτ ), (LSc), (LSτ )}
for α = 1–8. In neutron matter, the operators are projected to
the isospin = 1 channel, i.e., we have

Oα (i, j, r̂i j ) → Oα (i, j, r̂i j ) + Oα+1(i, j, r̂i j ) (2.3)

for odd α and Oα (i, j, r̂i j ) = 0 for even α. The new set of
interaction channels will be α ∈ {(c), (σ ), (S), (LS)}.

The Argonne interaction [32] is, among others, formulated
in the operator representation. For the v8 version of the Reid
68 interaction we have taken the six components V (6)

α (r),
α ∈ {(cc), (cτ ), (σc), (στ ), (Sc), (Sτ )} from Eqs. (A3)–(A8)
of Ref. [34]. The spin-orbit components α ∈ {(LSc), (LSτ )}
were constructed [29], following the procedure of Ref. [32],
from the isospin T = 0 and isospin T = 1 components of the
Reid interaction; cf. Eqs. (20) and (30) of Ref. [30].

A somewhat more recent interaction [33] is given only in
a partial wave representation. To derive an operator structure
of the form (2.1) from the partial wave representation of the
interaction we need the partial-wave representation of the op-
erators L · S and S12. For neutron matter we only need the case
T = 1. On the other hand, we need a definite total spin S = 0
or S = 1 for the pairing problem. The central components of
the interaction are then

vc,0(r) = vc(r) − 3vσ (r), (2.4a)

vc,1(r) = vc(r) + vσ (r). (2.4b)

In the spin-singlet case we only have a central interaction and
the only reasonable choice is

V (S = 0, T = 1)(r) ≡ V1S0
(r) = vc,0(r). (2.5)

In the spin-triplet case, the operator structure is

V̂ (S = 1, T = 1)(r) = vc,1(r)1 + vS(r)Ŝ12(r) + vLS(r)L · S,

(2.6)
where, for each partial wave, we have [36]

L · S =
(

j − 1 0
0 − j − 2

)
(2.7)

and

Si j =
⎛⎝ −2( j−1)

2 j+1
6
√

j( j+1)
2 j+1

6
√

j( j+1)
2 j+1

−2( j+2)
2 j+1

⎞⎠. (2.8)

It is evidently impossible to represent all individual partial
waves with only eight (or, in neutron matter, four) interaction
components as required by the operator representation (2.1).
We have therefore explored two possibilities, as follows, to
define an operator representation of the Reid 93 potential. The
tensor interaction is in both cases determined by the 3P2 - 3F2

interaction,

vS(r) = 5

6
√

6
V3P2 - 3F2

(r). (2.9)

(i) If we want to reproduce the 3P0-3P0 and the 3P2-3P2

phase shifts, we get

vc,1(r) = 1
3

(
2V3P2 - 3P2

(r) + V3P0 - 3P0
(r)
)+ 8

5vS(r),

(2.10a)

vLS(r) = 1
3

(
V3P2 - 3P2

(r) − V3P0 - 3P0
(r)
)− 6

5vS(r).

(2.10b)

(ii) If we want to reproduce the 3P2-3P2 and the 3F2-3F2

phase shifts, we have

vc,1(r) = 1
5

(
4V3P2 - 3P2

(r) + V3F2 - 3F2
(r)
)+ 16

25vS(r),

(2.11a)

vLS(r) = 1
5

(
V3P2 - 3P2

(r) − V3F2 - 3F2
(r)
)− 6

25vS(r).

(2.11b)

We shall refer to the approximations (2.10) and (2.11)
as “Version a” and “Version b”, respectively. Turning the
ambiguity into an advantage, we shall compare the results
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from these two interaction models to assess the accuracy of
predictions based on the operator representation of the Reid
93 interactions. For the body of this work we have chosen the
operator form (2.10) that reproduces the lowest-lying partial
waves. The equation of state obtained with this interaction
is practically indistinguishable from the equation of state
obtained from the Reid 68 and Argonne v8 potentials. Never-
theless, exploring different representations can provide insight
into the robustness of theoretical predictions; see Appendix B.

We have focused in this paper on calculations for two
variants of the Reid interaction [30,33] as well on the v8 trun-
cation of the Argonne interaction [32]. This was done to be
consistent with our previous work [17,27,28] as well as other
microscopic calculations [37–40]. We are, of course, aware
of the fact that there are more modern interactions [41,42]
which have been used for the calculation of properties of
neutron and nuclear matter [43–46]. The present paper focuses
on P-wave pairing, whereas an investigation of these new
interactions warrants a much broader investigation including
other phenomena such as the structure [27], S-wave pairing
[17], the dynamic structure [29], and the optical potential. We
shall address these issues in future work.

B. Jastrow-Feenberg variational method and parquet diagrams

In terms of the paradigms of perturbative many-body the-
ory [47], it is easy to argue that the minimum set of Feynman
diagrams for a trustworthy microscopic treatment of strongly
interacting systems is the set of parquet diagrams [48,49].
While the insight into what is needed is quite obvious, the
execution of such a program is far from trivial. One must seek
approximations, but such steps are ambiguous without further
guidance.

An approach that is superficially very different from pertur-
bative many-body theory has been suggested by Jastrow [50]
and Feenberg [51]. For simple, state-independent interactions
as appropriate for electrons or quantum fluids, the Jastrow-
Feenberg ansatz [50,51] for the wave function

�0 = FN�0, FN =
N∏

i, j=1
i< j

f (ri j ) (2.12)

and its logical generalization to multiparticle correlation func-
tions has been extremely successful. Here, �0 is a model state
describing the statistics and, when appropriate, the geometry
of the system. For fermions, it is normally taken as a Slater
determinant. We will here use the generalization to Bardeen-
Cooper-Schrieffer (BCS) states [14,17,52–56].

One of the reasons for the success of this method is that it
provides an upper bound for the ground state energy

E0 = 〈�0|H |�0〉
〈�0|�0〉 . (2.13)

A singularly useful hierarchy of equations for the calculation
of the energy expectation value (2.13) is the hypernetted-chain
summation technique [57,58]; it is characterized by the fact
that it allows, at every level of implementation, the uncon-
strained optimization of the correlations via the variational

principle

δE0

δ f
(ri, r j ) = 0. (2.14)

The method is referred to as the (Fermi-)hypernetted-chain-
Euler-Lagrange, (F)HNC-EL, procedure.

An important insight was that this procedure corresponds
to a summation of a “local approximation” of the parquet
diagrams [48,59,60]. This was proved first for bosons; some
additional approximations are made in a Fermi system [56].
The variational problem (2.14) ensures that one uses the best
approximation for the computational effort one is willing
to spend. We shall therefore use the language of Jastrow-
Feenberg and parquet diagrams interchangeably, in particular
for the benefit of those readers who are less familiar with the
former.

The situation is considerably more complicated for realistic
nucleon-nucleon interactions of the form (2.1). A plausible
generalization of the wave function (2.12) is the “symmetrized
operator product (SOP)” [61,62]

�SOP
0 = F SOP

N �0, F SOP
N = S

⎡⎢⎢⎢⎣
N∏

i, j=1
i< j

f̂ (i, j)

⎤⎥⎥⎥⎦, (2.15)

where

f̂ (i, j) =
n∑

α=1

fα (ri j ) Ôα (i, j), (2.16)

and S stands for symmetrization. The symmetrization is nec-
essary because the operators Ôα (i, j) and Ôβ (i, k) do not
necessarily commute. We have highlighted recently [28] (see
also Ref. [63]) the importance of a proper symmetrization in
cases where the bare interaction is different in spin-singlet
and spin-triplet channels; we shall return to this point in
Sec. II B 3.

In a preceding series of papers [27–29], we developed prac-
tical and efficient methods for the summation of the parquet
diagrams, including the most important commutator diagrams
mentioned above. We shall briefly review the resulting equa-
tions in the next sections.

1. Diagram summation: Chain diagrams

One of the components of parquet-diagram theory is the
summation of the chain diagrams. We assume a local effective
particle-hole interaction of the same form as the bare interac-
tion (2.1), which is given in momentum space as

V̂p-h(q) =
8∑

α=1

Ṽ (α)
p-h (q) Ôα (i, j). (2.17)

V̂p-h(q) is, in the long-wavelength limit, related to Landau’s
Fermi-Liquid interactions [64–66] or, at finite wave numbers,
to pseudopotentials [8,67]. The momentum-space compo-
nents of the interactions in the different operator channels are
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the Fourier transforms

Ṽ (α)
p-h (q) =

⎧⎪⎪⎨⎪⎪⎩
ρ
∫

d3r V (α)
p-h (r) j0(qr) for α = 1, . . . , 4,

−ρ
∫

d3r V (α)
p-h (r) j2(qr) for α = 5, 6,

ρ

2

∫
d3r V α

p-h(r)rkF j1(qr) for α = 7, 8,

(2.18)
where the momentum representation of the tensor operator
is obtained by replacing r̂i j → q̂. As usual, we have defined
above the Fourier transforms with a density factor such that
the momentum space interactions also have the dimension of
energy.

The summation of chain diagrams is best carried out by
transforming the spin and tensor operators into the longi-
tudinal and transverse operators [68,69]. The particle-hole
interaction is then a linear combination of the four operators

Q̂1 ≡ 1, (2.19a)

Q̂3 ≡ L̂(q̂) = (σ · q̂)(σ ′ · q̂), (2.19b)

Q̂5 ≡ T̂ (q̂) = σ · σ ′ − (σ · q̂)(σ ′ · q̂), (2.19c)

Q̂7 ≡ L̃·S ≡ i

kF
q̂ × �h · S. (2.19d)

The operator L̃·S acts only in spin space. It depends para-
metrically on the direction q̂ of momentum transfer and the
difference of the hole wave numbers �h ≡ h − h′. We shall
generally mean the momentum space representations (2.19)
when we refer to the operators Q̂α .

A complete derivation of chain-diagram summations in-
cluding the spin-orbit interaction was done in Ref. [29]. The
sum of all chain diagrams can no longer be represented as a
linear combination of momentum-space functions times the
operators (2.19). Three more operators are needed. The co-
efficient functions of those additional operators that contain
an even number of spin-orbit operators are, however, of order
[Ṽ (LS)

p-h (q)]2 and are numerically very small. An interesting
feature of the spin-orbit order term, which might be relevant
in different physical circumstances, will be outlined below in
connection with Eqs. (2.22b)–(2.22d).

To represent the sum of all chain diagrams, it has turned
out to be convenient to introduce

Ṽ (c)
p-h (q; ω) ≡ Ṽ (c)

p-h (q) + 1
4χ

(⊥)
0 (q; ω)

[
Ṽ (LS)

p-h (q)
]2

, (2.20a)

Ṽ (T)
p-h (q; ω) ≡ Ṽ (T)

p-h (q) + 1
8χ

(⊥)
0 (q; ω)

[
Ṽ (LS)

p-h (q)
]2

, (2.20b)

Ṽ (L)
p−h(q; ω) ≡ Ṽ (L)

p-h (q). (2.20c)

We have defined above a transverse Lindhard function

χ
(⊥)
0 (q; ω) = 1

N
Trσ

∑
h

∣∣∣∣ q̂ × h
kF

∣∣∣∣2 2(εp − εh)

(h̄ω + iη)2 − (εp − εh)2
,

(2.21)

where q = p − h. The εp and εh are the single-particle en-
ergies of correlated basis functions (CBF) theory that have
been discussed elsewhere [70–72]; see also the Appendix of
Ref. [17].

The sum of all chain diagrams containing an odd number
of spin-orbit operators can be written as

Ŵ (odd)
LS (q; ω) = W (LS)(q, ω)L̃·S + W (LS′ )(q, ω)L̃S ′,

(2.22a)

W (LS)(q, ω) = 1

2

Ṽ (LS)
p-h (q)

1 − χ0(q; ω)Ṽ (c)
p-h (q; ω)

+ 1

2

Ṽ (LS)
p-h (q)

1 − χ0(q; ω)Ṽ (T)
p-h (q; ω)

, (2.22b)

W (LS′ )(q, ω) = 1

2

Ṽ (LS)
p-h (q)

1 − χ0(q; ω)Ṽ (T)
p-h (q; ω)

− 1

2

Ṽ (LS)
p-h (q)

1 − χ0(q; ω)Ṽ (c)
p-h (q; ω)

, (2.22c)

where χ0(q; ω) is the usual Lindhard function, and we deviate
here slightly from the definition in Ref. [29],

L̃S ′ = i

2kF
q̂ × (h + h′) · (σ − σ ′). (2.22d)

The operator L̃S ′ is antisymmetric in the spins and does not
contribute to the pairing interactions. In different physical
circumstances the term proportional to L̃S ′ could be very in-
teresting because it is the only term in the effective interaction
that couples spin-singlet and spin-triplet states.

The energy dependent effective interaction can then be
represented by the operator expansion

Ŵ (q; ω) =
7∑

α odd

W̃ (α)(q; ω)Q̂α, (2.23)

where

W̃ (α)(q; ω) =
Ṽ (α)

p-h (q; ω)

1 − χ0(q; ω)Ṽ (α)
p-h (q; ω)

for α = 1, 3, 5,

(2.24)

and Eq. (2.22b) for α = 7.

2. Diagram summation: Ladder diagrams

The second component of the parquet [or (F)HNC-EL]
summation is the summation of ladder diagrams. That is
generally accomplished by the Bethe-Goldstone equation. In
its most primitive form the equation contains, as the only
many-body effect, the Pauli exclusion principle. Summing
parquet diagrams amounts to supplementing the bare interac-
tion v(r) by an “induced interaction” w̃I (q, ω). This induced
interaction is energy dependent. Local parquet theory then
replaces this interaction by an energy-independent interaction
which is defined such that the static approximation leads to
the same (observable) static structure function as the dynamic
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interaction:

S(q) = −
∫ ∞

0

dh̄ω

π
Im

χ0(q; ω)

1 − Ṽp−h(q)χ0(q; ω)

= −
∫ ∞

0

dh̄ω

π
Im
[
χ0(q; ω) + χ2

0 (q; ω)W̃ (q; ω)
]

!= −
∫ ∞

0

dh̄ω

π
Im
[
χ0(q, ω) + χ2

0 (q, ω)W̃ (q)
]
, (2.25)

which defines the energy dependent induced interaction
though

W̃ (q, ω) = Ṽp-h(q) + w̃I (q, ω) (2.26)

and its local approximation

W̃ (q) = Ṽp-h(q) + w̃I (q). (2.27)

The Bethe-Goldstone equation defines a pair wave func-
tion ψ (r) which can be identified, in the simplest case of
central state-independent correlations and the FHNC//0 or
parquet//0 approximation, with the “direct correlation func-
tion” �dd(r) through

1 + �dd(r) = |ψ (r)|2 (2.28)

and is, in that approximation, related to the static structure
function through

�̃dd(q) = SF(q) − S(q)

S2
F(q)

. (2.29)

Here, SF(q) is the static structure function of noninteracting
fermions. For the present case of interacting nucleons, all
quantities are operators in the same basis as the microscopic
interaction; see Refs. [27] and [73] for details. The resulting
particle-hole interaction is

V̂p-h(r) = h̄2

m
|∇ψ̂ (r)|2 + ψ̂∗(r)[v̂(r)

+ V̂I (r) + ŵI (r)]ψ̂ (r) − ŵI (r). (2.30)

The additional term V̂I (r) is the “irreducible” interaction
which arises from the beyond-parquet contributions.

3. Diagram summation: Beyond parquet

The most notorious problem of an operator-dependent vari-
ational wave function (2.15) is that symmetrization must be
carried out explicitly in order to get a valid variational prin-
ciple (2.14). Light was shed on the meaning of the arising
“commutator contributions” by Smith and Jackson [73], who
showed, for a fictitious system of bosons with spin, isospin,
and tensor forces, that the parquet-diagram summation leads
to an optimized Bose-version of Ref. [61], i.e., to a theory
where all commutator diagrams are omitted. The conclusion is
therefore that the wave function (2.15) contains more than just
the parquet class; nonparquet diagrams simply are neglected
when commutators are neglected.

From the point of view of the variational wave function
(2.15), it is abundantly clear that commutator diagrams are
important whenever the interaction in singlet and triplet chan-
nels is very different: Working out the simplest nontrivial
commutators leads to contributions to the energy where the

k1 σ1 k’1σ’1

k2 σ2 k’2σ’2

k1 σ1 k’1 σ’1

k2 σ2 k’2 σ’2

k1 σ1 k’1 σ’1

k2 σ2 k’2 σ’2

FIG. 1. The simplest second-order ladder diagrams including a
“twisted chain” correction. The left diagram is the ordinary two-body
ladder that is summed by the Bethe-Goldstone equation. The middle
diagram is where one of the bare interactions is replaced by w̃I (q),
and the right one is the simplest contribution to the totally irreducible
interaction. The red wavy line represents the bare interaction and the
blue wavy line the particle-hole interaction. The chains of two blue
wavy lines may, of course, be supplemented by longer chains.

spin-singlet interaction is multiplied by a spin-triplet correla-
tion function ftriplet (r) and vice versa. Taking the extreme case
of hard-core interactions with different core sizes for singlet
and triplet states [74], and simplistic correlations functions
as they are being used in low-order constraint variational
(LOCV) calculations, would lead to divergences.

The issue is less obvious in diagrammatic perturbation
theory. But once the importance of non-parquet diagrams is
realized, diagrammatic perturbation theory offers an intuitive
explanation. We show in Fig. 1 the simplest possibility of
“twisting” chain diagrams. The leftmost diagram is the ordi-
nary second-order ladder diagram as summed by the Bethe-
Goldstone equation. The middle diagram shows the simplest
case where the bare interaction is replaced by the induced
interaction w̃I (q, ω) or, in practice, its local approximation
w̃I (q). In both cases, if a pair of particles enters with quantum
numbers |k1, k′

1, S〉 then it remains in that spin configuration
throughout the process.

The third diagram, although it has the same components, is
by definition not a parquet diagram; it represents the simplest
contribution to the irreducible interaction V̂I (r). Working out
the spin-flux, one obtains for that

(�VI )(2)(k) =
∫

d3q

(2π )3ρ

1

E (k, q)
[w̃I,c(q)V̂ (k − q)

+ w̃I,σ (q)[2Ṽt (k − q) − Ṽs(k − q)]Pt

− 3w̃I,σ (q)Ṽt (k − q)Ps], (2.31)

where E (k, q) is the energy denominator appropriate for the
process, and we have extended second order chains to the full
induced interaction. Also, we have here omitted the tensor-
and spin-orbit force for brevity.

The first line in the expression (2.31) simply says that, if
the induced interaction does not carry spin, then the spins
of the interaction operator V̂ (k − q) remain the same. The
second line of (2.31) carries our message: If the induced
interaction carries a spin, then the spin-triplet interaction will
contribute to the spin-singlet component of the induced inter-
action. Similarly, the spin-singlet interaction contributes to the
spin-triplet component of the induced interaction.
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FIG. 2. Examples of the diagrams summed by the integral equa-
tion (2.32). The red wavy line represents a bare interaction v̂(r) and
the blue line represents the sum v̂ + ŵI. The rungs can all be summed
to the G matrix.

We have developed a systematic way to sum the beyond-
parquet diagrams in Ref. [28]. The G matrix of the Bethe-
Goldstone equation Ĝ(r) is the sum of the ladder-diagram
summation of the bare interaction v̂(r) plus the induced inter-
action ŵI (r). A similar G matrix Ĝw(r) can be defined for the
local induced interaction wI (r). The irreducible interaction is
then obtained by solving the integral equation

V̂I(q)= − 1

2

∑
α,β

∫
d3q′

(2π )3ρ

[
G̃(α)(|q − q′|) − Ṽ (α)

I (|q − q′|)]
× G̃(β )

w (q′)
2tF(q′)

× Tr1[Ôβ (a, 1)[Ôα (a, b), Ôβ (1, b)]],

(2.32)

where G̃(q) is the Fourier transform of G(r). The diagrams
summed by this procedure are shown in Fig. 2.

C. Superfluid state with correlations

We rely in this section heavily on definitions and methods
of correlated basis functions (CBF) theory. The basic idea of a
correlated BCS state is to use for the model state in Eq. (2.12)
or (2.15) an uncorrelated BCS state. A correlated state is then
constructed by applying a correlation operator (2.15) to that
state. Since the superfluid state does not have a fixed particle
number, we must write the correlated state in the form

|CBCS〉 =
∑
m,N

∣∣� (N )
m

〉〈
m(N )

∣∣BCS
〉
, (2.33)

where the {|m(N )〉} form a complete set of N-body Slater
determinants, and the |� (N )

m 〉 are correlated and normalized
N-body states forming a nonorthogonal basis of the Hilbert
space: ∣∣� (N )

m

〉 = FN |m(N )〉
〈m(N )|F †

N FN |m(N )〉1/2
. (2.34)

The approach to deal with triplet pairing that is closest to
ours is that of Hatzikonstantinou and Irvine [75] who gener-
alized the work of Ref. [53] to pairing in triplet states. The
uncorrelated wave function

|BCS〉 =
∏

k
kx>0

⎡⎣u(k) +
∑
σ1σ2

vσ1σ2 (k)a†
k,σ1

a†
−k,σ2

⎤⎦∣∣〉 (2.35)

is the superposition of particle pairs in a spin-triplet state with
opposite momenta. Above, u(k) is a normalization term.

In P-wave superconductivity [76], the superfluid system is
frequently generated by a generalized Bogoliubov transforma-
tion

|BCS〉 = eiS|〉, (2.36a)

iS = 1

2

∑
k,σ1,σ2

[
θ (k, σ1, σ2)a†

k,σ1
a†

−k,σ2

− θ∗(k, σ1, σ2)a−k,σ2
ak,σ1

]
. (2.36b)

The above unitary transformation defines quasiparticle opera-
tors [77]

αk = eiSake−iS = U(k)ak − V(k)a†
k (2.37)

where U(k) and V(k) are 2 × 2 matrices and

ak =
(

ak,↑
ak,↓

)
. (2.38)

The superfluid ground state is then the state that is annihi-
lated by the quasiparticle destruction operators. We hasten
to note that this state is not exactly the same as the
state (2.34), the states deviate by a four-body term of the
form a†

k↑a†
−k↑a†

k↓a†
−k↓. The relationship will be derived in

Appendix A.
The theory has been worked out in detail and applied to

nuclear problems by Tamagaki, Takatsuka, and collaborators
[77,78].

If the superfluid gap is small compared to the Fermi energy,
it is legitimate to simplify the problem by expanding

〈H ′〉c = 〈CBCS|Ĥ ′|CBCS〉
〈CBCS

∣∣CBCS〉 , Ĥ ′ ≡ Ĥ − μN̂ (2.39)

in the deviation of the superfluid values of u(k) and vσ1σ2 (k)
from their normal states values u(0)(k) = 1 − n(k), v(0)

σ1σ2
(k) =

n(k)δσ1σ2 . Carrying out this expansion in the number of
Cooper pairs, one arrives [53,79] at a gap equation of ex-
actly the same form as a mean-field approach, except that the
pairing interaction is expressed as a sum of FHNC or parquet
diagrams.

For pairing in states other than S waves, the gap function
becomes angle dependent. We follow here the strategy of
the “angle-average” approximation of the gap equation as
formulated, for example, in Ref. [80]. In general, the gap
equation can couple different angular momenta and becomes
a matrix equation of the form

�(�)(k) = −1

2

∑
�′

∫
d3k′

(2π )3
V� �′ (k, k′)

�(�′ )(k′)√
(εk′ − μ)2 + D2(k′)

,

(2.40)

where D2(k) = ∑
� |�(�)(k)|2. The pairing interaction has the

form

V�,�′ (k, k′) = W�,�′ (k, k′)

+ (|ek − μ| + |ek′ − μ|)N�,�′ (k, k′), (2.41)

W�,�′ (k, k′) = 〈k, �|W (1, 2)|k′, �′〉, (2.42)

N�,�′ (k, k′) = 〈k, �|N (1, 2)
∣∣k′, �′〉, (2.43)
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where we have suppressed spin degrees of freedom because
we are always working in either an S = 0 or an S = 1 state.
The effective interaction W (1, 2) and the correlation cor-
rections N (1, 2) are given by the compound-diagrammatic
ingredients of the FHNC-EL method for off-diagonal quan-
tities [81], or, in a different language, by parquet-diagram
summations.

III. RESULTS

Throughout our calculations, we have utilized a noninter-
acting single-particle spectrum εk = h̄2k2/2m. One can go
beyond such a simplifying approximation by either using the
single-particle spectrum predicted by correlated basis func-
tions theory [53] or improve upon that by including dynamic
effects. These methods have been very successful for explain-
ing the physical mechanisms leading to the strong effective
mass enhancement in 3He [82], but applying them in the
present case appeared excessive. The effective mass ratio
m∗/m lies between 1.05 and 0.95 [83] and basically scales
the gap, whereas, as we will see, the effect we are reporting
can change the gap by two orders of magnitude.

As an initial exercise, and for completeness, we have
solved the S-wave and P-wave gap equations for the bare
interactions. We used the Reid 68 potential, the two operator
versions of Reid 93, and the Argonne v8 potential. The results
are discussed and compared with earlier work in Appendix B.
To summarize the main conclusions:

(i) The results for the 1S0 gap agree closely with each
other, which gives confidence that the above interac-
tions are well understood and leave only many-body
effects to influence the magnitude of the gap. The
temperature dependence is practically identical for
the Reid 93 and Argonne v8 potentials.

(ii) The results for the triplet pairing gap when many-
body correlations are neglected are in full agreement
with previous results [38,39,80], i.e., the diagonal 3P2

and off-diagonal 3P2-3F2 pairing channels prevail in
neutron matter, and the tensor interaction is essential.
The temperature dependence is almost identical to
that in the 1S0 channel.

(iii) When the spin-orbit interaction is turned off, the
3P2 and 3P2-3F2 gaps disappear. On the other hand,

turning off the spin-orbit interaction leads to a signif-
icant 3P0 gap for all interactions.

The question we address here is how many-body correla-
tions modify the pairing interactions and the above-mentioned
results for the pairing gaps.

A. Effective interactions

We have in Secs. II B 1–II B 3 formulated a version of the
FHNC-EL or local parquet theory that retains, in the summa-
tion of chain diagrams, only the simplest exchange diagrams.
This version has been dubbed FHNC-EL//0 or parquet//0.
More complicated exchange diagrams are also important and
routinely kept [27,28]; we refer to our previous publications
[27–29] for details.

Input to our calculations of pairing gaps are our pairing ma-
trix elements and the “energy numerator corrections” shown
in Eq. (2.42). The latter might seem unfamiliar; discussion
of the significance of this term is found in Refs. [84] and
[83]. Basically, the formulation (2.40)–(2.42) amounts to a
reformulation of the gap equation in terms of the T matrix
as carried out, for example, in Ref. [85]. This reformulation
is necessary to guarantee that the gap equation (2.40) has
solutions in the limit of a contact interaction.

The straightforward application of the parquet-diagram
summations would suggest taking, for the pairing interaction,
the localized effective interactions (2.24) and (2.22b) which
are made energy independent by the prescription (2.25). Since
the gap is normally small compared to the kinetic energy of a
particle at the Fermi surface, it is more appropriate to take
these interactions at zero energy. We hasten to mention that
the difference of results obtained in this way is negligible.

We focus in this work on P-wave pairing and assume an
interaction in the operator representation (2.1). Examples of
S-wave pairing can be seen in Appendix B. We can restrict
ourselves to the T = 1 case, i.e., the interaction contains only
the four odd-numbered operators in Eq. (2.1). For the pairing
problem, we need a definite total spin S = 0 or S = 1. The
central components of the interaction are then

vc,0(r) = vc(r) − 3vσ (r), (3.1a)

vc,1(r) = vc(r) + vσ (r). (3.1b)

For 3P0 pairing the interaction matrix (2.42) is diagonal,

V3P0
(p1, p2) =

∫
d3r[vc,1(r) − 4vS(r) − 2vLS(r)] j1(p1r) j1(p2r). (3.2a)

For 3P2-3F2 pairing we obtain a 2 × 2 matrix with the elements

V3P2−3P2
(p1, p2) =

∫
d3r[vc,1(r) − 2

5
vS(r) + vLS(r)] j1(p1r) j1(p2r),

V3P2−3F2
(p1, p2) = 6

5

√
6
∫

d3r vS(r) j1(p1r) j3(p2r),

V3F2−3F2
(p1, p2) =

∫
d3r[vc,1(r) − 8

5
vS (r) − 4vLS(r)] j3(p1r) j3(p2r). (3.2b)
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FIG. 3. For the Reid v8 interaction, the four effective interactions in (a) the 3P0, (b) the 3P2-3P2, (c) the 3P2-3F2, and (d) the 3F2-3F2 channels,
for a sequence of Fermi wave number kF values (solid lines). Also shown are the bare interactions in the same channels (heavy dashed lines).

The effective interaction W (1, 2) and the normalization
correction N (1, 2) are originally represented in the same
operator basis as the bare interaction; their matrix ele-
ments entering the gap equation are calculated according to
Eqs. (3.2a)–(3.2b).

We show in Figs. 3 the effective interactions for the v8

version of the Reid 68 interaction in the 3P0 and the coupled
3P2-3F2 coupled channels. Evidently there is not much similar-
ity between the bare interactions and the effective interactions
that contain medium-polarization, correlations, and “twisted”
spin-exchange processes.

We found in Ref. [29] that the corrections to the effective
interactions W̃ (α)(q; ω) for α = 1, 3, 5 due to the spin-orbit
potential are very small. The only term that is of first order in
the spin-orbit potential is W̃ (7)(q; ω) = W̃ (LS)(q; ω). The most
important result of that work is, however, the screening of
the short-ranged behavior of the spin-orbit interaction by the
correlations caused by the surrounding particles; see Fig. 4.

B. 3P2-3F2 gaps

Figure 5 shows our final results for the superfluid 3P2-3F2

gap function D(kF). Since the gap is negligibly small we did
not dwell into technical details like the effect of “twisted
chain” diagrams.

The most striking result is, of course, that, compared to the
results with the bare interactions (Fig. 10), the 3P2-3F2 is sup-
pressed by about two orders of magnitude. The reason for this
is readily found in the suppression of the spin-orbit interaction

through many-body correlations, as shown in Fig. 4. The spe-
cial role of the spin-orbit interaction has already been pointed
out in Ref. [5]: “without an attractive spin-orbit interaction,
neutrons would form a 3P0 superfluid, in which the spin and
orbital angular momenta are antialigned, rather than the 3P2

state, in which they are aligned.”

C. 3P0 gaps

Figure 6 shows our results for the superfluid 3P0 gap,
omitting and including “beyond-parquet” corrections. We see
a similar effect as observed in our work on S-wave pairing but
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FIG. 4. For the Reid v8 interaction, W (LS)(r; ω = 0) for a se-
quence of Fermi wave number values kF. Also shown is the bare
spin-orbit interaction (heavy dashed line).
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FIG. 5. Our results for the 3P2-3F2 gap function D(k) for the Reid
68, Argonne v8, and Reid 93a interactions.

with the opposite sign: Adding the “twisted chain” diagrams
increases the P-wave gap by about 30%. This is plausible
considering our discussion around Fig. 1. Adding “nonpar-
quet” diagrams in the spin-singlet channel mixes the repulsive
P-wave interaction into the S-wave pairing interaction. On the
other hand, adding “nonparquet” diagrams in the spin-triplet
channel mixes the attractive spin-singlet interaction to the
spin-triplet pairing potential. We hasten to point out the effect
is, however, rather delicate since the suppression of the spin-
orbit potential depends sensitively on the balance between
the central force and the spin-orbit force in the spin-triplet
channels. It is less than the uncertainty introduced by using
different microscopic potentials.

The fact that the “correlated wave function” ansatz (2.33)
leads to a description of a superfluid system that can be under-
stood as a weakly interacting theory with effective interactions
permits us to generalize the description to finite temperatures.
The gap equation then takes the form [86]

�(�)(k) = −1

2

∑
�′

∫
d3k′

(2π )3
V� �′ (k, k′)

× tanh
[

1
2βE (k′)

]
E (k′)

�(�′ )(k′), (3.3)

where β = 1/kBT and E (k) =
√

(εk − μ)2 + D2(k). Figure 7
shows the temperature dependence of the 3P0 gap for the Reid
68 interaction. In general, we find the relationship �(kF) ≈
1.8kBTc in very good agreement with the mean-field estimate
�(kF) ≈ 1.76kBTc [87], although the relationship

�(kF, T ) ∼
(

1 − T

Tc

) 1
2

(3.4)

is satisfied only close to the critical temperature Tc.

IV. SUMMARY AND OUTLOOK

Using several v8 models of the nucleon-nucleon interac-
tion, we have calculated the effective pairing interaction in
neutron matter by summing the parquet-diagrams and im-
portant totally irreducible corrections. In doing so, we have
carried out the most comprehensive diagrammatic evaluation

of the pairing interactions, including, among others, medium
polarization effects and spin-flip processes that have, so far,
been either ignored or treated at a simplistic phenomenologi-
cal level.

One can certainly do better. In particular, at high densities,
more complicated exchange contributions can be relevant.
These are routinely included in systems with simple interac-
tions [71], but the summation techniques have not yet been
developed for state-dependent potentials. Therefore, we have
decided not to go beyond kF = 1.8 fm−1.

The most striking result is that many-body correlations
have the effect of almost completely suppressing the 3P2 and
3P2-3F2 gap. This result was, to some extent, anticipated from
our work on the spin-orbit interaction [29]. There, we found
that the spin-orbit interaction is strongly suppressed by many-
body correlations. It is also consistent with the fact that neither
of the bare interactions employed here shows 3P2-3F2 or 3P2

pairing when the spin-orbit interactions is omitted. Along with
the suppression of 3P2-3F2 pairing we found a significantly
enhanced pairing in 3P0 states.

There are a number of obvious ways of extending our
calculations. One of them is the inclusion of three-nucleon
(3N) forces. Generally, the combined effect of 3N forces and
in-medium mass normalization can vary strongly. A treatment
of the three-nucleon interaction adjusted for applications in
Brueckner-Hartree-Fock theory leads to a moderate increase
near the peak [88]. On the other hand, the depletion of
the Fermi surface can drastically reverse the effect [89]. In
Ref. [25], it was found that a small fraction of the phenomeno-
logical repulsion of the original Urbana potential suffices to
eliminate the gap. In the case of χEFT potentials, the con-
tribution of the three-nucleon force at N2LO and N3LO is
somewhat attractive, leading to an enhancement of the gap
which is strongly regulator dependent [11,16], especially be-
yond Fermi momentum 1.5 fm−1. Note that such momentum
scales are close to the breakdown scale of χEFT.

Another potential extension of our work is to use a su-
perfluid Lindhard function [90] for the calculation of the
induced interaction. The effect can be quite large [17,56] in
low-density neutron matter where the gap can be as large as
half of the Fermi energy. We have not included these correc-
tions here because the 3P0 gap is much smaller than the 1S0

gap and has its maximum at higher densities. In view of the
approximations implicit to our parquet//1 calculation, we did
not consider the effort justified.

APPENDIX A: UNITARY TRANSFORMATION

The Bogoliubov unitary transformation approach intro-
duces a unitary operator [77,91]

iS = 1

2

∑
k,σ1,σ2

[
θσ1σ2 (k)a†

kσ1
a†

−kσ2
− θ∗

σ1σ2
(k)a−kσ2

akσ1

]
≡ 1

2

∑
k

is(k),

and, through that, a set of quasiparticle operators

αk = eiSake−iS = U(k)ak − V(k)a†
−k, (A1)
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FIG. 6. For the three potentials considered here, the 3P0 gap is shown when (a) the “beyond parquet” diagrams are omitted and (b) when
they are included.

where

ak =
(

a†
k↑

a†
k↓

)
(A2)

and U(k) and V(k) are 2 × 2 matrices.
In the spin-triplet case, θσ1σ2 (k) is symmetric, and we

have θσ1σ2 (k) = −θσ1σ2 (−k) as well as [78] θ∗
−σ1−σ2

(k) =
(−1)σ1+σ2θσ1σ2 (k), and we can write

iS =
∑

k
kz>0

is(k). (A3)

Then all s(k) with different k in the above sum commute. The
matrices U(k) and V(k) have the form [78]

U(k) =
(

u(k) 0
0 u(k)

)
, V(k) =

(
v(k) 0

0 v(k)

)
θ(k),

(A4)

where u(k) = cos θD(k), v(k) = sin θD(k)/θD(k), and
θD(k) = √|θ↑↑(k)|2 + |θ↑↓(k)|2. Conventionally, the
Hamiltonian is rewritten in terms of the quasiparticle
operators; the amplitudes u(k) and θσ1σ2 (k) are determined
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FIG. 7. For the Reid 68 interaction, the temperature dependence
of the 3P0 gap. Also shown are the critical temperature Tc as a
function of density [dashed line in the (kF, kBT ) plane] and the zero
temperature solution [dotted line in the (kF, �(kF )) plane].

by the condition that the off-diagonal part of the Hamiltonian
in terms of the quasiparticle operators vanishes. For the
execution of the variational/parquet theory outlined in
Sec. II C we need, however, a closed-form expression for
the uncorrelated state |BCS〉. One definition is to demand
that this state is destroyed by the quasiparticle annihilation
operators,

αk|BCS〉 = 0. (A5)

It is immediately seen that such a condition cannot be satis-
fied by the form (2.34) and the quasiparticle operators (A2).
Rather, the form of the wave function is

|BCS〉 =
∏

k
kz>0

F (k)|〉, (A6)

F (k) = A(k) +
∑
σ1σ2

Bσ1σ2 (k)a†
kσ1

a†
−kσ2

+C(k)a†
k↑a†

−k↑a†
k↓a†

−k↓, (A7)

where the coefficients A(k), Bσ1σ2 (k), and C(k) are deter-
mined by the condition∑

σ ′
[Uσ,σ ′ (k)ak,σ ′ − Vσ,σ ′ (k)a†

−k,σ ′ ]F (k)|〉 (A8)

and normalization. The first condition is that there are no
terms proportional to a†

−k,σ . This leads to

u(k)Bσσ ′ (k) = A(k)Vσσ ′ (k). (A9)

The second condition is that the coefficients of three creation
operators should also vanish.

− C(k)[Uσ↑a†
k,↓ − Uσ↓a†

k,↑]

−
∑
σ1

[Vσ↑(k)Bσ1↓(k) − Vσ↓(k)Bσ1↑(k)]a†
k,σ1

= −[u(k)C(k) − [V↑↑(k)B↓↓(k) − V↑↓(k)B↓↑(k)]]

× [δσ↑a†
k,↓ − δσ↓a†

k,↑]. (A10)
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FIG. 8. The 1S0 gap for the operator form of the Reid 68, Reid
93, and Argonne v8 potentials. The two operator versions of Reid-93
give the same result.

Together with the normalization condition 〈|F †(k)F (k)|〉 = 1
this gives the result

F (k) = u2(k) + u(k)
∑
σ1σ2

Vσ1σ2 (k)a†
kσ1

a†
−kσ2

+ (u2(k) − 1)a†
k↑a†

−k↑a†
k↓a†

−k↓. (A11)

With that, the wave function is

|BCS〉 =
∏

k
kz>0

[
u2(k) + u(k)

∑
σ1,σ2

Vσ1,σ2 (k)a†
k,σ1

a†
−k,σ2

+ (u2(k) − 1)a†
k↑a†

−k↑a†
k↓a†

−k↓

]
|〉. (A12)

Thus, the “unitary transformation” leads to a BCS state that
also contains four creation operators. Such a term is, of course,
irrelevant if the Hamiltonian just contains one- and two-body
operators. It might lead to interesting effects once one goes
beyond mean-field approximations.

APPENDIX B: RESULTS WITH BARE INTERACTIONS

To examine the dependence of the results for the superfluid
gap on the potential model and also to compare with earlier
calculations [38,39,80], we have calculated �(kF) for the four
potentials studied here. An aspect of concern is that most
accurate nuclear interactions [30,33] are given in a partial
wave basis, and an operator form, Eqs. (2.1) and (2.2), is an
approximation. We have described above how the operator
form of the Reid 93 interaction was obtained.

Figure 8 shows a comparison of the 1S0 gap obtained for
the above three interaction models. The close agreement be-
tween these results gives confidence that these interactions are
well understood, leaving only many-body effects to influence
the magnitude of the gap.

Extending the calculation to finite temperature [86,87,92]
also gives an estimate of the critical temperature Tc. Close to
the transition temperature, one expects a behavior of the form
(3.4).
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FIG. 9. For the Reid 68 interaction, the temperature dependence
of the 1S0 gap. Also shown are the critical temperature Tc as a
function of density (dashed line) in the (kF, kBT ) plane and the zero
temperature solution [dotted line in the (kF, �(kF )) plane].

We have calculated the temperature dependence of the
1S0 gap (see Fig. 9); the critical temperature was obtained
by extrapolating the temperature dependence �(kF, T ) to
�(kF, Tc) = 0 using the estimate (3.4). Our results are shown
in Fig. 9. We found, to a very good approximation, that
�(kF) ≈ 1.8kBTc throughout the whole density regime. This is
in excellent agreement with the weak coupling approximation
Eq. (51.44) of Ref. [87]. Results for the Argonne and Reid 93
interactions are practically identical.

The situation is more complex for P-wave pairing. The
pioneering work of Tamagaki et al. [77,78] showed that, when
many-body effects are neglected, 3P2 and 3P2-3F2 prevail in
neutron matter. The results that we have obtained for the in-
teractions considered here fully support this view. Moreover,
our results are rather similar for all four cases; see Fig. 10. We
also found that, in the 3P2-3F2 coupled channel pairing, the in-
teractions in the 3P2-3P2 diagonal and the 3P2-3F2 off-diagonal
(tensor) channel are most important whereas the diagonal
3F2-3F2 interaction plays only a minor role. On the other
hand, the off-diagonal tensor force is essential; restricting the

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.8 1.0 1.2 1.4 1.6 1.8 2.0

D
(k

F
) 

 (
M

eV
)

kF  (fm
-1

)

Reid 68

Reid 93 b

Reid 93 a

Argonne v8

FIG. 10. The superfluid coupled channel 3P2-3F2 gap for the four
interactions considered here. D(kF ) is the angle-averaged gap func-
tion in the denominator of Eq. (2.40).
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FIG. 11. The superfluid gap for 3P2 single channel. The two
versions of the Reid 93 interaction give by construction the same
answer.

calculation to the 3P2 channel reduces the gap by an order of
magnitude; see Fig. 11.

The temperature dependence of the 3P2-3F2 gap is almost
identical to that of the 1S0 gap; see Fig. 12. In particular, we
found again that the relationship �(kF) ≈ 1.8kBTc with very
good accuracy.

The calculations discussed so far did not necessarily rely
on an operator structure of the form in Eqs (2.1) and (2.2).
To assess the importance of the spin-orbit interaction we have
repeated our calculations with the spin-orbit interaction turned
off. As predicted [5], pairing in 3P2-3F2 and 3P2 states disap-
peared apart from a tiny effect of 10−2MeV for 3P2 pairing
with the Reid 68 interaction.

On the other hand, turning off the spin-orbit interaction
leads to a significant 3P0 gap for all interactions considered
here; see Fig. 13. Unlike all other cases, we observe a rather
significant dependence of the value of �(kF) on the inter-
action. This simply reflects the ambiguity arises from the
very definition of an operator structure of the interaction. In
particular, the predictions of the two operator representations
(2.10) and (2.11) of the Reid 93 interaction differ by more
than a factor of 2.

1.0
1.2

1.4 1.6
1.8

2.0 0.00
0.05

0.10
0.15

0.20
0.25

0.300.0

0.1

0.2

0.3

0.4

0.5

Δ(kF,T)  (MeV)

kB Tc (MeV)

Δ(kF,T=0)  (MeV)

kF  (fm
-1

) kBT  (MeV)

Δ(
k

F
,T

) 
 (

M
eV

)

FIG. 12. Same as Fig. 9 for 3P2-3F2 pairing.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Δ(
k

F
) 

 (
M

eV
)

kF  (fm
-1

)

Reid 68

Reid 93 b

Reid 93 a

Argonne v8

FIG. 13. The pairing gap in 3P0 states for the four interactions
considered here when the spin-orbit force has been turned off.

APPENDIX C: GAP EQUATION SOLVER

We describe here the version of our gap-equation solver
[93] for finite temperatures. For brevity and in view of what
follows, let

En(k, ξ ) ≡
√

(εk − μ)2 + ξ 2D2
n(k). (C1)

Equations (3.3) and (2.40) are highly nonlinear and a simple
iteration procedure of the kind

�
(�)
n+1(k) = − 1

2

∑
�′

∫
d3k′

(2π )3
V� �′ (k, k′)

× tanh
(

1
2βEn(k′, 1)

)
En(k′, 1)

�(�′ )
n (k′) (C2)

normally does not converge. The reason for this is as follows:
The function

tanh
[

1
2βEn(k′, 1)

]
En(k′, 1)

is everywhere apart from a small area around kF dominated by
the kinetic energy |εk′ − μ|. We can therefore write (applying
the mean value theorem)

�
(�)
n+1(k) = − 1

2

∑
�′

∫
d3k′

(2π )3
V� �′ (k, k′)

× tanh
(

1
2β
√

(εk′ − μ)2 + D̄2(kF)
)√

(εk′ − μ)2 + D̄2(kF)
�(�′ )

n (k′),

(C3)

where D̄(kF) is an average value of the gap function D(k)
in the vicinity of kF. This procedure converges towards the
eigenvector corresponding to the largest eigenvalue in abso-
lute value of the matrix

−1

2
V� �′ (k, k′)

tanh
(

1
2β
√

(εk′ − μ)2 + D̄2(kF)
)√

(εk′ − μ)2 + D̄2(kF)
.
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However, if the interaction has a strong repulsive core, the
above operator has very large negative eigenvalues whereas
we want the largest positive eigenvalue.

A very rapidly converging algorithm [93] is as follows:
Consider the generalized eigenvalue problem

λ(ξ )δ(�)
n+1(k, ξ ) = − 1

2

∑
�′

∫
d3k′

(2π )3
V� �′ (k, k′)

× tanh
(

1
2βEn(k′, ξ )

)
En(k′, ξ )

δ
(�′ )
n+1(k′, ξ ), (C4)

where ξ is a scaling parameter. The eigenvectors are normal-
ized as

∑
�

∫
d3k

(2π )3

1
2 tanh

(
1
2βEn(k, ξ )

)
En(k, ξ )

∣∣δ(�)
n+1(k)

∣∣2 = 1. (C5)

The algorithm is

(1) Start with a reasonable estimate for D0(k). From the
above analysis we can expect that a constant is a good
approximation.

(2) Solve the above eigenvalue problem as a function
of the scaling parameter ξ , and find the value ξ0 for
which an eigenvalue of the equation is λ(ξ0) = 1. The

derivative is

d ln λ(ξ )

dξ
=
∑

�

∫
d3k

(2π )3

∣∣δ(�)
n+1(k)

∣∣2 d

dξ

× tanh
[

1
2βEn(k, ξ )

]
En(k, ξ )

= −ξ
∑

�

∫
d3k

(2π )3

∣∣∣∣∣Dn(k)δ(�)
n+1(k)

En(k, ξ )

∣∣∣∣∣
2

× tanh[ 1
2βEn(k, ξ )]

En(k, ξ )

×
[

1 − βEn(k, ξ )

sinh[βEn(k, ξ )]

]
< 0 (C6)

for λ > 0. This feature is useful to find the value ξ0 by
a Newton procedure.

(3) Scale the corresponding eigenfunction δ
(�)
n+1(k, ξ0)

such that

Dn+1(k) = δn+1(k, ξ0)
ξ0Dn(kF)

δn+1(kF, ξ0)
.

(4) Go to step (2) and repeat until convergence which is
reached for ξ0 = 1.

It was already observed in Ref. [93] and confirmed in
Ref. [80] that the first iteration often leads to a solution of
the gap equation with a percent accuracy. We have confirmed
this observation here. A stand-alone code together with a brief
description on how it works are provided as Supplemental
Material [94].
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