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Elastic scattering of 3He + 4He with the SONIK scattering chamber
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Measurements of the elastic scattering cross section of 3He and 4He are important in order to improve
constraints on theoretical models of 4He(3He, γ ) 7Be, a key reaction in Big Bang nucleosynthesis and solar
neutrino production. The astrophysical S factor for this reaction is a significant source of uncertainty in the
standard-solar-model prediction of the 7Be and 8B solar neutrino fluxes. The elastic scattering measurements
reported in the literature do not extend to low energies and lack proper uncertainty quantification. A new mea-
surement of the 4He(3He, 3He) 4He reaction has been made at center-of-mass energies Ec.m. = 0.38−3.13 MeV
using the Scattering of Nuclei in Inverse Kinematics (SONIK) scattering chamber: a windowless, extended gas
target surrounded by an array of 30 collimated silicon charged particle detectors situated at TRIUMF. This is the
first elastic scattering measurement of 3He + 4He made below 500 keV and it has greater angular range and better
precision than previous measurements. The elastic scattering data were analyzed using both R-matrix and halo
effective field theory frameworks, and values of the s-wave scattering length and effective range were extracted.
The resulting improvement in knowledge of the s-wave effective-range function at low energies reduces the
overall uncertainty in S34 at solar energies.

DOI: 10.1103/PhysRevC.109.015802

I. INTRODUCTION

The reaction 4He(3He, γ ) 7Be is of critical importance
for the production of high-energy neutrinos during pp-chain
burning in low-mass stars like our sun. The 7Be produced
by this reaction undergoes electron capture to produce 7Be
neutrinos in the pp-II chain. In the pp-III chain, the 7Be un-
dergoes a radiative proton capture reaction to form 8B which
subsequently β+ decays to produce 8B neutrinos. The total
active flux of these 7Be and 8B neutrinos has been measured
by the Borexino and SNO detectors with uncertainties of ±3%
and ±4%, respectively [1,2]. The Super-Kamiokande exper-
iment also reported a measurement of the 8B neutrino flux
with an uncertainty of ±3% [3]. However, the predicted 7Be
and 8B neutrino fluxes from the calculations of the standard
solar model (SSM) have uncertainties of ±6% and ±12%,
respectively [4]. The low-energy astrophysical S factor for the
4He(3He, γ ) 7Be radiative capture reaction, S34(E ), is respec-
tively the first and second most uncertain nuclear input in the
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SSM prediction of the 7Be and 8B neutrino fluxes [4]. It must
be known at or near the Gamow peak energy of ≈ 18 keV,
which is experimentally inaccessible due to Coulomb barrier
suppression. The cross sections are unmeasurably small at
these energies, so available data starting around Ec.m. = 100
keV must be extrapolated to solar energies with the aid of
theoretical models.

Several different theoretical approaches used to calculate
the 4He(3He, γ ) 7Be reaction cross section at these energies
are summarized in the “Solar Fusion II” review [5]. In that
work these approaches were sifted and a subset of them used
to extrapolate the experimental capture data available in 2011.
The resulting recommended zero-energy astrophysical S fac-
tor for the 4He(3He, γ ) 7Be reaction is S34(0) = 0.56 ± 0.02
(expt) ± 0.02 (theory) keV b.

The 4He(3He, γ ) 7Be reaction also plays a key role in
determining the quantity of 7Li produced by Big Bang nucle-
osynthesis (BBN) [6]. In this case, the important energy range
is approximately 100 � Ec.m. � 600 keV [7,8], a region where
the cross section can be measured directly by experiment.
Currently, the BBN predictions for the 7Li abundance are
about a factor of 3 higher than observations, which is far too
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large of a difference to be explained by uncertainties in the
4He(3He, γ ) 7Be reaction. Since the 4He(3He, γ ) 7Be reaction
rate at BBN temperatures can be determined directly from
experimental data, i.e., without extrapolation or a detailed
model, we do not focus on this application in the present work.

The capture reaction 4He(3He, γ ) 7Be proceeds domi-
nantly through a nonresonant direct capture mechanism into
the ground and first excited state of 7Be. Measurements of the
4He(3He, γ ) 7Be cross section have been made by detecting
the prompt γ rays, the 7Be activity, and the 7Be recoils, which
could be broadly categorized into prompt and activation mea-
surements. The results from these two types of measurements
were not in agreement until 1998, as summarized in Solar Fu-
sion I [9]. With the advancement in measurement techniques,
the recent results from both types of measurement are remark-
ably consistent, as pointed out in Ref. [10]. The cross section
for 4He(3He, γ ) 7Be has been measured for center-of-mass
energies from 90 keV to 4.4 MeV.

4He + 3He elastic scattering is an important constraint
on theoretical models and phenomenological descriptions of
the 4He(3He, γ ) 7Be reaction: any model of the capture re-
action should also be able to describe low-energy elastic
scattering. In phenomenological descriptions such as R ma-
trix, 4He(3He, 3He) 4He is an open channel and it affects
the extrapolation of 4He(3He, γ ) 7Be cross-section data to
solar energies. In theoretical models the quality of scatter-
ing wave functions that are input to the calculation of the
4He(3He, γ ) 7Be reaction cross section can be assessed by the
models’ ability to describe the elastic scattering cross section.

A comprehensive R-matrix analysis of the
4He(3He, γ ) 7Be reaction by deBoer et al. [10] studied
the effects of elastic scattering data on the inferred
astrophysical S-factor values at solar energies and reported
S34(0) = 0.542 ± 0.023 keV b—a central value about
3% lower than is recommended in Solar Fusion II. The
authors of that study emphasized the need for a new
study of 4He(3He, 3He) 4He covering a wide angular range
with detailed uncertainty estimates. This conclusion is
bolstered by recent ab initio and halo effective field theory
(EFT) calculations. In Ref. [11] the no-core shell model
with continuum (NCSMC) [11] was used to compute the
4He(3He, γ ) 7Be reaction ab initio. Dohet-Eraly et al. found
discrepancies between the elastic scattering phase shifts they
predict and experimental observations. Iliadis et al. [12]
performed a global Bayesian estimate based on microscopic
models and ab initio methods. Scaling the model calculations
to fit the capture data, they reported S34(0) = 0.572 ± 0.012
keV b. This central value is 2% higher than Solar Fusion II
and 6% higher than that of deBoer et al. [10]. Meanwhile,
two recent halo EFT calculations that used 3He and 4He as
degrees of freedom showed the strong connection between
the s-wave scattering length and effective range and the
shape of the capture-reaction S factor at low energies [13,14].
Reference [14] recommended S34(0) = 0.577+0.015

−0.016 keV b
based on a Bayesian analysis of radiative capture data.

It is thus clear that the 4He(3He, 3He) 4He elastic scattering
is important in both astrophysics and few-body nuclear theory.
However, there are only a few experimental studies of this
reaction at the low energies where the information is most

pertinent to solar fusion. Most of the experiments reported
in the literature are motivated to understand the structure of
7Be and consequently are focused on high resonance energies
[15–22]. The only measurement extending to low energies
reached E [3He] = 1.2 MeV, but lacks error estimates [23].
In the text hereafter the low energy and high energy refer to
Ec.m. < 1.0 MeV and Ec.m. > 3.0 MeV, respectively.

This paper describes a new measurement at TRIUMF of
the elastic scattering cross section of the 4He(3He, 3He) 4He
reaction. The measurement was carried out at incident beam
energies as low as E [3He] = 0.721 MeV. The experimental
method used to measure the elastic scattering is explained in
Sec. II. In Sec. III we discuss the details of the data analysis
and the calculation of the differential scattering cross section.
In Sec. IV the differential scattering cross sections from this
measurement are compared to existing measurements from
the literature. In this paper the s-wave scattering length for
the 3He + 4He system is determined using both a multilevel
R-matrix approach and halo EFT to simultaneously analyze
the new elastic scattering data from this work and the data
of Ref. [17]. These analyses are described in Secs. V and
VI, respectively. The results of the analyses are presented
in Sec. VII, which also contains a comparison with previous
results from the literature. We conclude in Sec. VIII.

II. EXPERIMENT

The elastic scattering measurement of 4He(3He, 3He) 4He
was performed at TRIUMF. A 3He beam in the 1+ charge
state was produced using the TRIUMF Off-Line Ion Source
(OLIS) [24]. The beam was accelerated using the Isotope
Separator and Accelerator-I (ISAC-I) facility and delivered to
the the Scattering of Nuclei in Inverse Kinematics (SONIK)
[25] apparatus with an intensity of about 1012 s−1. SONIK was
filled with 4He gas maintained at a typical pressure of 5 Torr.

SONIK is a windowless, extended gas target surrounded
by an array of 30 collimated silicon charged particle detectors.
The chamber was commissioned with two separate measure-
ments, 4He(3He, 3He) 4He elastic scattering and 7Li(p, p) 7Li
elastic scattering. The charged particle detectors are mounted
in an assembly referred to as the detector telescope hereafter.
The design details of SONIK and the detector telescopes are
shown in Fig. 1.

Each detector telescope is collimated by a 2.0-mm-wide
rectangular slit aperture at the telescope’s interface with the
gas volume and a 1.0-mm-diam circular aperture in front of
the silicon charged particle detectors. The two apertures are
separated by a distance of 11.0 cm. The distance from the
front aperture to the observation point on the beam axis in the
gas target is 6.0 cm. The detectors are placed at a distance of
17.0 cm from the center of the beam line, measured along the
axis of the telescope, and at observation angles ranging from
22.5◦ to 135◦ in the laboratory frame. The beam delivered
to SONIK enters the windowless gas target through a 6-mm-
diam aperture and exits through an 8-mm-diam aperture; they
are separated by 23.98 cm. A constant pressure is achieved
along the extended gas target by using the Detector of Recoils
and Gammas of Nuclear Reactions (DRAGON) differential
pumping system. Helium gas was cleaned by continuous re-
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FIG. 1. (a) Three-dimensional model of SONIK. (b) SONIK design details. The 3He beam traverses the 4He gas target from left to right in
the figure. The stars represent the interaction regions in the gas target. (c) A detector telescope assembly. The dimensions in the figures are in
millimeters.

circulation through a LN2 cooled zeolite trap. The detector
telescopes are arranged such that they observe three different
points, termed interaction regions, in the gas target along the
beam direction (z direction). Since each interaction region has
a different z coordinate, the bombarding energy and therefore
the scattering energy varies slightly by interaction region. This
arrangement of three interaction regions is highly beneficial
for inverse kinematics experiments with radioactive beams,
where the beam time is limited and there are narrow reso-
nances to be studied. Additional details of the experimental
setup are given in Refs. [25,26].

4He(3He, 3He) 4He elastic scattering was measured at nine
energies (sometimes referred as “energy bins” in the text
hereafter) corresponding to 3He beam energies of E [3He] =
0.721, 0.878, 1.303, 1.767, 2.145, 2.633, 3.608, 4.347, and
5.490 MeV. This is the first ever measurement made below
Ec.m. = 0.50 MeV of 4He(3He, 3He) 4He elastic scattering.
Since the projectile and target masses are comparable, we ob-
served both the recoils and ejectiles from the elastic scattering
in our detectors. Detector signals were processed by a small

version of the GRIFFIN data acquisition system [27] using
two 16-channel, 14-bit, 1000-MHz sampling GRIF-16 digi-
tizers. A typical raw spectrum for two incident beam energies
from the experiment is shown in Fig. 2. The 3He and 4He
peaks are well resolved at high incident beam energies. We
aimed for 1000 counts in the 90◦ detector for each incident
beam energy before changing to the next energy. For low
incident beam energies, we could not observe the 3He ejectiles
at 90◦, so the next detector to observe was then at 75◦. The
120◦ and 135◦ spectra were not used for the analysis due to
limited statistics and the 3He peak being extremely low in
energy.

III. DATA ANALYSIS

The differential elastic scattering cross section in the lab-
oratory frame of reference at bombarding energy E0 and
scattering angle θ0 is given by

dσ

d�
(E0, θ0) = Ndet sin θ0

nNincGε
, (1)
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FIG. 2. Typical spectrum from the experiment. The red and blue
histograms represent the spectra obtained at θlab = 40◦ for E [3He] =
1.303 and 3.608 MeV, respectively. The 3He and 4He peaks are
resolved at the higher incident energy but not at the lower beam
energy.

where Ndet is the number of detected particles, n is the target
density, Ninc is the number of incident beam particles, G is the
G factor [28] discussed in Sec. III E, and the quantity ε is the
beam transmission through an empty gas target.

A. Beam energy determination

The beam energies were measured using the DRAGON
facility according to the procedure given in Ref. [29]. The 3He
beam in charge state q was centered on a 2-mm slit down-
stream of DRAGON’s first magnetic dipole, MD1, and the
measured field value, B, was converted to energy per nucleon
(E/A) by using the relation

E

A
= Cmag

(
qB

A

)2

− 1

2uc2

(
E

A

)2

, (2)

where E is the kinetic energy of 3He in MeV, Cmag =
48.15(7) MeV T−2 [29], A = 3.016 is the mass of 3He in
atomic mass units, and u is the unified atomic mass unit in
MeV/c2.

With DRAGON, we are able to make direct stopping power
measurements. The beam passing through the gas target at
varying pressures is deflected by the first bending magnet
(MD1) downstream of the target and centered onto the charge
slit. The magnetic field strength required to transmit the beam
through the charge slit is measured. The stopping power mea-
surements for SONIK were performed at E [3He] = 1.767
MeV with pinhole apertures (1.5 mm diameter) at the beam
entrance and beam exit positions as well as with the standard
(6- and 8-mm) apertures in order to measure the effective
length of the target. The target areal density is determined
from the target pressure using the ideal gas law, for which
the physical length of the gas target (23.98 cm) was used.
The beam energy is plotted as a function of target density
which yields the linear relationship shown in Fig. 3. The slope
of this line is the stopping power for 3He in 4He gas. At

FIG. 3. Determination of stopping power for E [3He] = 1.767
MeV. The error bars are entirely due to the systematic error asso-
ciated with the constant Cmag in Eq. (2).

E [3He] = 1.767 MeV the stopping power obtained via this
approach is 11.97 ± 0.53 eV/(10 15atoms /cm2). Meanwhile,
that obtained from a stopping and range of ions in matter
(SRIM) [30] calculation is 11.08 eV/(10 15atoms /cm2). The
central value of the experimentally measured stopping power
differs from the SRIM prediction by 8.0%. The measured
stopping power value is consistent within 1σ error bars if
the uncertainty in the SRIM predictions of 4.3% [31] is taken
into consideration. The length of the gas target with standard
apertures (i.e., beam entrance and beam exit apertures with
diameters of 6 and 8 mm, respectively) is termed the effective
length in our experiment. The effective length differs from the
physical length as the gas in the differential pumping system
diffuses outwards, thereby increasing the length of the gas
target with which the beam interacts. With the assumption
of linear energy loss, the effective target length can be deter-
mined via

leff = �E

nS , (3)

where �E is the energy loss in the target, S is the stopping
power of 3He in 4He, and n is the target number density. The
effective length for the gas target was calculated to be leff =
24.61 ± 1.09 cm. The stopping power measurement was only
performed for E [3He] = 1.767 MeV, where an 8% difference
from the SRIM calculation was found. Assuming the same
difference for other incident energies, the SRIM-calculated
stopping powers were increased by 8% to obtain the stopping
power of 3He in 4He gas. With the assumption of linear energy
loss, the effective beam energy Ei at each interaction region i
in the gas target is calculated by

Ei = Ein − Sti, with i = 1, 2, 3, (4)

where Ein is the incident beam energy, S is the scaled stopping
power, and ti is the target areal density from the beginning of
the gas target until the interaction region i. This procedure
was adopted because it leads to calculated energies at the
interaction regions that minimize the influence to systematic
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errors in the target length, pressure, or temperature. The error
in the beam energy from the magnetic analysis is taken to be
0.15% of the incident beam energy. This error is combined in
quadrature with 6.6% of the energy loss, which amounts to
a maximum of 3 keV in E [3He] for the lowest 3He incident
beam energy at interaction region III.

B. Transmission

The incident beam currents are measured upstream and
downstream of the SONIK chamber using Faraday cups FC4
and FC1, respectively. The ratio of FC4 to FC1 gives us the
measure of beam transmission through the target. With no gas
in the target, the ratio FC4/FC1 should be ideally 1, which
is not the case practically. The measured beam transmission
values differ for different beam energies ranging typically
between 82% and 92% for this experiment. The exercise of
measuring the beam transmission was done at the start of each
energy change but was not measured for each individual run.
It is believed to be a constant factor for all runs for a given
incident beam energy. The empty gas beam transmissions for
E [3He] = 5.490, 3.608, 2.633, and 1.303 MeV were mea-
sured again before making an energy change. The mean of
the difference of the transmission measured at the start and at
the end of run before the energy change for these energies was
found to be 3%. Therefore, for all energies, an additional 3%
uncertainty was added in quadrature with the counting errors
in the empty gas beam transmission measurement.

C. Beam normalization

The FC4 Faraday cup reading is used to determine the
number of incident beam particles, Ninc. The average fluctu-
ations in FC4 readings differ for different energy bins and
are typically less than 3%. The target density of 4He, n,
is determined from the pressure and temperature of the gas
target. The product of the number of incident beam particles,
target density, and the empty gas beam transmission ε gives
the normalization for each energy measurement. The beam
normalization error for each energy is the error associated
with the normalization and is a common mode error for all
data points for a given energy. There was a change in incident
beam intensity in between the runs while acquiring data for
E [3He] = 2.633 MeV resulting in a different normalization.
So, there are two sets of runs of data for E [3He] = 2.633 MeV.
The common mode errors, σEi , for the different energies lie
between 3.7% and 9.6% and are listed in Table IV.

D. Yield measurement

The individual peak yields from the raw spectrum were
extracted after background subtraction. The yields for both
the 3He and 4He peaks were calculated whenever possible.
The low-energy feature seen in the typical spectrum from the
experiment shown in Fig. 2 is background due to the contri-
bution of detector noise and electrons produced from in-target
scattering which tail off gradually with increasing energy.
Beside these sources, a contribution to the background also
arises from energy-degraded ions from beam scattering off
the aperture edges upstream of the SONIK interaction regions,

the energy-degraded scattered particles from the edges of the
Si detector collimators, and particles backscattered out of the
Si detector before depositing all of their energy. The last two
sources of background were included in the GEANT4 simula-
tion, but the effects were too small to explain the observed tails
on the 3He and 4He peaks. When the peaks are fully resolved,
polynomials were used to characterize the background, which
then were integrated analytically to estimate the background
contribution to the peak yields. When the peaks overlap, two
Gaussian functions with a common exponential or polynomial
background function are used to fit the spectrum and extract
the peak yields. The random errors for each peak yield were
determined considering the errors due to the choice of fit
parameters, the use of a Gaussian function to fit the peak, and
calculating yields for each 1-hour spectrum versus the yields
for the summed spectrum for a given beam energy. The yields
(after background subtraction) obtained from each 1-hour run
were found to differ by a maximum of 3% from the yield
determined from the summed spectra at all runs a given beam
energy. The random error associated with this is greater than
the statistical error. The random background error estimates
from each of these three components were added in quadrature
to calculate the total random background error. The random
background error was estimated for each peak for all energies
and was added in quadrature with the statistical error to obtain
the reported point-to-point error in the differential scattering
cross section.

E. G factor

For charged particle scattering experiments with a gas
target and collimated detector telescopes, the relationship
between the number of detected particles, Ndet, and the dif-
ferential scattering cross section, dσ

d�
, is often expressed as

Ndet = n Ninc G

sin θ0

dσ

d�
(E0, θ0), (5)

where n is the areal density of target nuclei, Ninc is the num-
ber of incident beam particles, E0 is the beam energy, θ0 is
the central angle subtended by the detector system, and the
acceptance of the detector is given by the G factor instead of
the usual solid angle. The inclusion of the sine term makes G
independent of θ0 at leading order.

For the SONIK chamber, we have the front aperture as a
vertical slit of width 2b, where the slit is perpendicular to
the plane defined by the beam axis and the center line of the
detector system. The rear aperture is circular with radius a.
The distance between the apertures is h and the distance from
the central interaction point on the z axis (beam axis) to the
rear aperture is R0. A schematic diagram of SONIK doubly
collimated apertures is shown in Fig. 4. Assuming a, b � R0

and a, b � h, the analytical expression for the G factor for a
collimated detector like that of SONIK is given by Silverstein
[28] as

G = G00(1 + �0), (6)

where

G00 = 2πa2b

R0h
, (7)

015802-5



S. N. PANERU et al. PHYSICAL REVIEW C 109, 015802 (2024)

FIG. 4. A detector telescope of SONIK.

and

�0 = a2 cos2 θ0

4R2
0 sin2 θ0

− b2

2h2
− 3a2

8

[
1

h2
+ 1

R2
0

]
. (8)

The quantity �0 incorporates second-order corrections in the
ratio of a and b to either R0 or h. Equation (6) includes the
geometrical effects on the acceptance of the detector system;
however, the acceptance also depends on slit edge scatter-
ing, multiple scattering, beam size, beam divergence, etc. A
charged particle traversing the gas target undergoes numerous
small angle collisions (screened elastic scattering) with the
gaseous atoms termed “multiple scattering.” In our experi-
ment, the effect of multiple scattering could be visualized
in two processes. First, the incident beam particles undergo
multiple scattering, effectively increasing the beam diameter.
Second, a charged particle from the elastic scattering under-
goes multiple scattering before it is detected in the Si detector,
changing the acceptance of the detector. The elastic scattering
of 3He + 4He was measured as low as E [3He] = 721 keV in
this experiment, at which the effect of multiple scattering is
expected to be the greatest. The multiple scattering of the
incident beam particle would affect the overall acceptance.
To account for these effects, particularly multiple scattering,
a Monte Carlo simulation was developed in the GEANT4 [32]
framework to calculate the G factor for each detector at each
interaction point in SONIK for each incident beam energy.
The G factor calculated from the simulation also includes the
effects of the energy and angular spreads of the beam.

The GEANT4 simulation was performed in two steps. First,
the 3He beam particles were introduced along the z direction
through the 4He gas target kept at a temperature T = 30◦C
and pressure P = 5 Torr. The trajectory of each beam particle
is stored. We used the G4Urban Msc-model [33] to simulate
the multiple scattering effects of the 3He particles in the 4He
gas target. The 3He beam introduced in the 4He gas target
loses energy as it traverses the target. The stopping power
of 3He in the 4He gas target calculated from the simulation
was in good agreement with SRIM calculations [30]. Second,
the scattered events were generated using the information
from the stored tracks and the scattered particles detected
by the Si detectors. The tracks are chosen randomly from
the stored beam particle trajectories. The scattered particle

0 1 2 3 4 5
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  (
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)

3He
4He
Silverstein 

FIG. 5. The G factor as a function of kinetic energy of the scat-
tered particle. The blue circles and green squares are the computed
G factor for each detector at each interaction point in SONIK for
each incident beam energy from the GEANT4 simulation for 3He and
4He, respectively. The red dashed line is the G factor calculated using
Eq. (6). The dotted line is explained in the text.

properties such as position and energy are extracted from
the chosen track. For a line beam without multiple scattering
and assuming an energy- and angle-independent differential
cross section, i.e., dσ

d�
= σ

4π
, the product nNincσ in Eq. (5)

gives the number of reactions per unit length along the beam
path, which provides a link between the simulation and the
G factor. A Monte Carlo simulation is implemented by gen-
erating events randomly from a uniform distribution along
the length �z = zmax − zmin, along the beam axis and ran-
domly from a uniform distribution into a solid angle �� =
(cos θmin − cos θmax)(φmax − φmin). The parameters zmin, zmax,
θmin, θmax, φmin, and φmax are determined using the geometry
as in Ref. [28]. The energy of the generated scattering event,
E , is randomized within the energy limit, Emin and Emax, using
the inverse transform method assuming the probability of scat-
tering is inversely proportional to the square of the energy. The
energy limits Emin and Emax were determined from the stored
tracks and correspond to the energy of the beam particle at zmin

and zmax, respectively. For a given energy, the corresponding
position �r of the scattering event was obtained from the stored
tracks. The generated event with coordinates (�r, θ, φ, E ) was
accepted based on the acceptance-rejection method. Let Nev

be the number of events generated along �z into the solid
angle �� and Ndet be the number of events detected in the Si
detector in the GEANT4 simulation, given as

Nev = nNinc
dσ

d�
(E0, θ0)�z��. (9)

From Eq. (5) and Eq. (9), the G factor can be computed as

G = Ndet

Nev
sinθ0�z��. (10)

The simulation was run for Nev = 106 events. The plot of
the G factor as a function of energy of the scattered particle
is shown in Fig. 5. The G factors for both 3He and 4He
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FIG. 6. The G factor as a function of scattering angle in labo-
ratory frame of reference for E [3He] = 721 keV. The solid (open)
points represent the G factor obtained from a GEANT4 simulation with
(without) introducing the multiple scattering model in the simulation.
The red dashed line is the G factor calculated using Eq. (6).

particles show the same behavior as a function of energy. The
calculated G factor from the simulation is in good agreement
with the values obtained with the analytic expression, Eq. (6),
starting around particle energies above 1 MeV. However, if we
go further down in particle energy, the differences between
the G factor from the simulation and the analytic expression
increase and become significant for energies below 500 keV
as represented by the dotted line in Fig. 5. The lowest particle
energy for which the G factor from the simulation is used
is 0.24 MeV, for which the G factor is 80.6 nm. Note that
our results are consistent with Eq. (6) if we do not introduce
the multiple scattering effects in our simulation. These results
with multiple scattering switched off were a benchmark for
our simulation, and they are shown in Fig. 6.

The choice of multiple scattering model is one of the
sources of systematic uncertainty in the G factor derived from
the Monte Carlo simulation. We used two models, namely,
the G4Urban Msc-model [33] and the Wentzel-VI Msc-model
[34], to simulate the multiple scattering. The systematic
uncertainty in the G factor due to the choice of multiple
scattering model in this work was approximately ±1%.

It is often the case that the mechanical components of
SONIK, such as the apertures, will have inaccuracies as-
sociated with their dimensions when made in the machine
shop. Measurements of the rectangular apertures and circu-
lar apertures in each of the detector telescopes were made
with an optical comparator or shadow graph. The rectangular
aperture dimensions, b, are on average 0.1% larger than the
specified value of 1.0 mm and have a standard deviation of
0.4% around the mean. The circular aperture radii, a, are on
average 2.2% larger than the specified value of 0.5 mm and
have a standard deviation of 1.6% about the mean. The error
on R0 and h is negligible compared to the error on a. In Sec. V
the variation in the aperture dimensions of each detector is
modeled using a detector-dependent normalization, to which
we assign a Gaussian prior with a mean of 0.96 and standard

TABLE I. Estimation of systematic uncertainties.

Source of error Value

Target pressure and temperature 1%
Beam intensity 1%
Beam position 1%
Model uncertainty in GEANT4 1%
Total 2.0%

deviation of 0.032 [cf. Eq. (7)]. This implies an additional 27
normalization factors, c j , corresponding to the 27 detectors
that were actually used to collect the data.

F. Error budget

This section describes the systematic error for all mea-
surements made in the experiment independent of angle and
energy. In our experiment, the beam is tuned through the
SONIK chamber using a charge-coupled device (CCD) cam-
era and beam profile monitors. The CCD camera is placed
downstream of the target (outside of vacuum), in front of
a straight-through view port in the vacuum chamber of the
first dipole magnet with a direct line of sight to the target
or SONIK. Prior to the beam time the CCD was set up us-
ing the reflected light of an ionization gauge reflected by an
isolation valve to determine the center position. With gas in
the target, the beam spot is visible in the CCD. If the beam
spot is off-center from the center of the gas cell, operators can
optimize the tune. The beam profile monitor placed down-
stream of the first dipole magnet and upstream of the first
set of current sensitive slits is used to visualize the beam
profile in X and Y. The comparison of beam profile with and
without the energized quadrupoles is used to optimize the
beam alignment. However, the beam position might change
during the run period, which changes the acceptance of the
detector or G factor. The effect of a change in beam position
on the calculated differential elastic scattering cross section
was estimated to be ±1%, as explained in detail in Ref. [26].
The systematic uncertainties due to various other factors are
presented in Table I. The individual systematic uncertainties
are added in quadrature to report the total systematic uncer-
tainty for all measurements from this experiment. The total
systematic uncertainty for all measurements is estimated to be
within 2.0%.

The differential scattering cross sections from this work
are shown in Figs. 10–12. The red circles and purple squares
represent the differential scattering cross sections calculated
using 3He and 4He ejectiles, respectively.

IV. COMPARISON WITH PREVIOUS DATA

To compare our result with previous measurements of elas-
tic 3He - 4He scattering whose energy range overlaps that of
our experiment we use the ratio of the experimental differ-
ential scattering cross section to the cross section calculated
using the R-matrix parameters determined in Ref. [10]. That
ratio is plotted in Fig. 7 (beam energies of 5.490, 4.347, and
3.608 MeV) and Fig. 8 (beam energies of 2.633 and 1.767
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FIG. 7. The ratio of the experimental differential scattering cross
section to the cross section calculated using R-matrix parameters
from Ref. [10] at beam energies of 5.490, 4.347, and 3.608 MeV. The
interaction region III measurements of this work, represented by the
blue points, are, in general, consistent with previous determinations
but are more precise. Only interaction region III data are shown for
these comparisons.

MeV). Overall the results from this work are consistent with
previous determinations but have better precision. The data
from Spiger and Tombrello [18] shown in the top panel of
Fig. 7 are from a measurement at E [3He] = 5.438 MeV, a
slightly different energy compared to our measurement. The
lowest panel in Fig. 7 shows that the data from this work are
in good agreement with those of Barnard et al. [17]. Turning
to Fig. 8, the Mohr et al. [23] measurements at E [3He] = 2.6
MeV and E [3He] = 1.7 MeV show jumps in between the data
points, whereas our result corresponds to a smooth angular
distribution. The lower panel of Fig. 8 shows that the present
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FIG. 8. The ratio of the experimental differential scattering cross
section to the cross section calculated using R-matrix parameters
from Ref. [10] at beam energies of 2.633 and 1.767 MeV. The
discrepancies between the interaction region III measurements of this
work, represented by the blue points, and previous data (Mohr et al.
[23] and Chuang [20]) are discussed in the text.

result is in fair agreement with data from Chuang [20] at
forward angles, although three backward-angle data points
from Ref. [20] disagree.

The Spiger and Tombrello [18], Tombrello and Parker
[16], and Chuang [20] measurements were made using a
gas cell with foil entrance and exit windows. The energy
loss corrections for the charged particles at the entrance and
exit windows of the gas cell introduce additional systematic
uncertainties in the energy determinations for these older mea-
surements. The use of a windowless gas target in our work
avoids the need for the energy loss corrections. This could
account for discrepancies seen in the cross section at back-
ward angles between our results and the past measurements.
The Mohr et al. [23] measurement was performed with a jet
gas target and the scattered particles were detected using ten
surface barrier detectors placed at fixed positions. 20Ne was
mixed with the 4He gas in the target for the normalization
purposes. This measurement does not specify its systematic
uncertainty, so the differences seen in Fig. 8 with respect to
our new data are hard to assess.

V. R-MATRIX ANALYSIS

In this section we present an analysis of the differential
cross section for 4He(3He, 3He) 4He elastic scattering using
R-matrix theory [35]. The phenomenological R-matrix code
AZURE2 [36] is used to analyze the elastic scattering data from
this experiment and from Barnard et al. [17]. We adopt the
alternative parametrization of R-matrix theory presented in
Ref. [37], so the R-matrix parameters are expressed in terms
of the observed resonance energy Ẽ and the observed reduced
width amplitude γ̃ . The channel radius is fixed at 4.2 fm. A
channel radius of 4.3 fm was adopted in Ref. [10].

Most of the experiments reported in the literature are stud-
ies of the structure of 7Be and consequently are focused on
higher energies than the present work [15–22]. The data of
Barnard et al. [17] were found to contain the most complete
uncertainty information. The data of Spiger and Tombrello
[18] are reported to have a systematic uncertainty as low as
1.1% and a maximum relative error of 9%. The Spiger and
Tombrello measurement only extends as low as E [3He] = 4.7
MeV. The only measurement extending to lower energies, that
of Mohr et al. [23], does not quantify systematic uncertainties
and, as shown in Fig. 8, has unexplained point-to-point varia-
tions of the cross section with angle. For these reasons, only
the data of Barnard et al. [17] and the data reported in this
work were used in the R-matrix analysis. All data included in
the analysis were taken at energies below the proton emission
threshold.

The ground-state spins and parities of 4He and 3He are
0+ and 1/2+, respectively. Restricting our calculations to
orbital angular momentum � � 3, the allowed total angular
momentum and parities in 7Be are 1/2+, 1/2−, 3/2−, 5/2+,
3/2+, 7/2−, and 5/2−. The level diagram of the compound
nucleus 7Be is shown in Fig. 9, with the energies of the levels
taken from Ref. [38]. The energy range covered in this experi-
ment, 0.38 � Ec.m. � 3.13 MeV, is highlighted. The R-matrix
analysis was started with the states of 7Be shown in Fig. 9.
But, within the experimental energy range, the states 1/2+,

015802-8



ELASTIC SCATTERING OF 3He + 4He WITH … PHYSICAL REVIEW C 109, 015802 (2024)

FIG. 9. The levels and separation energies introduced in the R-
matrix fit were taken from Ref. [38]. The energy range covered in the
present measurement is represented by the curly brace. All energies
are in MeV.

5/2+, and 3/2+ are not identified in the literature. Therefore,
these channels are introduced into the analysis via background
levels. We also add background levels in the 1/2− and 3/2−
channels, in addition to the levels that represent the bound
states of 7Be which exist in those channels. The background
levels for the 5/2+ and 3/2+ states are introduced at an excita-
tion energy of 12.0 MeV. The excitation energies of the 1/2+,
1/2−, and 3/2− background levels are fixed at 14.0, 21.6, and
21.6 MeV, in order to reproduce the trend of the Spiger and
Tombrello [18] phase shifts for s and p waves at high energies.

Similarly, the α width of the 5/2− state is fixed at 1.9 MeV
to reproduce the trend of the Spiger and Tombrello [18] 5/2−
phase shift data up to E [3He] = 9 MeV. The asymptotic nor-
malization constants (ANCs) used for the subthreshold 3/2−
and 1/2− states are fixed at C3/2 = 3.7 fm−1/2 and C1/2 =
3.6 fm−1/2 [10], respectively. Including radiative capture data
provides better constraints on the ANCs than can be obtained
from scattering data alone, so we chose to fix the ANCs.

There are several similarities between the present analy-
sis and the one used in the analysis presented in Ref. [39].
However, there are significant and important differences in the
data, R matrix, and statistical models. First, the previous anal-
ysis [39] included capture data which allowed the 7Be ANCs
to be varied whereas they are fixed in this analysis. Second, as
will be discussed in Sec. V, a more sophisticated systematic
uncertainty model is employed to analyze the SONIK data in
the present work. Additionally, in the previous analysis [39],
energy shifts were introduced and sampled for the both the
Barnard [17] and SONIK data sets. Because the zero-energy
results were not impacted by those parameters they were not
included in the present work. Finally, because AZURE2 does
not presently have the capability of fitting polarization data,
we have not considered these data in the present work.

Bayesian analysis

In what follows we did not use AZURE2’s built-in χ2

analysis, but instead employed a Markov chain Monte Carlo
(MCMC) analysis to obtain probability distributions and study
how parameter uncertainties propagate to extrapolated quan-
tities. The goal of this MCMC analysis is to estimate the

TABLE II. Limits of uniform prior distributions set for the R-
matrix parameters that were sampled in the MCMC analysis.

Parameter Lower bound (MeV) Upper bound (MeV)

�(1/2−)
α −150 150

�(1/2+)
α 0 100

�(3/2−)
α −100 100

�(3/2+)
α 0 100

�(5/2+)
α 0 100

E (7/2−)
x 2 10

�(7/2−)
α 0 10

Bayesian posterior distribution function for the R-matrix pa-
rameters, which we collect into a vector �θ .1 By Bayes’s
theorem the posterior is proportional to the product of the like-
lihood, p(D|�θ ), and the prior, p(�θ ). The likelihood, p(D|�θ ), is
chosen to be

p(D|�θ ) =
∏
i, j

1√
2πσi, j

e− 1
2 χ2

i, j , (11)

where

χ2
i, j = ( f (xi, j ) − c̃i, jyi, j )2

(c̃i, jσi, j )2
, (12)

where2 i indexes the beam energy, j indexes the detector,
f (xi, j ) is the differential scattering cross section from the R
matrix, yi, j is the data point value, σi, j is the statistical uncer-
tainty of the data point, and c̃i, j is a composite normalization
factor defined by Eq. (13) below.

The prior distribution function is a product of each param-
eter’s prior distribution, with Np representing the number of
sampled parameters. Typically, with χ2 minimization, each
parameter is allowed to move freely in an unbounded space.
The analyses presented here mimic that freedom by imposing
uniform priors with generous upper and lower bounds. Those
bounds are shown in Table II; these priors are quite similar to
the ones adopted in Ref. [39]. Since the analysis we perform
here only considers elastic scattering data, the sign of the
reduced width amplitudes cannot be uniquely determined. We
obtain a solution where all partial widths have the same signs
found in Ref. [39], where capture data were also included.

The normalizations applied to the data, ci, j , are, for each
data point, a product of three different effects: cSONIK, ci, and
c j . The overall systematic uncertainty is accounted for with
cSONIK. This factor is applied to all data points. An energy-
dependent systematic uncertainty is accounted for with ci, as
explained in Sec. III C. Each energy bin has its own associated

1We use �θ to represent the multidimensional parameter vector,
trusting the reader to distinguish this from a scattering angle using
context.

2The following description applies only to the SONIK data; the
Barnard data are treated via one overall normalization factor. For the
Barnard data, the overall systematic normalization, cBarnard, the prior
we set is a Gaussian with mean 1 and standard deviation 0.05, in
accord with Ref. [17].
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ci, which applies to the data from all three interaction regions
at a given beam energy. A detector-specific systematic uncer-
tainty is accounted for with c j . All points measured with the
same detector are adjusted by c j . There are 27 detectors in to-
tal. The resulting normalization adjustment of the data is then

c̃i, j =
{

cSONIKcic j, i ∈ SONIK
cBarnard, i ∈ Barnard,

(13)

where ci and c j depend on the energy bin and detector used
to measure yi, j . Note that all of the Barnard data are treated
together—where the same normalization factor is applied to
every data point. We set Gaussian priors for each of three
types of normalizations. For the overall systematic normaliza-
tion, cSONIK, the prior we set is a Gaussian of mean 1 and stan-
dard deviation 0.02, in accord with the error budget of Table I.
For the energy bin normalizations, ci, the prior chosen is a
Gaussian of mean 1 and standard deviation σEi , where the σEi ’s
are tabulated in the fourth column in Table IV. Finally, the
detector-specific normalizations, c j , are each assigned a Gaus-
sian prior of mean 0.96 and standard deviation 0.032, to ac-
count for variances in the aperture dimensions (cf. Sec. III E).

Since the priors on the R-matrix parameters are inten-
tionally left very broad, our Bayesian posterior can be well
approximated as a likelihood e−χ2

aug/2, where the χ2 is

χ2 =
∑

i

⎛
⎝∑

j

( f (xi, j ) − c̃i, jyi, j )2

(c̃i, jσi, j )2

⎞
⎠ (14)

and the augmented χ2 is

χ2
aug = χ2 +

∑
i

(
ci − 1

σEi

)2

+
∑

j

(
c j − 0.96

0.032

)2

+
(

cSONIK − 1

0.02

)2

+
(

cBarnard − 1

0.05

)2

. (15)

The MCMC analysis was performed with a publicly
available ensemble sampler, emcee [40], and the previously
mentioned R-matrix code, AZURE2. The pairing was enabled
by a publicly available PYTHON layer, BRICK [39].

VI. ANALYSIS USING HALO EFFECTIVE FIELD THEORY

In this section we briefly describe the EFT we use to
calculate the 3He -α scattering reaction. Full details of the
EFT can be found in Ref. [41]. While the EFT used here is
the same as the one constructed in that reference, the analysis
carried out in this work differs from that of Ref. [41] in three
ways. First, Ref. [41] included polarization data that are not
considered here. Second, the ANCs were varied in Ref. [41].
Here they are fixed. Similarly, to maintain consistency with
the R-matrix analysis presented in this work, the 7/2− width
is fixed here, while it was varied in Ref. [41]. Third, while
both analyses consider the effects of EFT truncation uncer-
tainty, the EFT analysis presented below uses the improved
systematic uncertainty model described in Sec. V.

An EFT is a controlled expansion of observables in a ratio
Q ≡ ptyp

�
, where ptyp is the low-momentum scale that typifies

the scattering and � is the momentum scale at which the

theory breaks down (see, e.g., Ref. [42] for an introduction).
The EFT expansion of an observable y in powers of Q can be
written as [43–45]

y(p, θ ) = yref(p, θ )
∑

ν

cν (p, θ ) Qν . (16)

Here ν indexes the order of different contributions. We de-
note ν = 0 as leading order (LO), ν = 1 next-to-leading order
(NLO), and ν = 2 as next-to-next-to-leading order (NNLO).

This EFT is built on the scale separation between the large
de Broglie wavelength of the quantum-mechanical scattering
process and the small size of the 3He and α nuclei. It is thus an
example of “halo EFT” (see Refs. [46,47] for recent reviews).
In this approach 7Be is a bound state of 3He and α nuclei.
Such a description is accurate because the energies by which
the ground and excited states of 7Be are below the 3He -α
scattering threshold are 1.6 and 1.2 MeV [38], respectively.
These are small compared to the energy scales at which 3He
and 4He can be broken up into smaller constituents. These
energy scales, as well as the sizes of the two helium isotopes,
yield an EFT breakdown momentum of � ≈ 200 MeV/c [14].

We take the typical momentum of the collision to be
ptyp = max{q, p}, where q = 2p sin(θ/2) is the momentum
transfer of the scattering reaction. The bulk of the SONIK
data were taken for p between 60 and 90 MeV/c. In this
energy range halo EFT has been successfully applied to the
3He(α, γ ) 7Be reaction [13,14,48] and used to fit scattering
phase shifts [13,48]. In Ref. [41] the choice � = 200 MeV/c
was validated by showing that it leads to an EFT with a regular
convergence pattern; i.e., once Q is chosen in this way the
coefficients c0, c1, and c2 in Eq. (16) have roughly the same
size.

Since the Coulomb-modified effective-range expansion
(CMERE) is based on the same set of assumptions the halo
EFT t matrix has the same form as that obtained in the
CMERE [41,49,50]. The EFT Lagrangian is expressed as an
expansion in powers of p2, so, at a given order in the EFT, the
CMERE is reproduced up to the corresponding order of p2.

The phase shifts, δ±
l , for the ± channels in the lth partial

wave are then given by[
�(2l + 2)

2l�(l + 1)

]2

C2
l (η)p2l+1(cot δ±

l − i)

= 2k2l+1
c K±

l (E )

− 2kc p2l

(�(l + 1))2

�(1 + l + iη)�(1 + l − iη)

�(1 + iη)�(1 − iη)
H (η), (17)

where

K±
l = 1

2k2l+1
c

(
− 1

a±
l

+ 1

2
r±

l p2 + 1

4
P±

l p4 + O((p2)3)

)
(18)

is the effective-range function in a particular partial wave,
specified by effective-range parameters (ERPs) a±

l , r±
l , P±

l ,
etc., and η is the Sommerfeld parameter. The a±

l , r±
l , and P±

l
are scattering length, effective “range,” and the shape parame-
ter for partial wave l , respectively. To obtain phase shifts from
ERPs, the polynomial K function is truncated at a suitable
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TABLE III. Hierarchy of power counting in our EFT.

s wave p wave ν

LO 0
NLO r0 r+

1 , P±
1 1

NNLO 1
a0

1
a±

1
, r−

1 2

order. In Eq. (17), Pl (cos θ ) is the lth Legendre polynomial
calculated at the cosine of scattering angle θ and Cl (η) is
defined as in Ref. [41]. The EFT power counting is a particular
assignment of the terms that should appear in the K function
at a given order ν. That assignment is chosen to ensure that
the pattern (16) is satisfied. In Ref. [41] an assignment that
achieves this was found although it should be clear that such
an assignment depends on having some knowledge of the size
of the ERPs themselves, and so can only be accomplished in
the light of at least some data on the system.

The organization of Ref. [41] has at LO only the contribu-
tions proportional to the H function for both s- and p-wave
channels; i.e., it takes K = 0. We say this piece of the in-
verse amplitude is of order p for s waves and of order p3

for p waves. (We assume η ∼ 1.) The terms proportional to
ERPs that appear in K are corrections to this limit, with the
dominant corrections appearing at NLO and less important
corrections at NNLO. The particular organization of effects
in the effective-range expansion adopted in Ref. [41] is justi-
fied in that work and is summarized in Table III. All results
presented below are computed at NNLO, and so account for
the scattering length and effective range in s waves and the
scattering volume, effective “range,” and shape parameter in
the two p-wave channels.

However, even at NNLO, if we are to describe the higher-
energy portion of the SONIK data at the required accuracy,
we must include the 7/2− partial wave in the analysis. To
account for the impact of the 7/2− 7Be level at Ex = 4.57
MeV [51] on observables in the energy range of interest,
Ref. [41] employed a phenomenological treatment of it, based
on R-matrix theory [35]. The focus both in Ref. [41] and here
is not on the resonance itself. The goal of phenomenologically
adding its amplitude to the EFT analysis is solely to stop
it contaminating the extraction of the ERPs. Since Ref. [41]
points out that the inclusion of contributions to the amplitude
from the 5/2− partial wave is also essential for a consistent
analysis of the data, we also include them in the EFT analysis
presented here. In adding these contributions to the scattering
amplitude from f waves, we employ the following resonance
energies and physical widths,

E
7
2

−

R = 5.22 MeV in lab, E
5
2

−

R = 9.02 MeV in lab,

�
7
2

− = 0.159 MeV, and �
5
2

− = 1.8 MeV,

which are used to generate the 7/2− and 5/2− phase shifts
using l = 3 in the following formula:

δl± = −φl + tan−1

(
Pl (E , ρ)

Pl
(
Ec

R, ρ
) − 1

2 S′
l

(
Ec

R, ρ
)
�c

1
2�c

Ec
R − E

)
.

(19)

In Eq. (19), φl is the hard-sphere phase shift for partial wave
l and Pl (E , ρ) and Sl (E , ρ) are the usual penetration and shift
factors (see, e.g., Ref. [41] for expressions). Meanwhile, the
′ on Sl indicates a total derivative with respect to energy and
ρ = pr with r the channel radius, which here is taken to be
4.2 fm. The channels are represented with superscript c; for
l = 3, c = 7/2−, 5/2−. The resonance energies and physical
widths that we adopt mimic the f -wave phase shifts produced
by Bayesian R-matrix analysis.

The ERPs—a0, r0, a+
1 , r+

1 , P+
1 , a−

1 , r−
1 , and P−

1 —span
an eight-dimensional parameter space. Using relationships
between the effective-range amplitude and bound-state prop-
erties [14,41], we reparametrize the space in terms of the
ANCs, replacing r±

1 by C±
1 using Eq. (43) from Ref. [41]. The

ANCs are fixed at C+
1 = C3/2 = 3.7 fm−1/2 and C−

1 = C1/2 =
3.6 fm−1/2—as was done in the R-matrix analysis. We also
determine a±

1 from the location of the two 7Be bound states
using Eq. (39) from Ref. [41]. These two constraints reduce
the eight-dimensional ERP space to a four-dimensional one.

To compute the posterior of the EFT parameters we employ
Bayes’s theorem, as was done in Sec. V for the R-matrix anal-
ysis. However, for the EFT analysis we employ a χ2 function
that is different from the standard one, Eq. (14). Truncation of
the EFT series at order νmax induces an error in the observable
y [52] at data point j in data set i of

�y(xi, j ) = yref (xi, j )c
rmsQνmax+1

i, j , (20)

where crms represents the rms value of the EFT coefficients
defined in Eq. (16) and xi, j is a kinematic point (p j, θ j ) in
dataset i. We therefore use a modified χ2 [45]:

χ2
EFT,i = [�r T (σ expt + σ th )−1�r]i, (21)

where χ2
EFT,i is the modified χ2 of dataset i. The matrix ele-

ments of the theory covariance matrix in dataset i are

σ th
jk = (yref ) j (yref )k (crms)2Qνmax+1

j Qνmax+1
k . (22)

It accounts for the error due to omitted higher-order terms in
the EFT. In this analysis we take that error to be completely
correlated across the kinematic space (see Ref. [53] for a more
advanced treatment). We take the experimental covariance
matrix to be diagonal,

σ
expt
jk = c̃2

i, jσ
2
j δ jk, (23)

while the entries of the residual vector �r for dataset i are
defined by

r j = f (xi, j ) − c̃i, jyi, j . (24)

The inclusion of the truncation errors modifies the likelihood
to

p(D|�θ ) = 1√
(2π )N det(σ expt + σ th )

e− 1
2

∑
i χ

2
EFT,i . (25)

In Eq. (25) N is the total number of data points and det means
the matrix determinant.

In addition to the ERPs, Eq. (21) includes as parameters
the normalizations c̃i, j of the differential cross-section data,
each of which is a product of the three different normalization
factors (see Sec. V for details). We adopt the priors for the
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TABLE IV. 3He beam energies, corresponding center-of-mass energy range, angular range (in the c.m. frame), normalization uncertainty,
denoted σEi , at each energy, normalization factors ci obtained in the R-matrix fit, χ 2 from both R-matrix and halo EFT, and number of data
points, N , of the angular distributions from the SONIK experiment reported in (a) this work and (b) the excitation function of Barnard et al.
[17]. The uncertainty in ci’s are obtained from the posterior distributions. The χ2 and χ 2

EFT per degree of freedom from R-matrix and halo EFT
analyses were found to be 1.85 and 3.15, respectively.

ci from
Normalization R-matrix

E [3He] (MeV) Ec.m. (MeV) θc.m. (deg) uncertainty (σEi ) analysis χ 2
R,i χ 2

EFT,i N

(a) This work
5.490 3.122–3.127 30.00–138.90 8.7% 1.023+0.005

−0.005 171.00 214.23 53
4.347 2.470–2.476 39.26–135.00 6.0% 0.975+0.004

−0.004 74.71 373.85 53
3.608 2.045–2.052 39.26–135.00 7.5% 0.992+0.004

0.004 49.28 253.89 52
2.633 1.488–1.496 30.00–138.90 3.7% 0.987+0.003

−0.003 96.76 82.59 52
2.633 1.488–1.496 39.26–135.00 5.9% 0.995+0.004

−0.004 91.57 99.95 52
2.145 1.209–1.219 39.26–135.00 4.1% 0.983+0.003

−0.003 99.3 94.56 52
1.767 0.992–1.003 39.26–135.00 5.4% 0.988+0.004

−0.004 111.17 72.95 46
1.303 0.724–0.737 39.26–135.00 9.6% 0.931+0.004

−0.003 112.96 87.30 45
0.878 0.479–0.495 60.61–110.00 7.4% 1.077+0.006

0.006 28.2 29.31 29
0.721 0.385–0.403 68.97–108.07 6.1% 1.025+0.007

−0.007 14.41 15.13 17
SONIK Total 849.35 1323.77 451

(b) Barnard et al. [17]
2.454–5.737 1.39–3.27 54.77–140.80 5% 1.010+0.002

−0.002 1098.56 1996.24 646
Total 1947.92 3320.01 1097

overall, energy-dependent, and detector-dependent normaliza-
tion factors specified in Sec. V.

To construct the EFT error model we take νmax = 2, since
the calculation is carried out to NNLO. Meanwhile, (yref ) j is
taken to be the LO cross section at data point j. c̄ is then
estimated from the size of the shifts from LO to NLO and
NLO to NNLO to be crms = 0.70, as described in Ref. [41].
Further details regarding the Bayesian analysis of the NNLO
halo EFT calculation can also be found in that work.

We observe that the EFT has an expansion parameter of
0.2 at forward angles in the lowest SONIK energy bin, but
Q approaches 1 for the backward-angle data at the highest
SONIK Ec.m. of 3.1 MeV. We therefore do not expect halo
EFT to accurately describe all the data collected in this experi-
ment. That, after all, is why Poudel and Phillips truncated their
analysis at Ec.m. = 2.5 MeV [41]. The inclusion of the trunca-
tion error in the likelihood ameliorates the theory’s failure to
describe higher-Q data, since it decreases the statistical weight
of data for which Q is larger. Nevertheless, the sensitivity
of the inference to assumptions regarding the nature of the
truncation error becomes quite severe as Q → 1. In spite of
this, we will include all the SONIK data in our halo EFT
analysis, so that we can make a direct comparison with the
R-matrix analysis.

VII. RESULTS

A. R-matrix results

The results from the simultaneous fitting of the elastic
scattering data of the current measurement and the data of
Barnard et al. [17] are shown in Figs. 10–13. The blue bands
in the figures correspond to the R-matrix analysis, and green
bands correspond to the halo EFT analysis. The medians of the

normalization factors, c̃i, j for the SONIK data and cBarnard for
the Barnard data, have been applied to the data in the figures.
Although the total χ2 from both analyses are comparable at
the lowest three energies, as seen in Fig. 10 and with compara-
ble χ2 and χ2

EFT values from Table IV, the two analyses differ

FIG. 10. Differential elastic scattering cross sections, relative to
Rutherford’s prediction, as measured with SONIK. Results are ob-
tained from an MCMC analysis of SONIK and Barnard data. Bands
encompass the 16th to 84th percentile of the inferred probability
distributions. Blue bands correspond to the R-matrix analysis, and
green bands correspond to the halo EFT analysis. Red circles with
error bars indicate 3He peaks. Purple squares with error bars indicate
4He peaks. In some cases, the size of the marker representing the data
point is greater than the error bar. The three panels along a row for a
given E [3He] beam energy are from interaction regions I, II, and III,
respectively.
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FIG. 11. Differential elastic scattering cross sections, relative to
Rutherford’s prediction, as measured with SONIK. Colors and sym-
bols are as described in Fig. 10. The additional yellow band in the
bottom row corresponds to the second run at E [ 3He] = 2.633 MeV
discussed in Sec. III C.

in the angular distribution. The two analyses also differ sig-
nificantly in terms of χ2 at the three highest SONIK energies
(cf. Table IV and discussion in Sec. VII B). The two analyses
produce similar fits at the intermediate SONIK energies.

The χ2 values for each data segment are presented in
Table IV and the best fit R-matrix parameters are presented in
Table V. The uncertainties quoted in Table V are taken from
the posterior distributions only and are more precise compared
to ones presented in Ref. [39] as the latter includes the energy
shift in both SONIK data and Barnard data which inflates
the error bar on the R-matrix parameters. The corner plot of
the probability distributions for the R-matrix parameters is
presented in Fig. 14. A total of 1097 data points were fitted
simultaneously with 46 free R-matrix parameters. The fits

FIG. 12. Differential elastic scattering cross sections, relative to
Rutherford’s prediction, as measured with SONIK. Colors and sym-
bols are as described in Fig. 10.

FIG. 13. Differential elastic scattering cross sections, relative to
Rutherford’s prediction, as reported in Ref. [17]. Results are obtained
from an MCMC analysis of SONIK and Barnard data. Bands are as
in Fig. 10 and grey circles represent the data from Ref. [17]. Total
χ 2 at maximum posterior probability for the R-matrix fit is 1098.56,
resulting in χ 2/datum = 1.70. The total χ 2 for the EFT fit to these
data is 1996.24.

to the whole data set have a minimum reduced χ2 of 1.85.
This value is calculated at the point in parameter space that
maximizes the posterior and therefore at the best values of
the normalization parameters found by the sampler. It cannot
be straightforwardly interpreted as a measure of the quality

TABLE V. The observed energies Ẽx and reduced width ampli-
tudes γ̃ obtained from the posterior distributions of the R-matrix
analysis of the SONIK and Barnard et al. [17] data sets where
the channel radius was fixed to 4.2 fm. States in parentheses are
introduced as background levels. The parameters in bold were treated
as fit parameters and all others were held constant. The quoted
uncertainties include the effects of statistical and certain systematic
uncertainties, as discussed in Sec. V. Note that the uncertainties
given for the observed energy and reduced width amplitude of the
7/2− resonance do not include the impact of the energy calibration
uncertainties in the SONIK and Barnard data sets of 3 and 40 keV,
respectively (see Sec. VII A for additional discussion).

Jπ l Ẽx (MeV) γ̃ (MeV1/2)

3/2− 1 0.000 0.931
1/2− 1 0.429 1.151
7/2− 3 4.5639+0.0003

−0.0003 0.932+0.003
−0.003

5/2− 3 6.730 1.767
1/2+ 0 (14.000) 1.683+0.004

−0.004
1/2− 1 (21.600) −2.939+0.038

−0.036
3/2+ 2 (12.000) 1.224+0.013

−0.013
5/2+ 2 (12.000) 1.155+0.012

−0.012
3/2− 1 (21.600) −2.300+0.019

−0.018
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FIG. 14. Posterior distributions of the R-matrix parameters sampled in this analysis.

of the R-matrix fit, since the uncertainties of the normaliza-
tion factors are not accounted for in the covariance matrix
used to compute this standard χ2. The dominant contribution
to χ2 comes from the differential scattering cross-section
data points at forward angles (22.5◦ � θlab � 35◦) in the
laboratory frame of reference. The width of the 5/2− level
introduces a significant change in the total χ2 for the R-
matrix fit to the differential scattering cross-section results at
E [3He] = 5.490 MeV. The width of the 7/2− level is reported
to be 175 ± 7 keV [51] which is consistent with the width
obtained fitting the data from this work alone. However, the
width of the 7/2− level obtained from the simultaneous fit of
the data of this work and Barnard et al. [17] is significantly
lower than the value reported in Ref. [51]. In fact, if the stated
energy uncertainty of ±40 keV for data above 4 MeV from
Barnard et al. [17] is accounted for in the fit the central value
of both Ẽ7/2− and γ̃ change by more than the uncertainty

quoted in Table V. The difference in the α widths of the 7/2−
resonance needs to be resolved by future experiments.

At low energies, the 4He(3He, γ ) 7Be reaction primarily
occurs through E1 external s-wave capture contributions
[54]. However, d-wave capture and internal contributions
must also be considered. The internal s-wave part comes
from the J = 1/2+ background level, which interferes with
the external contribution to produce the large capture cross
section at low energies [10]. Therefore, the s-wave scattering
length, a0, is of particular importance. It is related to the
R-matrix parameters via [55]

a0 = −a

[
Mcc

x2K2
1 (x)

− 2I1(x)

x2K1(x)

]
, (26)

where Mcc = γ̃ T
c Ãγ̃c, Ã is the level matrix as defined

in Ref. [37], c is the channel index, a is the channel
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radius, I1(x) and K1(x) are modified Bessel functions with
x = (8Z1Z2e2μa/h̄2)1/2, Z1e and Z2e are the nuclear charges,
h̄ is the reduced Planck constant, and μ is the reduced mass.

Using the MCMC-generated chain of R-matrix parameters
and Eq. (26), the s-wave scattering length a0 was calculated to
be 33.10 fm. The uncertainty in the s-wave scattering length
from the MCMC analysis amounts to ±0.13 fm. Likewise,
the MCMC results were used to calculate the effective range
function KL at E = 0 and small positive energies. The effec-
tive range is then obtained by numerical differentiation. The
s-wave effective range r0 was determined to be 1.009 fm. The
uncertainty from the MCMC analysis yields an error bar of
±0.001 fm.

The sensitivity of the s-wave scattering parameters to the
choice of excitation energy of the 1/2+ level was studied at
a fixed channel radius of 4.2 fm. A separate R-matrix fit in
which the excitation energy for the 1/2+ state was allowed
to vary was conducted using BRICK; this analysis is denoted
SB+ in the text hereafter. The excitation energy of the 1/2+
background level resulting in the minimum total χ2 was found
to be 9.22 MeV. However, the trend of the experimental
1/2+ phase shift at higher energies determined by Spiger and
Tombrello [18] is then not explained. The a0 and r0 values
obtained from the SB+ analysis are 35.82 ± 0.13 fm and
1.098 ± 0.008 fm, respectively.

The s-wave scattering parameters remain fairly constant
with the choice of channel radius. The channel radius was
varied between 3.8 and 4.6 fm keeping other parameters fixed,
which resulted in a0 and r0 changing by 0.8 and 0.008 fm,
respectively, from their values at a channel radius of 4.2 fm
[26].

The results quoted so far were obtained with the ANCs
fixed to the same values that were used in Ref. [10]. We
studied the implications of varying the ANCs for the inferred
a0 and r0 parameters by considering the three sets of ANCs
listed in Table I of Ref. [14]. All three produce a change in the
inferred a0 and r0 (relative to the SB analysis above) of <1 fm
and <0.01 fm for a0 and r0, respectively. Adopting the ANCs
quoted from a recent measurement of Kiss et al. [56] yields a
change of +1.4 fm and +0.01 fm for a0 and r0.

We also studied the sensitivity of the scattering parameters
to the choice of data sets and the energy range of the data
set. The SONIK and Barnard et al. data sets are represented
by S and B, respectively. The sensitivity of the scattering
parameters excluding the data above E [3He] = 4 MeV was
studied; the analyses using these energy-truncated data sets
are represented by the superscript (t ). The SB+ model is
a superset of SB. In the SB analysis, the background 1/2+
level is fixed at E (1/2+)

x = 14 MeV. With SB+, we allow that
parameter to vary between 2 and 20 MeV.

The results for a0 and r0 for several different R-matrix anal-
yses and the EFT analysis described in this work are depicted
in Fig. 15 and summarized in Table VI. Figure 15 reveals
several interesting points. First, of the seven different data
models studied with R-matrix theory, six of them exhibit the
same a0-r0 correlation. Only the SB+ model breaks this con-
sistency. The additional freedom in the 1/2+ channel changes
the correlation between a0 and r0 entirely. Second, the EFT
analysis displays a very different correlation structure from all

FIG. 15. Scattering length and effective range posterior proba-
bility distributions from each of the seven R-matrix analyses and the
EFT analysis.

of the R-matrix analyses. Finally, none of the truncated-data
analyses encapsulate their associated complete-data analysis.
As more data are included, one expects a refinement of the
previous result. In this case, it is particularly striking that the
inclusion of higher-energy data significantly changes the ex-
tracted low-energy scattering parameters. The R-matrix result
for a0 and r0 is presented in the last line of Table VII. It is
obtained from a simultaneous R-matrix fit of all data from
Barnard et al. and the data of this work. This model, termed as
SB, is our preferred model. The lower and upper limits in the
R-matrix-extracted a0 and r0 values determined from the sen-
sitivity studies listed in Table VI and the variation of the ANCs
are accounted for through an additional “analysis error.” This
error is estimated as +7.5

−3.0fm and +0.096
−0.023fm, respectively.

The s-wave scattering parameters published in the liter-
ature are also presented in Table VII. Dohet Eraly et al.
[11] used the chiral nucleon-nucleon interaction within the
ab initio NCSMC to calculate the 3He(4He, γ ) 7Be astro-
physical S factor and deduced the s-wave scattering length.
The scattering parameters have also been calculated using a
microscopic cluster model [57]. The scattering parameters for
the 3He + 4He system have been extracted from a Bayesian

TABLE VI. Extracted scattering lengths and effective ranges—
with uncertainties—from eight different data analyses. The first
seven invoke different choices of R-matrix parameters and/or dif-
ferent data sets. The eighth is the analysis using halo EFT that is
described in the next section.

Data model a0 (fm) r0 (fm)

SB 33.10+0.13
−0.13 1.009+0.001

−0.001

S 36.67+0.37
−0.36 1.033+0.002

−0.002

B 32.97+0.16
−0.15 1.009+0.001

−0.001

SB(t ) 36.36+0.61
−0.60 1.031+0.004

−0.004

S(t ) 40.10+0.64
−0.74 1.050+0.003

−0.003

B(t ) 30.90+0.95
−0.96 0.993+0.007

−0.008

SB+ 35.82+0.13
−0.13 1.098+0.008

−0.008

Halo EFT 41.89+0.90
−0.89 0.994+0.006

−0.005
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TABLE VII. s-wave scattering parameters for the 3He + 4He system.

a0 (fm) r0 (fm) Method Ref.

7.7 NCSMC [11]
41.06 1.01 Microscopic [57]

Cluster model
40+5

−6 1.09+0.09
−0.1 Halo EFT [48]

50+7
−6 0.97± 0.03 Halo EFT [14]

42+1
−1 0.994+0.006

−0.005 Halo EFT This work
33.10 ± 0.13(stat)+7.5

−3 (analysis) 1.009 ± 0.001(stat)+0.096
−0.023(analysis) R matrix This work

analysis of the capture data below 2 MeV that used halo
EFT [14]. Premarathna and Rupak also performed a Bayesian
analysis of the capture data and the phase shifts from Boykin
et al. [22] to infer the scattering parameters [48]. The R-matrix
fit to the SONIK and Barnard data yields an s-wave scattering
length and s-wave effective range in fair agreement (within
1.5σ ) with all but one of these values previously published in
the literature, provided the dispersion of a0 and r0 values with
respect to the choice and energy range of data sets included
in the analysis is considered. The exception is the NCSMC
calculation of Ref. [11] which obtained a much smaller scat-
tering length than was found in any of the data analyses or in
the microscopic cluster model.

The results for the different normalization factors applied
to the SONIK data in the SB analysis are summarized in
Fig. 16. The results from the R-matrix (blue) and EFT (green)
analyses of the SB data model are in good agreement at
low energies (small values of the data point index). While
significant effort was put into accounting for detector-specific
systematic effects, the overall result, c̃i, j , clearly shows that
the energy-dependent systematics dominate in both analyses.

FIG. 16. Normalization factor results at each SONIK data point
are shown as a product of the three different systematic effects
described in Sec. V. The results are shown in increasing energy (from
left to right) as a function of data point index. Each vertical, shaded
region corresponds to a different energy bin. R-matrix results are
shown as blue circles with error bars. EFT results are shown as green
squares with error bars.

While the EFT normalization factors tend toward lower
values than the R-matrix ones as the energy increases (larger
data point indices), the “bunching” of c̃i, j with respect to
the energy bins—indicated by vertical, colored bands—is
consistent between both theories. These results are only for
the SONIK data. The Barnard data set lacked the necessary
uncertainty information to apply such a detailed treatment of
its systematic error.

B. Results from Halo EFT

Table VII also includes the s-wave scattering parameters
from a NNLO halo EFT analysis of the same data set as was
used in the R-matrix analysis. This fit reproduces the SONIK
data well, especially for c.m. energies below 2 MeV. The
band of cross sections generated from the posterior samples
obtained from sampling the EFT likelihood, Eq. (25), for each
SONIK energy bin and Barnard angular bin are shown re-
spectively in Figs. 10–13. The χ2

EFT values obtained from this
analysis for each energy bin are provided in Table IV. Note
that χ2

EFT is generically less than the standard χ2, because
it includes a theory-error piece of the covariance matrix [see
Eq. (21)]. For comparison the total χ2 for the EFT fit to the
SONIK data is 2165, as compared to χ2

EFT = 1324. Most of
the difference between χ2

EFT and the standard χ2 accumulates
above E [ 3He] = 1.767 MeV.

The EFT analysis also accumulates large χ2
EFT in the higher

SONIK energy bins (especially at backward angles) and for
the portion of the Barnard data in and beyond the 7/2−

resonance. For the latter data set the largest χ2 contribution
comes from the 140.80◦ bin. The large value of χ2 around the
7/2− resonance, especially at backward angles, suggests that
the approach of Ref. [41] does not adequately describe that
resonance. (In fact, the analysis of Ref. [41] did not include
the data in the highest SONIK energy bin, because the EFT
is not tailored to that region.) If we choose to sample the
width of the 7/2− resonance, �

7
2

−
, in the EFT calculation we

obtain 151 keV, not the 159 keV used to produce the results
presented here. The sizable χ2

EFT in the EFT fit in the vicinity
of the resonance could likely be improved by better parameter
estimation or a better model of the resonance. The inference
of the s-wave parameters is also surprisingly sensitive to the
description of the 5/2− phase shift. If the EFT analysis is

performed with �
5
2

− = 1.9 MeV a larger a0 (and a smaller r0)
is obtained. The effect of such changes in the f -wave phase
shifts on the s-wave ERPs has not been assessed here; instead
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we have chosen to require that the R-matrix and halo EFT
analyses use the same resonance energies and widths in the
7/2− channel and the same phase shifts in the 5/2− channel.

The median values of the posterior samples for ERPs from
the resulting EFT analysis are as follows: a0 = 42+1

−1 fm, r0 =
0.994+0.006

−0.005 fm, P1+ = 1.681+0.005
−0.005 fm, and P1− = 1.810+0.009

−0.010
fm. a0 and r0 are anticorrelated, with a correlation coefficient
of −0.92.

Returning to Table VII, the central value of a0 from the
halo EFT analysis of SONIK and Barnard data is very differ-
ent from that predicted in the NCSMC (ab initio) calculation
of Ref. [11] while consistent with the result of the microscopic
calculation of Ref. [57]. Compared to the other halo EFT
analyses of data listed in Table VII, the 68% interval for a0

found in this analysis completely falls within the distribution
of a0 obtained in Ref. [48]. But our 68% a0 interval does not
overlap the one obtained from 3He(α, γ ) data in Ref. [14].
Meanwhile, the r0 values are consistent between the micro-
scopic prediction of Ref. [57] and the halo EFT analyses of
Refs. [14,48]. Also, the r0 value reported here is consistent
with the assignment r0 ∼ 1

�
≈ 1 fm made when the EFT

power counting was defined in Sec. VI.

VIII. CONCLUSIONS

The elastic scattering reaction 4He(3He, 3He) 4He was
measured at nine different energies from Ec.m. = 0.38−3.13
MeV. This data set includes the first measurement of elastic
scattering in the 3He + 4He system below Ec.m. = 500 keV.
The angular range covered is 30◦ < θc.m. < 139◦, a wider
range than in previous measurements. This elastic scattering
measurement of 4He(3He, 3He) 4He is the first scientific mea-
surement made using SONIK. Its success validates the use of
SONIK for charged particle scattering measurements. The re-
sulting data are presented in this paper, together with detailed
error estimates which are lacking in previous measurements
of 3He + 4He elastic scattering. They are consistent with pre-
vious experimental measurements and have better precision.

The extraction of s-wave effective-range parameters for the
3He + 4He system from these data was carried out using both
an R-matrix and a halo EFT analysis. We used the Bayesian
R-matrix Inference Code Kit BRICK [39] to calibrate the R-
matrix model against the data of this work and the elastic
scattering data of Ref. [17]. The R-matrix parameter posteriors
were then employed to calculate the s-wave scattering length
and effective range, fully propagating the model uncertain-
ties to these extracted quantities. This yields a0 = 33.10 ±
0.13 (stat)+7.5

−3 (analysis) fm. The same combined SONIK +
Barnard scattering data set was analyzed using halo EFT at
NNLO—also with full uncertainty quantification. The result
a0 = 42 ± 1 fm is obtained in that approach. The two analyses
thus yield discrepant values for a0, with a concomitant dis-
crepancy in their results for r0. The s-wave scattering length
from the R-matrix analysis is in fair agreement with the pre-
diction of the microscopic cluster model [57], and previous
inferences from data using halo EFT [14,48].

The discrepancies in the inferred a0 and r0 values naturally
suggest an examination of the s-wave phase shifts. The s-wave
phase shifts from the R-matrix and halo EFT analyses are

FIG. 17. Top: The scattering phase shifts for � = 0 are shown in
comparison to the analyses in Ref. [22] and Ref. [18]. The solid blue
line represents the median calculated in the SB R-matrix analysis.
The dashed green line represents the median calculated in the EFT
analysis. The red shaded region indicates the energy range over
which the SONIK measurements were carried out. White squares
with error bars and grey x’s indicate the analyses of Refs. [22] and
[18], respectively. Bottom: The effective range function, K (E ), is
plotted as a function of the center-of-mass energy.

compared in the upper panel of Fig. 17. The two analyses
agree with each other over most of the energy range of the
SONIK data. At the energies of the Boykin et al. [22] phase
shifts both analyses yield lower phase shifts than were re-
ported in that work. The phase shifts inferred using R matrix
and halo EFT begin to diverge a little at the upper end of the
SONIK energy range. This is related to the fact that, at slightly
higher energies, the R-matrix analysis describes the phase
shifts from Ref. [18] much better than the halo EFT result
does. These differences in the phase shift at high energy then
affect the behavior at low energy, as is evident from the s-wave
effective range function shown in the lower panel of Fig. 17.

The EFT of Ref. [41] that was constructed to describe the
elastic scattering reaction measured in this experiment breaks
down at backward angles for the higher-energy data bins.
In Ref. [41] Poudel and Phillips attempted to mitigate this
via phenomenological inclusion of the 7/2− resonance. Even
though that was done here too, the χ2 of the EFT fit to data
is strikingly large for Ec.m. > 2 MeV, in spite of the addition
of a theory component of the errors in the χ2. Future work
to build a better EFT description through the 7/2− resonance
(cf. Ref. [58] for the case of the 7Be-proton system) is needed.
The quality of the R-matrix fit also deteriorates in the final
energy bin of the data set described here, and the value of a0
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inferred is higher if only data below Ec.m. = 2.2 MeV is used,
see Fig. 15. Future studies should address whether Halo EFT
and R-matrix agree if only low-energy data is used.

A better measurement of elastic 3He - 4He scattering in
the vicinity of the 7/2− resonance, as well as an accurate
determination of the position of this resonance and its α width,
may also help resolve the discrepancy between the halo EFT
and R-matrix analyses of the SONIK data. The inference of
s-wave parameters is surprisingly sensitive to the description
of the 5/2− phase shift and the width of the 5/2− level. This
issue could be explored further by a similar analysis with the
addition of scattering data above the proton separation energy
in 7Be.

Ultimately, smaller uncertainties in the scattering param-
eters will reduce the overall uncertainty in S34(0), just as
smaller uncertainties in the s-wave scattering lengths for
7Be +p from Ref. [55] led to reduced uncertainty in S17(0)
presented in Ref. [58]. The data from this measurement
should be used in global R-matrix and halo EFT analyses of
3He + 4He polarization and 4He(3He, γ ) 7Be data, in order
to resolve disagreements between previous analyses regarding
S34(0) and reduce the extrapolation error therein.
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