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This work aims at determining the composition of certain N∗ and � resonances, i.e., whether they are compact
states formed directly by quarks and gluons, or hadronic molecules generated from the meson-baryon interaction.
The information of the resonance poles is provided by a comprehensive coupled-channels approach, the Jülich-
Bonn model. Thirteen states that are significant in this approach are studied. Two criteria for each state are
adopted in this paper, the comparison thereof roughly indicates the model uncertainties. It is found that the
conclusions for eight resonances are relatively certain: N (1535) 1

2

−
, N (1440) 1

2

+
, N (1710) 1

2

+
, and N (1520) 3

2

−

tend to be composite, whereas N (1650) 1
2

−
, N (1900) 3

2

+
, N (1680) 5

2

+
, and �(1600) 3

2

+
tend to be compact.
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I. INTRODUCTION

Investigating the inner structures of particles is always
an important topic in physics. Especially, the study of the
composition is a fundamental and difficult task, which usually
needs firmly established observations on both the theoretical
and the experimental sides, just like the Rutherford scattering
experiment which clarified the structure of atoms. In hadron
physics, such studies are even more complicated due to the
extremely involved dynamics and the fact that most states are
unstable.

However, in the 1960s Weinberg’s work on the deuteron
[1] showed that the information of the composition sometimes
could be derived from simple observations. Particularly, if
Z (∈ [0, 1]) is the probability of finding an elementary state in
the deuteron (the “elementariness”), then the scattering length
a and the effective range r are

a = −2(1 − Z )

2 − Z
R + O(L),

r = − Z

1 − Z
R + O(L),

(1)

where R = (2µB)−1/2 � 4.3 fm is the binding radius, with
μ the two-nucleon reduced mass and B � 2.22 MeV the
deuteron binding energy. Further, L = 1/Mπ � 1.4 fm, with
Mπ the pion mass, is the typical interaction range of two
nucleons. Experiments give a = −5.41 fm and r = +1.75 fm,
which support a rather small value of Z; i.e., the deuteron
should be composed by two nucleons. The derivation of this
criterion is straightforward: one just needs to assume a simple
formalism including two-nucleon continuous states |α〉2N and
possible bare states |n〉 orthogonal to the former, with the
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coupling constant g between the physical deuteron |d〉 and the
two-nucleon states |α〉2N . Then the scattering can be solved re-
sulting in the projection probability Z ≡ 1 − ∫

dα|〈d|α〉2N |2.
Apart from the original paper [1], Ref. [2] has given a mod-
ern explanation of Weinberg’s work and shown that it is
compatible with the basic conceptions of modern effective
field theories (EFTs). For an introduction to EFTs, see [3].
In addition, Ref. [4] interprets Weinberg’s criterion via the
number operators of the initial or final state particles, in order
to make the connections to the EFTs without bare states.
Nevertheless, the success of this criterion on the deuteron is
somewhat accidental, in the sense that it can hardly be applied
to other states without model assumptions or approximations:
the particle must be an S-wave stable bound state near a
two-body threshold.

Several decades after Weinberg’s work, many new
hadronic states have been found. Some of them cannot be
interpreted by the naive quark model, indicating possibly the
mechanism of the molecular states formed by the residual
hadron-hadron interactions, e.g., hadron exchanges. For ex-
ample, in pion-nucleon reactions, there are discussions on the
nontrivial structure of the N∗(1535) and N∗(1440) (the Roper
resonance); see, e.g., Refs. [5–14]. As for the heavy hadrons,
after the discovery of the X (3872) [15], more and more hadron
exotic states were found that deviate significantly from the
predictions of the conventional quark model, which can likely
be interpreted by the picture of hadronic molecules [16]1 A
criterion of the composition is urgently needed for such states.

1In general, one is dealing with “dynamically generated” states,
which are due to the hadron-hadron (or even three-hadron) interac-
tions. Hadronic molecules are a subclass of this type of states close
to one or in between two close-by thresholds.
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Unfortunately, they are all unstable and Weinberg’s criterion
cannot be applied directly.

There are mainly three ways to establish an extended
criterion. The first is the “pole counting rule” proposed in
Ref. [17], and applied to various studies of the exotic states;
see, e.g., Refs. [18–24]. It abandons the definition of the unsta-
ble state and a “probability” as the output, but rather focuses
on the pole structure and the dynamics. A typical quantum
mechanical potential of an S wave can only produce one near-
threshold pole, in contrast to the mechanism of Castillejo,
Dalitz, and Dyson [25], which produces two poles near the
threshold. This method is model independent, but can only be
applied to S-wave near-threshold states.

The second method, called the “spectral density function”
approach, was proposed in Ref. [26] and further applied in
Refs. [21,24,27–31]. This method also avoids the definition
of unphysical states. It has been observed that, when lower
channels are switched on, a previously stable state gains a
decay width and its elementariness Z disperses into a finite
probability distribution w(z) of the physical energy z, called
the “spectral density function.” Mathematically, w(z) is just
the projection of the physical scattering state (with energy
z) on the bare elementary state. The elementariness for the
resonance can be obtained just by collecting the function w(z)
near the pole mass MR of the resonance: Z � ∫ MR+�E

MR−�E w(z)dz,
with �E a quantity comparable with the pole width. The
mathematical formalism can be constructed in principle for
any partial wave, and the output is quantitative. The choice of
�E further generates some uncertainty, and this method does
not work well when the resonance is broad or the overlaps of
different resonances are large.

The third way is defining a quantity similar to the Z in
Weinberg’s case: the projection of a Gamow state [32,33] on
the bare state. The Gamow states describing resonances are
zero-norm [34] and the corresponding Z is complex, with-
out the interpretation as a “probability.” Studies on relevant
mathematical properties can be found in, e.g., Refs. [35–37].
Some mathematical transformations or naive measures [4,38–
44] are performed to make it a real number between 0 and 1.

In this work, we study the nature of some selected N∗
and � states, based on the resonance parameters extracted
in a recent analysis within the Jülich-Bonn (JüBo) dynamical
coupled-channels approach [45]. See Refs. [10,46–60] for ear-
lier works and other recent developments. In the JüBo model,
a coupled-channels scattering equation is solved with angular
momentum up to J = 9/2 and the channel space πN , ππN
(simulated by three effective channels σN , ρN , and π�), ηN ,
K�, and K	. Photoproduction reactions are also taken into
account. Reference [60] further includes the πN → ωN chan-
nel. The free parameters are determined by the fit to a large
collection of pion- and photon-induced data. The analytical
structure is respected and the states are extracted by means
of modern pole-searching procedures in the complex energy
plane. Such a model provides the basic information one needs
to study the elementarinesses of resonances.

Note that many of the N∗ and � states are not in S wave,
and some of them are not narrow or not close to any two-
particle thresholds. We have to admit that a systematic and

accurate study of their nature is a very difficult task, and it
is impossible to completely get rid of the model dependence.
The reason why we still carry out this study is that the JüBo
model is data driven, as the parameters are constrained by
a tremendous amount of experimental input. Therefore we
believe the findings with respect to the elementarinesses make
sense. Specifically, the pole counting rule cannot be applied
in this study, whereas the spectral density functions approach
can be instructive, since these are readily extracted from the
s-channel bare states of this model, and require no further
assumptions or mathematical transformations. Such functions
directly obtained from this model also measure the corre-
lation between the input s-channel states and output poles,
helping us to gain a better understanding of the interplay of
the different components of the model. We also try our best
to further estimate the uncertainties by locally constructing
another spectral density function for each state from the pole
positions and on-shell residues and comparing it to the func-
tion directly given by the model. Additionally, the Gamow
states and the complex Z values are also calculated as a further
check. This is meaningful since the conception of Gamow
states is theoretically very different from the spectral density
functions.

The structure of this paper is as follows. In Sec. II a solv-
able toy model is discussed in order to show the basic concepts
and interpretation of the spectral density functions and the
Gamow states. In Sec. III we briefly summarize the Jülich-
Bonn model and discuss the spectral density functions and
Gamow states in this framework. The numerical results are
shown in Sec. IV together with pertinent discussions. Finally
Sec. V contains the conclusions and provides an outlook.

II. TOY MODEL DISCUSSIONS

A. Basic descriptions

To better understand the formalism employed later, we first
consider a toy model. It is nonrelativistic, and the reduced
mass of the two particles is denoted as μ. Further, the disper-
sion relation is E = k2/(2μ) with k the momentum, and the
threshold is located at the energy E = 0. The model contains
continuous free two-body states |ψ (k)〉 and one isolated bare
state |ψ0〉 with the energy E0. For simplicity we assume the
bare state to be above the threshold, i.e., E0 > 0. These free
states form an orthogonal and complete basis:

〈ψ0|ψ (k)〉 = 〈ψ (k)|ψ0〉 = 0,

〈ψ0|ψ0〉 = 1,

〈ψ (k′)|ψ (k)〉 = (2π )3δ(3)(k − k′),

|ψ0〉〈ψ0| +
∫

d3k
(2π )3

|ψ (k)〉〈ψ (k)| = Î,

(2)

where Î is the identity operator. Any physical state |〉 can be
expressed as a linear combination of the free states with the
coefficients c0 and χ (k):

|〉 = c0|ψ0〉 +
∫

d3k
(2π )3

χ (k)|ψ (k)〉. (3)
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The Hamiltonian consists of a free part Ĥ0 and an inter-
action part ĤI ; the latter only contains the S-wave coupling
between the continuous and the bare states:

Ĥ0 = E0|ψ0〉〈ψ0| +
∫

d3k
(2π )3

k2

2μ
|ψ (k)〉〈ψ (k)|,

ĤI =
∫

d3k
(2π )3

gF (k,�)[|ψ (k)〉〈ψ0| + |ψ0〉〈ψ (k)|];
(4)

with g the coupling constant and F (k,�) the regulator,

F (k,�) = �2

k2 + �2
, (5)

and � is the cutoff parameter. In the following discussions,
� is often assumed to be significantly larger than any other
quantity with energy dimension 1, so that we can perform ex-
pansions. One can also define the free eigenstate with energy
E accordingly:

|ψ (E )〉 ≡
∫

d3k
(2π )3

√
2π2

μk
δ

(
k2

2μ
− E

)
|ψ (k)〉, (6)

which satisfies Ĥ0|ψ (E )〉 = E |ψ (E )〉. In fact this toy model
is equivalent or quite similar to many studies based on the
spectral density functions in the literature [21,24,26–31].

B. Physical solutions

The central equation of the toy model is

(Ĥ0 + ĤI )|(E )〉 = E |(E )〉, (7)

which yields

E0c0(E ) +
∫

d3k
(2π )3

gF (k,�)χ (E, k) = Ec0(E ),

k2

2μ
χ (E, k) + gF (k,�)c0(E ) = Eχ (E, k). (8)

Note that the coefficients depend on the energy eigenvalue E .

1. Bound states

A bound state corresponds to E = −B < 0, with the bind-
ing energy B. In this case the coefficient χ can be eliminated
by the second line of Eq. (8). Then, the coefficient c0 in
the first line of Eq. (8) is also eliminated, leaving only one
equation for the binding energy:

−B − E0 − 	(−B) = 0,

	(E ) ≡
∫

d3k
(2π )3

g2F 2(k,�)

E − k2/(2µ)
, (9)

where 	(E ) is the self-energy of the bare state. The energy of
the bound state is a pole of the propagator

D(E ) ≡ 1

E − E0 − 	(E )
. (10)

The bound state wave function is written as

|(−B)〉 = c0

[
|ψ0〉 −

∫
d3k

(2π )3

gF (k,�)
k2

2μ
+ B

|ψ (k)〉
]
. (11)

The coefficient c0 can further be determined by the normal-
ization condition,

〈(−B)|(−B)〉 = 1, (12)

which yields the elementariness

Z ≡ |c0|2 = 1

1 − 	′(−B)
, (13)

where the prime denotes differentiation with respect to energy.
Moreover, if one expands to leading order in the inverse of the
large cutoff �, the elementariness can be written as

Z =
(

1 + g2μ2

2π
√

2µB

)−1

+ O(�−1), (14)

which exhibits the typical feature g2 ∝ (Z−1 − 1) as discussed
in Ref. [16]. The compositeness is further defined as

X ≡
∫

d3k
(2π )3

|χ (−B, k)|2, (15)

so that, according to the normalization condition (12), Z +
X = 1.

2. Scattering states

For the scattering states, any E > 0 can be an eigenvalue. In
this case one should give the energy an infinitesimal imaginary
part: E → E + i0+. It is convenient to eliminate the coeffi-
cient c0 by the first line of Eq. (8), and then the second line
becomes∫

d3p
(2π )3

[
p2

2μ
(2π )3δ(3)(p − k)

+ g2F (k,�)F (p,�)

E − E0 + i0+

]
χ (E, p) = Eχ (E, k). (16)

Here, χ can be understood as the wave function in momentum
space. The corresponding potential operator and the Hamilto-
nians are

V̂ = ĤI
|ψ0〉〈ψ0|

E − E0 + i0+ ĤI ,

ĥ0 =
∫

d3k
(2π )3

k2

2μ
|ψ (k)〉〈ψ (k)|,

ĥ ≡ ĥ0 + V̂ . (17)

The scattering amplitude can be worked out with the help of
the Lippmann-Schwinger equation,

T̂ = V̂ + V̂ ĜT̂ , Ĝ ≡ (E − ĥ0 + i0+)−1. (18)

The scattering amplitude is found as

〈ψ (k)|T̂ |ψ (p)〉 ≡ T (k, p, E ) = g2F (k,�)F (p,�)

E − E0 − 	(E + i0+)
,

(19)

which corresponds to an s-channel Feynman diagram with the
dressed propagator. The physical (on-shell) scattering ampli-
tude should be T (qε, qε, E ), shortened as T (E ), with qε =√

2µE the on-shell momentum.
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It is meaningful to relate χ to the amplitude. The definition
of the χ̂ operator is

χ (E, k) ≡ 〈ψ (k)|χ̂ |ψ (E )〉, (20)

then Eq. (16) is translated as

V̂ χ̂ |ψ (E )〉 = Ĝ−1χ̂ |ψ (E )〉. (21)

One may also rewrite the scattering equation (18), considering
Ĝ−1|ψ (E )〉 = 0:

Ĝ−1(Î + ĜT̂ )|ψ (E )〉 = V̂ (Î + ĜT̂ )|ψ (E )〉;
then

χ̂ |ψ (E )〉 = N (E )(Î + ĜT̂ )|ψ (E )〉, (22)

with N a normalization factor that might depend on E . Finally
the solution of χ is

χ (E, k) = N (E )

[√
2π2

μk
δ

(
k2

2μ
− E

)

+
√

μqε

2π2

T (k, qε, E )

E − k2/(2μ) + i0+

]
. (23)

According to Eq. (8),

c0(E ) = N (E )

√
μqε

2π2

T (k, qε, E )

gF (k,�)
. (24)

The normalization factor is determined as N (E ) = 1 by the
normalization condition of the scattering states,

〈(E ′)|(E )〉 = δ(E − E ′). (25)

The spectral density function is defined as the probability
density of finding the bare state in the scattering states:

w(E ) = |c0(E )|2

= ρ

∣∣∣∣∣T (k, qε, E )

gF (k,�)

∣∣∣∣∣
2

= ρ

∣∣∣∣∣ gF (qε,�)

E − E0 − 	(E )

∣∣∣∣∣
2

,
(26)

with the factor ρ = μqε/(2π2).
Note that the effective range expansion can be performed

on Eq. (19). Combining with Eq. (14), Weinberg’s criterion
Eq. (1) can be reproduced by this toy model.

C. Poles and criteria

1. Pole trajectories

Equations (9) and (19) indicate that the bound states are
just the poles of the physical scattering amplitude in the
energy region E < 0. Besides, the dispersion relation qε =√

2μE divides the complex energy plane into two Riemann
sheets by the branch cut E ∈ [0,+∞), with the physical sheet
featured as Im qε > 0. The unphysical states appear as poles
on the second sheet with Im qε < 0. Among those poles, vir-
tual states lie on the real energy axis below the threshold,
while the resonances have nonzero imaginary parts.

We can expand the denominator of the amplitude in
Eq. (19) to leading order in the inverse of the large cutoff �,

which gives a result similar to the Flatté parametrization:

T (E ) = g2

E − E0 + g2μ�

4π
+ i g2μ

2π
qε

+ O(�−1). (27)

Defining

G ≡ g2μ2/(2π ), (28)

the trajectories of the poles2 can be plotted; see Fig. 1. For
similar discussions see, e.g., Refs. [16,61]. Under the con-
dition E0 > 0, the bound states exists only if the following
condition holds:

G > G3 ≡ 2µE0

�
. (29)

2. Spectral density function and poles

The physical solutions of Eq. (7) also form a complete and
orthogonal basis:

|(−B)〉〈(−B)| +
∫ +∞

0
dE |(E )〉〈(E )| = Î, (30)

which, by applying to the bare state 〈ψ0| · · · |ψ0〉, leads to

Z +
∫ ∞

0
dEw(E ) = 1, (31)

where Z is the elementariness of the bound state. This is
the spectral density function sum rule, which indicates that
the free bare state will surely be found if one explores every
physical solution. It is also worth mentioning that the spectral
density function is proportional to the imaginary part of the
propagator in Eq. (10):

w(E ) = − 1

π
Im D(E ). (32)

Therefore the sum rule Eq. (31) can also be understood as the
Källén-Lehmann spectral representation of an isolated state.

To make closer contact to the physics, we investigate the
spectral density function near the pole energy of a narrow res-
onance. Taking a small value of g in Eq. (27), and suppressing
the quantities with g4 and �−1, the pair of resonance poles is
located at

E± =
(

E0 − G�

2μ

)
∓ iG

√
2μE0

μ

≡ ER ∓ i

2
�R, (33)

where ER and �R denote the pole energy and pole width, re-
spectively. According to Eq. (26), the spectral density function
near the pole energy is

w(E � ER) = 1

π

�R/2

(E − ER)2 + �2
R/4

. (34)

2Note that G → ∞ is not consistent with the expansion in 1/�.
However, we tentatively keep a finite value of � to finish the dis-
cussion, which can be regarded as another model based on the Flatté
parametrization.
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Re(q)

Im(q)

0
Eμ2

0
Eμ2-

2
Λi

+
 0→G

+
 0→G

1G=G
1G=G

2G=G

3G=G

3G=G

∞→G

+
q-q

(a) the momentum plane

Re(E)

Im(E)

0Eμ8

2Λ-
+

 0→G

1G=G

1G=G

2G=G

3G=G
3G=G∞→G +E

Sheet I
-E

Sheet II

(b) the energy plane

FIG. 1. The schematic plot of the pole trajectories in the toy model. The red solid (blue dashed) line denotes the trajectory of the first
(second) pole. The critical points are as follows. G1: a resonance pole with the zero width. G2: a resonance pole and the conjugate pole collide,
forming a second-order virtual state pole. G3: a bound state is produced.

In other words,

lim
g→0

w(E � ER) = δ(E − ER). (35)

On the one hand, as g → 0 the bare state decouples from the
continuous states, and the Hamiltonian becomes free, so then
the state at ER = E0 has elementariness Z = 1. On the other
hand, the spectral density function is concentrated totally on a
single energy point. Since a finite g just makes the δ function
disperse like Eq. (34), we can still assume the spectral density
function near E = ER to be a measure of the elementariness
of the resonance, which is the central idea for applying this
method. Nevertheless, one also finds that the broader the
resonance is, the more ambiguous this method will be. In
fact, when the resonance is too broad even Eq. (34) becomes
problematic.

3. Gamow states

Resonances correspond to the poles on the second Rie-
mann sheet,

ER − E0 − 	II(ER) = 0, (36)

where the self-energy on the second sheet is evaluated by the
deformed integral contour C+:

	II(ER) =
∫

C+

k2dk

2π2

g2F 2(k,�)

ER − k2/(2μ)

≡
∫

k2dk

2π2

g2F 2(k,�)(
ER − k2

2μ

)
+

. (37)

To reach the second sheet, the energy ER moves across the
cut E ∈ [0,∞), and meanwhile the pole of the integrand
kR = √

2µER hits the original contour k ∈ [0,∞) and deforms
it. The deformed contour is topologically the original contour

plus a residue term at kR = √
2µER; see Fig. 2. Then the

Gamow states can be defined accordingly [see Eq. (11)]:

|(ER)) ≡ c0

[
|ψ0〉 +

∫
d3k

(2π )3

gF (k,�)(
ER − k2

2μ

)
+

|ψ (k)〉
]
,

|(E∗
R )) ≡ c∗

0

[
|ψ0〉 +

∫
d3k

(2π )3

gF (k,�)(
E∗

R − k2

2μ

)
−

|ψ (k)〉
]
,

(38)

where E∗
R is the conjugate pole and the “−” refers to the

corresponding deformed contour. Note that the contour de-
formation in Eq. (38) does not introduce new |ψ (k)〉′s with
complex k. Instead it only changes the rule of the inner
product: whenever another state 〈φ| does the inner product
with the Gamow state, namely 〈φ|(ER)), the integral contour
should be deformed. Equation (36) ensures the Gamow state
is an eigenstate of the Hamiltonian, but since the Hamiltonian
is Hermitian, the Gamow state cannot be normalized. The

0 k

kR

FIG. 2. Reaching the second sheet by contour deformation. The
solid line stands for the integral contour, while the dashed line rep-
resents the move of the singularity k = kR when the energy moves
across the cut. See the text for explanations.

015202-5



WANG, MEISSNER, RÖNCHEN, AND SHEN PHYSICAL REVIEW C 109, 015202 (2024)

normalization should be defined via the conjugate part:

((E∗
R )|(ER)) = 1. (39)

From this condition one can only define the c2
0, instead of

|c0|2, as the elementariness:

ZR ≡ c2
0 =

[
1 − d

dE 	II(E = ER)

]−1

, (40)

which is a complex quantity without the interpretation as a
probability. Then the compositeness can also be defined as
XR ≡ 1 − ZR.

The compositeness of the Gamow state can also be related
to the scattering amplitude. On the one hand, equivalently to
Eq. (18), the scattering operator T̂ can be rewritten as

T̂ = V̂ + V̂ ĜV̂ , Ĝ ≡ (E − ĥ + i0+)−1, (41)

where Ĝ is the full Green’s operator of the Hamiltonian ĥ; see
Eq. (17). On the other hand, when there is a resonance, the
completeness condition (30) can be modified

|(ER))((E∗
R )| +

∫ +∞

0
dE |̃(E )〉〈(E )| = Î, (42)

where |̃(E )〉 is the modified scattering state, for details see
Ref. [62]. Since Ĝ|(ER)) = (E − ER)−1|(ER)), the Laurent
expansion of the T amplitude on the second sheet can be
obtained from the modified completeness condition:

T II(k, p, E ) = r(k)r(p)

E − ER
+ · · · , (43)

with the off-shell residue

r(k) ≡ 〈ψ (k)|V̂ |(ER)). (44)

Moreover, 〈ψ (k)|V̂ |(ER)) = 〈ψ (k)|(ĥ − ĥ0)|(ER)) =
[ER − k2/(2μ)]+〈ψ (k)|(ER)), where “+” denotes the
deformed contour; one obtains the compositeness from the
off-shell residue,

X (ER) =
∫

d3k
(2π )3

〈ψ (k)|(ER))2

=
∫

d3k
(2π )3

r2(k)

[ER − k2/(2μ)]2+
. (45)

According to Eq. (19), the off-shell residue in this toy model
is r(k) = gF (k,�)[1 − 	II′]−1/2, so Eq. (45) gives exactly the
same result as Eq. (40).

D. Coupled-channels extension

Here, we slightly extend the toy model to a coupled-
channels situation. We keep the channel discussed above as
channel “1”, with all the notations remaining the same. In ad-
dition, there is a lower channel with index “0”. The threshold
of the lower channel is −�E < 0. The free continuous states
of channel 0 are labeled as |ψ0(k)〉, which are orthogonal to
the |ψ (k)〉. For a given energy E , the on-shell momentum of
the channel 1 remains the same, i.e., qε = √

2µE , while for
channel 0 it is q0ε = √

2µ0(E + �E ). Equivalently to Eq. (6),

we define another energy eigenstate for the lower channel 0:

|ψ0(E )〉 =
∫

d3k0

(2π )3

√
2π2

μ0k0

× δ

(
k2

0

2μ0
− E − �E

)
|ψ0(k0)〉. (46)

Besides, there is still only one bare state |ψ0〉.
The Hamiltonian now is3

Ĥ0 = E0|ψ0〉〈ψ0| +
∫

d3k
(2π )3

k2

2μ
|ψ (k)〉〈ψ (k)|

+
∫

d3k0

(2π )3

(
k2

0

2μ0
− �E

)
|ψ0(k)〉〈ψ0(k)|,

ĤI =
∫

d3k
(2π )3

gF (k,�)|ψ (k)〉〈ψ0|

+
∫

d3k0

(2π )3
g0F (k0,�)|ψ0(k0)〉〈ψ0| + H.c., (47)

where “H.c.” refers to the Hermitian conjugation. The physi-
cal scattering state is

|(E )〉 = c0(E )|ψ0〉 +
∫

d3k
(2π )3

χ (E, k)|ψ (k)〉

+
∫

d3k0

(2π )3
χ0(E, k0)|ψ0(k0)〉. (48)

The eigenstates can still be solved from Eq. (7). In this case,
the amplitude is

Ti j (k, p, E ) = gig jF (k,�)F (p,�)

E − E0 − 	̃(E + i0+)
, (49)

with i, j = 0, 1 as the channel indices, and g1 = g. Meanwhile
the propagator is

D(E ) = 1

E − E0 − 	̃(E + i0+)
, (50)

with the two-channel self-energy

	̃(E ) =
∫

d3k
(2π )3

[
g2

0F 2(k,�)

E − k2

2μ0
+ �E + i0+ + g2F 2(k,�)

E − k2

2μ
+ i0+

]
.

(51)

Due to the same reason as in the single channel case, for
both i = 0, 1 (|ψ1(E )〉 = |ψ (E )〉)

χ̂ |ψ i(E )〉 = Ni(E )(Î + ĜT̂ )|ψ i(E )〉. (52)

The correspondence of the function χ to the χ̂ operator is not
unique in the coupled-channels system, and the normalization
factor N is no longer trivially 1. Fortunately the spectral
density function is easily obtained from Eq. (32):

w(E ) = g2
0μ0q0εF 2(q0ε,�) + g2μqεF 2(qε,�)�(E )

2π2|E − E0 − 	̃(E )|2 , (53)

3The cutoff � is chosen to be the same for the two channels.
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where �(E ) is the Heaviside step function. It is easy to verify
that, when g0 = 0, Eq. (26) is recovered.

At last we investigate a “quasibound state” (qb) in the
two-channel case. We assume when channel 0 is switched
off, the channel 1 forms a bound state at E = −B, with the
binding energy B � �E . As the coupling g0 grows from
zero but is still small, the bound state becomes a narrow
resonance. Such a pole lies on the Riemann sheet defined by
Im q0ε < 0, Im qε > 0, i.e., the physical sheet for channel 1
but the unphysical sheet for channel 0. Expanding Eq. (51)
and suppressing the O(g4

0) and O(�−1) terms, the location of
the pole is (the conjugate one is omitted)

E+ = Eqb − i

2
�qb,

Eqb = −B − g2
0μ0�

4π
ZB,

�qb = g2
0μ0

π

√
2μ0(�E − B)ZB,

(54)

where ZB = [1 − 	′(−B)]−1 is the elementariness of the
bound state when the channel 0 is switched off. Moreover,
the spectral density function near the pole energy is

w(E � Eqb) = ZB

π

�qb/2

(E − Eqb)2 + (�qb/2)2
. (55)

Hence in the narrow resonance limit,

lim
g0→0

w(E � Eqb) = ZBδ(E + B). (56)

This indicates again that the spectral density function near
the pole energy carries the information of the elementari-
ness, which is fully compatible with the elementariness of
the bound state (Weinberg’s criterion). When g0 is finite, the
delta function in Eq. (56) disperses and becomes a finite
distribution.

The elementariness of a quasibound state with finite width
can be evaluated as

∫ Eqb+�E
Eqb−�E w(E )dE . Actually the choice of

the integral interval (�E ) is ambiguous. Note that the ZB in
Eq. (55) is the crucial quantity we are interested in. So for the
pole at E = ER − i

2�R, we define the “Breit-Wigner” spectral
density function only according to the pole position:

BW(E ) ≡ 1

π

�R/2

(E − ER)2 + (�R/2)2
. (57)

Then the elementariness is modified as

Z �
∫ ER+�E

ER−�E w(E )dE∫ ER+�E
ER−�E BW(E )dE

. (58)

Since, in the narrow resonance limit of Eq. (55), Eq. (58)
gives exactly the quantity ZB no matter what value �E is, it is
expected that the dependence of the result on �E is weakened.
However, again, when the resonance is too broad, Eq. (55)
does not hold and this evaluation is also ambiguous.

The Gamow states for coupled channels can also be dis-
cussed in a totally similar manner to the single channel case.
We skip the details here.

III. APPLICATION TO THE JÜLICH-BONN MODEL

A. Short description of the model

The Jülich-Bonn model is a comprehensive coupled-
channels model, which currently contains the hadronic
channels πN , ππN , ηN , K�, K	, and ωN . The ππN system
is simulated by three effective channels, namely π�, σN , and
ρN . The thresholds are shown in Fig. 3.

In this model the reactions are studied through the follow-
ing scattering equation:

Tμν (p′′, p′, z) = Vμν (p′′, p′, z) +
∑

κ

∫ ∞

0
p2d pVμκ (p′′, p, z)

× Gκ (p, z)Tκν (p, p′, z), (59)

where T denotes the scattering amplitude, V denotes the inter-
action kernel (potential), p′ and p′′ are the three-momenta of
the initial and final states in the center-of-mass frame, respec-
tively, and z is the center-of-mass energy. The channel labels
μ, ν, and κ denote the meson-baryon system with specific
isospin (I), angular momentum (J , up to 9/2), spin (S), and
orbital angular momentum L. Gκ (p, z) is the propagator of
the intermediate channel:

Gκ (z, p) = [z − Eκ − ωκ − 	κ (z, p) + i0+]−1, (60)

where 	κ is the self-energy of the unstable particle (ρ, σ ,
or �) in the effective channel κ . When κ is not an effective
channel, 	κ = 0. Further, Eκ , ωκ denote the energies of the
baryon and the meson in channel κ , respectively, with the rel-
ativistic dispersion relation, e.g., Eκ = √

p2 + M2
κ . The whole

formalism is established in the framework of time-ordered
perturbation theory [63], which, together with an expansion
in the partial-wave basis, ensures the integral in Eq. (59) is
only one-dimensional.

To simplify the calculation, we further perform the follow-
ing separation:

T = T NP + T P, (61)

where T P and T NP are the pole part and the nonpole part,
respectively. The nonpole part T NP is generated only by the
potentials without s-channel bare states (V NP ):

T NP
μν (p′′, p′, z) = V NP

μν (p′′, p′, z) +
∑

κ

∫ ∞

0
p2d pV NP

μκ

× (p′′, p, z)Gκ (p, z)T NP
κν (p, p′, z), (62)

whereas the pole part is

T P
μν (p′′, p′, z) =

∑
i, j

�a
μ,i(p′′)Di j (z)�c

ν, j (p′). (63)

Here, i, j are the indices of the s-channel bare states in a given
partial wave, and �

a(c)
μ,i is the dressed vertex function describ-

ing the annihilation (creation) of the ith state to channel μ.
The dressed propagator of the s-channel state is denoted as D,
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πΔ
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1611
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Nρ

Nω

1722

ECM[MeV]

FIG. 3. Thresholds of the scattering channels currently considered in the Jülich-Bonn model as function of the center-of-mass energy. The
ωN channel is not considered in this work; see the discussions in the beginning of Sec. IV.

which is related to the self-energies 	i j :

�a
μ,i(p′′) = γ a

μ,i(p′′)

+
∑

κ

∫ ∞

0
p2d pT NP

μκ (p′′, p, z)Gκ (p, z)γ a
κ,i(p),

�c
ν, j (p′) = γ c

ν, j (p′)

+
∑

κ

∫ ∞

0
p2d pγ c

κ, j (p)Gκ (p, z)T NP
κν (p, p′, z),

D−1
i j (z) = δi j

(
z − mb

i

) − 	i j (z),

	i j (z) =
∑

κ

∫ ∞

0
p2d pγ c

κ,i(p)Gκ (p, z)�a
κ, j (p). (64)

Here, the γ ′s are bare vertices and mb
i is the bare mass of

the ith bare state. All the relevant expressions can be found
in Ref. [60] and its Supplemental Material. Photoproduction
reactions are described in a semiphenomenoligical approach
with Tμν as the hadronic final-state interaction; see Ref. [53]
for details. The free parameters in this model are determined
by a global fit to almost all available data. The resonances
are extracted by scanning the complex energy plane on the
unphysical Riemann sheet of the full T matrix; for details
see Ref. [50]. Note that the decomposition of the scattering
amplitude into a pole and a nonpole part in Eq. (61) is am-
biguous since resonance poles can be produced not only by the
s-channel bare states but can also be dynamically generated in
the nonpole part in Eq. (62). However, due to the complicated
multichannel space and strong dressing effects inherent in the
model, a clear interpretation of a certain observed pole as an
s-channel or “genuine” state in contrast to a dynamical one is
often very difficult.

B. Spectral density functions of the model

The Jülich-Bonn model can be rewritten in terms of the
states in the Hilbert space. The free continuous states are
denoted as |μ, p〉, which satisfy

〈ν, q|μ, p〉 = p−2δμνδ(p − q), (65)

whereas the s-channel bare states are |n〉, with

〈m|n〉 = δmn. (66)

Further conditions are

〈n|μ, p〉 = 〈μ, p|n〉 = 0, (67)

and ∑
n

|n〉〈n| +
∑

μ

∫ ∞

0
p2d p|μ, p〉〈μ, p| = Î. (68)

The Hamiltonian is written as

Ĥ = Ĥ0 + ĤI , (69)

with the free part

Ĥ0 =
∑

j

mb
j | j〉〈 j | +

∑
μ

∫
p2d p(Eμ + ωμ)|μ, p〉〈μ, p|

(70)
and the interaction part

ĤI =
∑

i

∑
μ

∫
p′′2d p′′[γ a

μ,i(p′′)|μ, p′′〉〈i| + H.c.
]

+
∑
μ,ν

∫∫
d p′d p′′(p′ p′′)2V NP

μν (p′′, p′)|μ, p′′〉〈ν, p′| .

(71)

The scattering equation (59) is fully equivalent to the
eigenequation of the energy z:

(Ĥ0 + ĤI )|z〉 = z|z〉, (72)

where a physical scattering state is denoted as |z〉. The expan-
sion is very similar to Eq. (48):

|z〉 =
∑

i

ci(z)|i〉 +
∑

α

∫
k2 dk χα (z, k)|α, k〉. (73)

The spectral density function of the scattering state on the
ith s-channel bare state can be defined as

wi(z) ≡ |〈i|z〉|2 = |ci(z)|2. (74)

The sum rule for every i is

ZB,i +
∫ ∞

mπ +mN

dz wi(z) = 1, (75)

where ZB,i is the partial elementariness of a possible bound
state on the ith s-channel bare state. Note that in the Jülich-
Bonn model the only bound state is the nucleon itself in the
P11 wave of πN scattering.

The Jülich-Bonn model is much more complicated than the
toy model discussed previously, so the analytical expressions
cannot be solved explicitly. Nevertheless the spectral density
functions in Eq. (74) can still be obtained by the imaginary
part of the propagator in Eq. (64),

wi(z) = − 1

π
ImDii(z), (76)

015202-8



EXAMINATION OF THE NATURE OF THE N∗ … PHYSICAL REVIEW C 109, 015202 (2024)

and the propagator can be calculated numerically. For the
resonance pole at z = MR − i�R/2, the elementariness corre-
sponding to the ith bare state, denoted as Zi, is evaluated as

Zi �
∫ MR+�R

MR−�R
wi(z)dz∫ MR+�R

MR−�R
BW (z)dz

. (77)

Note that the �E in Eq. (58) is chosen as the pole width of
the resonance here. To avoid the uncertainties of the overlap
between two resonances in the same partial wave, the value of
�E should not be too large. At last, when there are more than
one bare states in the same partial wave, the “total elementari-
ness” can be estimated as

Z = 1 −
∏

i

(1 − Zi ). (78)

C. Estimation of the model uncertainties

We emphasize that the number of resonance poles does not
correspond to the number of s-channel bare states. The free
parameters of the model can move the pole of an s-channel
state to distant regions in the complex plane beyond the reach
of the pole searching, while the T NP part in Eq. (61) can also
contain “dynamically generated poles.” Actually, the separa-
tion of the amplitude and the number of s-channel states are
model dependent, which also holds for Eq. (77) that does
depend on those, and hence it can only be regarded as a naive
indication from the model. Despite the difficulties of getting
rid of these model dependences, we will try to give some
rough estimation for the uncertainties.

1. Locally constructed spectral density functions

The first proposal is to locally construct (lc) a spectral
density function for every individual resonance, using only
the pole positions and the residues. We can first construct the
on-shell T amplitude near the pole:

T lc
αβ (z) = cgαgβ f a

α (qαz ) f c
β (qβz )

z − M0 − ∑
κ g2

κLκ (z)
+ · · · , (79)

where qαz is the on-shell momentum for energy z in channel α,
the g′s are real coupling constants, f a(c)

α is the vertex function
of the resonance annihilation (creation) without the coupling
constant, M0 is a mass parameter to be determined by the pole
position, “· · · ” refers to the other contributions apart from the
pole, and Lκ is the loop function of channel κ with respect to
the vertex functions:

Lκ (z) ≡
∫ ∞

0
p2d p Gκ (p, z) f a

α (qκz ) f c
α (qκz ). (80)

Equation (79) can be regarded as a generalization of the Lau-
rent expansion. For simplicity we just choose the form of the
vertex function f the same as the bare vertices in Jülich-Bonn
model (together with the regulator, with the cutoff parameters
set as the pole masses). The σN channel does not have bare
vertices in this model. Instead, we take f a,c

σN (q) ∼ ql with l the
angular momentum. The number c is an extra compensation
factor. Specifically, as we already have the residue rα at the
pole z = MR − i�R/2, all the parameters can be given (here,

the subscript “1” refers to the πN channel):

hκ ≡ g2
κ

g2
1

=
∣∣∣∣ rκ f a

1

r1 f a
κ

∣∣∣∣2

,

g2
1 = − �R

2
∑

κ hκ Im
(
LII

κ

) ,

M0 = MR − g2
1

∑
κ

hκ Re
(
LII

κ

)
,

c = r2
1

g2
1 f a

1 f c
1

(
1 − g2

1

∑
κ

hκ

d

dz
LII

κ

∣∣∣∣
z=MR−i�R/2

)
.

(81)

This parametrization cannot reproduce the phase of the
residues. However, the phases mainly affect the interference
behavior of a resonance with the others. Here we construct
the amplitude only for every individual state with the energy
near the pole mass. Finally, the locally constructed spectral
density function is

wlc(z) = − 1

π
Im

[
z − M0 −

∑
κ

g2
κLκ (z)

]−1

. (82)

According to the asymptotic behavior of Lκ and the analytic
properties, the sum rule in Eq. (31) still holds for this con-
struction.

Note that Eq. (79) is still too simple to simulate the
amplitude in Jülich-Bonn model. This formalism fails if∑

κ hκ Im LII
κ > 0, which does not happen when the state is

narrow enough. In this case the uncertainty is of course large.
We can employ a “plan B” and directly assign the couplings
in Eq. (82) as the absolute values of the dimensionless nor-
malized residues defined by the Particle Data Group [64]:

g2
κ →

∣∣∣∣∣
√

2πρκ

�R
rκ

∣∣∣∣∣
2

, (83)

where ρκ = qκzEκωκ/z is a kinematic factor. The fixed g′
κs

do not automatically lead to the correct pole position. In fact,
we have to give M0 an imaginary part compensating for the
other implicit effects. This destroys the sum rule in Eq. (31)
and sometimes makes the spectral density function negative.
Before applying the plan B, one has to check if such bad
features are significant.

2. Complex compositenesses of the Gamow states

The second proposal is to adopt the Gamow states and their
compositenesses. Totally similar to Eq. (45), the composite-
ness for channel κ is

Xκ ≡
∫

C+
p2d p r2

κ (p)G2
κ (p, zpole), (84)

where rκ is the off-shell residue from the Jülich-Bonn model,
and C+ is the deformed contour to ensure the correct Riemann
sheet. That means when the pole is lower than the threshold
of channel κ , the integral contour is [0,+∞]. When the pole
is higher than the threshold, the extra contributions from the
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TABLE I. Partial waves, the number of s-channel bare states (Ns),
and the states to be studied. The L2I 2J notation is only for the πN
channel.

I (JP ) L2I 2J Ns States to be studied

1
2

(
1
2

−)
S11 2 N (1535), N (1650)

3
2

(
1
2

−)
S31 1 �(1620)

1
2

(
1
2

+)
P11 2 N (1440), N (1710)

1
2

(
3
2

+)
P13 2 N (1720), N (1900)

3
2

(
3
2

+)
P33 2 �(1232), �(1600)

1
2

(
3
2

−)
D13 1 N (1520)

3
2

(
3
2

−)
D33 1 �(1700)

1
2

(
5
2

−)
D15 1 N (1675)

1
2

(
5
2

+)
F15 1 N (1680)

deformed contour are estimated by the following extrapola-
tion:

rκ (p) → rκ

f a
κ (ppole)

f a
κ (p), (85)

with f the bare vertex function just used in Eq. (79). This
extrapolation ensures that the on-shell residue rκ is correctly
reproduced. The complex elementariness of a state is

Z = 1 −
∑

κ

Xκ . (86)

Last, to make a comparison to the probabilities from the
spectral density functions, we can also use the naive measure
proposed in Ref. [42] to get the rates between 0 and 1:

X̃κ ≡ |Xκ |∑
α |Xα| + |Z| , Z̃ ≡ |Z|∑

α |Xα| + |Z| . (87)

Note that the basic philosophy of this method is very dif-
ferent from that of the spectral density functions, so we do
not expect perfect matches of those results. However, it is the
difference in nature that makes the adoption of the Gamow
states somehow instructive as the complex quantities only
depend on the pole parameters, hence they are free from the
ambiguities of choosing the integral interval, or the overlaps
of the resonances. Another advantage is that the complex
compositenesses directly show which channel dominates the
composition.

IV. NUMERICAL RESULTS

A. Selection of the resonances

There are two recent results of the Jülich-Bonn model: the
“JüBo_omegaN” solution [60], which is based on the study
of purely hadronic, pion-induced reactions, with the channel
space extended to ωN , and the “JüBo2022” solution [45],
which includes also photoproduction reactions with γ p →
K	 newly considered, while the ωN channel is absent. In this
work we use the output from the latter. Actually some states
are not significant in the hadronic part, e.g., N (1900) 3

2
+

,
but play an important role in photoproduction. Moreover, the

TABLE II. Residues of the selected N∗ states in the σN channel
given by the “JüBo2022” solution.

State rσN (10−6 MeV−1/2)

N (1535) 1
2

−
0.294 −0.207i

N (1650) 1
2

− −0.163 +0.296i

N (1440) 1
2

+
3.948 −8.295i

N (1710) 1
2

+
1.303 −14.334i

N (1720) 3
2

+ −0.564 −0.212i

N (1900) 3
2

+
2.707 −5.367i

N (1520) 3
2

−
0.935 +3.844i

N (1675) 5
2

− −0.083 −0.032i

N (1680) 5
2

+
0.198 −0.091i

quality and quantity of the available photoproduction data su-
persede the ones of the pion-induced data by far. We therefor
consider the resonance parameters extracted in JüBo2022 to
be more reliable. Note, however, that we cannot exclude the
possibility that some of the results might change when the ωN
channel (or further channels) is (are) considered in the future.

The results for higher partial waves are always less stable
[45]. Therefore we only study the J � 5/2 N∗ states and the
J � 3/2 � states. Although there are two � states with J =
5/2 listed by the Particle Data Group [64], the �(1905) 5

2
+

and �(1930) 5
2

−
, we exclude those states since they proved to

be rather unstable in recent JüBo analyses; cf. the discussion
in Ref. [45] for details. This may be related to the fact that
the database for the I = 3/2 channels is still smaller than
for the I = 1/2 channels. In addition, the states with widths
�R > 300 MeV are not considered, since the spectral density
functions does not work well for broad states. Specifically, in
this model the �(1910) 3

2
+

state is always not significant and
very broad (�R � 550 MeV). It is thus excluded.

Moreover, we expect that the uncertainties of the resonance
parameters estimated in Ref. [45] are negligible compared
to the systematic uncertainties from the criteria of the ele-
mentariness. Therefore we do not use the uncertainties of the
resonance parameters in the current calculations.

In summary, 13 states out of 25 in Ref. [45] are selected
and summarized in Table I. In the P11 wave there are two
bare s-channel states, of which the first is the bare nucleon.
By applying the sum rule Eq. (75), the nucleon wave function
renormalization constant is ZN � 0.54.4 Note that we also use
the bare nucleon to measure the elementarinesses of the other
states in the P11 wave.

Last, as mentioned in the last section, the estimations of
the uncertainties require the residues as input. The residues
of the σN channel were not published in Ref. [45], and are
listed here in Table II. Most of the values are much smaller (of
order 10−6 MeV−1/2) than the residues of the other channels
(of order 10−3 MeV−1/2), since in the JüBo2022 model the

4In our model the bare mass and bare couplings of the nucleon are
always adjusted such that its physical mass is 938 MeV.
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TABLE III. The elementarinesses of the selected N∗ states. The label “(F)” means that the local construction of Eq. (81) has failed and
Eq. (83) is used instead.

State Pole position (MeV) Z1 Z2 Ztot Z lc Z̃

N (1535) 1
2

−
1504 − 37i 24.8% 5.6% 29.0% 50.8% 39.4%

N (1650) 1
2

−
1678 − 64i 13.4% 91.7% 92.8% 70.5% 8.5%

N (1440) 1
2

+
1353 − 102i 48.7% 1.7% 49.5% 31.5% 36.9%

N (1710) 1
2

+
1605 − 58i 11.5% 10.3% 20.6% 10.2% 40.3%

N (1720) 3
2

+
1726 − 93i 34.1% 68.5% 79.3% 62.5% 41.4%

N (1900) 3
2

+
1905 − 47i 19.9% 100% 100% 99.9% 38.5%

N (1520) 3
2

−
1482 − 63i 29.4% 29.4% 7.2% 40.4%

N (1675) 5
2

−
1652 − 60i 16.6% 16.6% 100% (F) 61.8%

N (1680) 5
2

+
1657 − 60i 67.9% 67.9% 69.9% 55.0%

bare resonance vertices do not couple to σN . The σN residues
receive contributions from coupled-channels and nonpole ef-
fects and are thus extremely small.

B. Analyses of the N∗ states

For each selected state, the elementarinesses from three
methods will be shown, namely Zi (i = 1, 2, tot) from the
naive indication of the model [Eq. (76)], Z lc from the lo-
cal construction [Eq. (82)], and the naive measure Z̃ of the
Gamow states [Eq. (87)]. The first is further labeled by
subscripts: Z1 (Z2) for the partial elementariness on the
first (second) bare s-channel state, and Ztot for the “total”
elementariness in Eq. (78). Note that in a complex coupled-
channels environment with strong dressing effects as in the
JüBo model, in cases with two states per partial wave it is
often difficult to identify a pole as unambiguously induced by
a specific bare s-channel state. Therefore we list Z1 and Z2

for each pole.
The elementarinesses of the selected N∗ states are sum-

marized in Table III. The complex quantities of the Gamow
states are listed in Tables IV and V. Since the σN residues are
always very small, we skip the discussion of the composite-
nesses in the σN channel. The spectral density functions are
plotted in Fig. 4. The results are explained and discussed one
by one in what follows.

1. N(1535) 1
2

−

As shown in Table III, all results from the three different
methods indicate that the elementariness of N∗(1535) is not
large. As shown in Fig. 4, the peak structure near the pole
position only shows up in the first spectral density function,
which means that the N∗(1535) pole is highly related to the
first s-channel state in this model, and the mixture between
the two bare states is weak. The locally constructed spectral
density function is bigger than that of the model. However, it
is still significantly smaller than the Breit-Wigner peak. Note
that the integral intervals [MR − �R, MR + �R] for N∗(1535)
and N∗(1650) have an overlap, which increases the uncer-
tainties. On the other hand, Table IV shows a large complex
compositeness of the Gamow state in the ηN channel, with the
naive measure of 35.8% for the composition. It is suggested in

this work that the N∗(1535) tends to be composite. Actually
in some other approaches the N∗(1535) resonance can be
dynamically generated; see, e.g., Refs. [5,9,12,65].

In fact, in the JüBo_omegaN solution [60] the coupling of
the N∗(1535) to the ωN channel is rather large, even though
the pole position is not close to the ωN threshold. This large
coupling, as well as the ωN composition, will be investigated
in the future when studying ωN photoproduction.

2. N(1650) 1
2

−

Just like the N∗(1535), in some models, e.g.,
Refs [9,12,65], the N∗(1650) can also be dynamically
generated. But here in our model it seems to be highly related
to the second bare state. The spectral density function of
this state, no matter if directly from the model or locally
constructed, suggests a high elementariness; see Fig. 4.

However, the compositenesses of the Gamow state lead to
another result. In JüBo2022 the on-shell residues are rπN =
(9.31 − 0.90i) × 10−3 MeV−1/2 and rηN = (0.25 − 3.97i) ×
10−3 MeV−1/2; in contrast the off-shell residue of the ηN
channel is larger than that of πN , so the result XηN is also large
in Table IV. Consequently the elementariness is small, with
the naive measure of only 8.5%. We should emphasize again
that the naive measure is not mathematically a probability, it
is understandable that the naive measure does not match the
probability given by the spectral density function. Neverthe-
less, this may be an indication of the involved dynamics. Since
the two results from the spectral density functions strongly
suggest the elementary interpretation, we might claim the
N∗(1650) is possibly compact, but with visible model un-
certainties. Note that the results from the spectral density
functions are compatible with the conclusion in Ref. [11]: it
is necessary to include an s-channel bare state to generate the
N∗(1650), but not necessary for N∗(1535).

3. N(1440) 1
2

+

The N∗(1440) is very interesting in this model; it is defi-
nitely dynamically generated in the T NP part [10]. However,
the peak structure still shows up significantly in the first
spectral density function; see Fig. 4. Meanwhile, the cor-
responding elementariness is moderate (49.5%). Note that
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TABLE IV. The compositenesses and elementarinesses of the selected N∗ Gamow states (two-body channels). The percentages in the
brackets are the naive measures from Eq. (87).

State XπN XηN XK� XK	 Z

N (1535) 1
2

− 0.12 + 0.14i
(7.5%)

0.67 + 0.57i
(35.8%)

0.03 − 0.01i
(1.3%)

0.01 − 0.03i
(1.2%)

0.32 − 0.92i
(39.4%)

N (1650) 1
2

− 0.17 + 0.28i
(22.2%)

0.60 − 0.15i
(41.4%)

0.03 + 0.03i
(3.0%)

0.15 − 0.03i
(10.2%)

0.12 + 0.02i
(8.5%)

N (1440) 1
2

+ 0.69 + 0.37i
(59.0%)

0.00 + 0.00i
(0.2%)

0.00 − 0.00i
(0.0%)

0.00 + 0.00i
(0.0%)

0.34 − 0.36i
(36.9%)

N (1710) 1
2

+ 0.04 − 0.00i
(1.4%)

0.87 + 0.97i
(44.9%)

−0.10 + 0.18i
(6.9%)

−0.00 + 0.01i
(0.3%)

0.02 − 1.17i
(40.3%)

N (1720) 3
2

+ −1.16 − 3.01i
(32.6%)

0.04 − 0.04i
(0.5%)

0.03 + 0.05i
(0.6%)

−0.08 + 0.13i
(1.5%)

2.71 + 3.09i
(41.4%)

N (1900) 3
2

+ −0.00 + 0.00i
(0.1%)

−0.02 + 0.00i
(0.2%)

0.39 + 0.33i
(6.0%)

0.90 − 0.17i
(10.7%)

−3.04 + 1.22i
(38.5%)

N (1520) 3
2

− 0.19 + 0.39i
(15.9%)

−0.00 + 0.00i
(0.0%)

0.00 + 0.00i
(0.0%)

0.00 − 0.00i
(0.0%)

0.87 − 0.66i
(40.4%)

N (1675) 5
2

− 0.02 + 0.17i
(9.4%)

0.02 − 0.06i
(3.3%)

−0.00 + 0.00i
(0.0%)

0.00 + 0.00i
(0.0%)

1.01 − 0.49i
(61.8%)

N (1680) 5
2

+ 0.22 + 0.50i
(36.3%)

−0.00 − 0.00i
(0.0%)

0.00 − 0.00i
(0.0%)

0.00 − 0.00i
(0.0%)

0.68 − 0.48i
(55.0%)

the first bare state in this channel is just the bare nucleon.
As already mentioned, the physical nucleon in this model
carries approximately 54% composition of the bare nucleon.
Here in the energy region of N∗(1440), i.e., z ∈ [MR −
�R, MR + �R], the set of scattering states carries 34%. The
result 49.5% is obtained by further corrections of the Breit-
Wigner peak in Eq. (77), and the sum rule Eq. (75) is not
violated.

The locally constructed spectral density function gives a
smaller elementariness (31.5%). In Table IV, the complex
compositeness of the πN channel is rather large, and the

naive measure of the elementariness is also small (36.9%).
However, we should admit that which channel has the biggest
composition is model dependent. It was indicated in Ref. [43]
that the N∗(1440) has a large component of σN and also in
the JüBo model the σN channel plays an important role in
the P11 partial wave [52]. All in all, the N∗(1440) tends to
be a molecular state here. Actually, in the studies of the quark
model, the N∗(1440) deviates from the simple picture of a qqq
state. For example in Ref. [13] the N∗(1440) is depicted by a
core of three valence quarks complemented by a meson cloud,
while in Ref. [14] the coupling of the N∗(1440) to the πN

TABLE V. The compositenesses and elementarinesses of the selected N∗ Gamow states (three-body channels). The percentages in the
parentheses are the naive measures from Eq. (87). The meaning of the channel indices are ρN (1) → |J − L| = 1

2 , S = 1
2 ; ρN (2) → |J −

L| = 1
2 , S = 3

2 ; ρN (3) → |J − L| = 3
2 , S = 3

2 ; π�(1) → |J − L| = 1
2 ; π�(2) → |J − L| = 3

2 .

State XρN (1) XρN (2) XρN (3) Xπ�(1) Xπ�(2)

N (1535) 1
2

− −0.17 + 0.27i
(13.0%)

−0.00 + 0.00i
(0.2%)

0.02 − 0.04i
(1.6%)

N (1650) 1
2

− −0.02 − 0.11i
(7.4%)

−0.01 − 0.06i
(4.3%)

−0.04 + 0.02i
(3.0%)

N (1440) 1
2

+ −0.00 + 0.01i
(0.6%)

−0.01 + 0.00i
(0.6%)

−0.02 − 0.03i
(2.7%)

N (1710) 1
2

+ 0.00 − 0.00i
(0.0%)

−0.01 + 0.01i
(0.3%)

0.17 + 0.01i
(5.9%)

N (1720) 3
2

+ 0.19 − 0.07i
(2.1%)

0.58 − 0.07i
(5.9%)

0.10 − 0.07i
(1.2%)

−1.40 + 0.01i
(14.1%)

−0.01 − 0.01i
(0.1%)

N (1900) 3
2

+ 0.01 − 0.01i
(0.1%)

3.04 − 1.60i
(40.3%)

−0.00 − 0.00i
(0.0%)

−0.27 + 0.22i
(4.1%)

−0.00 − 0.00i
(0.0%)

N (1520) 3
2

− 0.00 + 0.00i
(0.1%)

−0.01 + 0.01i
(0.5%)

−0.58 + 0.26i
(23.5%)

0.01 − 0.00i
(0.3%)

0.52 − 0.00i
(19.3%)

N (1675) 5
2

− −0.00 − 0.00i
(0.1%)

−0.14 + 0.26i
(16.2%)

0.00 − 0.01i
(0.4%)

0.10 + 0.12i
(8.8%)

−0.00 + 0.00i
(0.0%)

N (1680) 5
2

+ 0.00 − 0.01i
(0.4%)

0.00 − 0.00i
(0.2%)

−0.01 − 0.00i
(0.7%)

0.00 + 0.00i
(0.0%)

0.11 − 0.01i
(7.4%)
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FIG. 4. The spectral density functions for all the selected N∗ states. Blue solid line: the Breit-Wigner denominator in Eq. (57). Orange
dashed (green dash-dotted) line: the first (second) spectral density function from the model. Red dotted line: the locally constructed function
in Eq. (82) [for N∗(1675) Eq. (83) is applied]. The vertical lines label the integral region of Eq. (77).

channel differs a lot from the prediction of the simple quark
model. Note also that the Roper resonance is often considered
as breathing mode of the nucleon; see e.g., Refs. [66,67]
and references therein.5 We point out that the interplay of a
bare Roper state with pion loops was already considered in
Ref. [68] in the framework of chiral dynamics with explicit
resonance fields.

4. N(1710) 1
2

+

The quantum numbers of the N∗(1710) are the same as
for the N∗(1440), and their elementarinesses are both not
large from the spectral density functions. As seen from Fig. 4,
the first function from the model does not show a significant
structure near its pole mass, while the second has a very weak
structure. The local construction is very similar to the latter.
The total elementariness of this state does not exceed 21%.
The complex compositeness of the ηN channel is quite large.
As given in Table IV, the naive measure of the ηN composite-
ness is 44.9%, whereas the elementariness is around 40.3%.
So all the three results suggest the N∗(1710) to be more of
composite nature. This corroborates the findings of Ref. [45]
that the N∗(1710) is dynamically generated in the JüBo2022

5Specifically, the calculation of the decay width in Ref. [66] does
not support the interpretation of the N∗(1440) state as the radial
excitation of the nucleon.

analysis while the second bare s channel of the P11 wave pole
moved far into the complex plane (z0 = 1513 − i405 MeV).

Note that the pole of N∗(1710) in the JüBo_omegaN solu-
tion [60] (fit A) is only 20 MeV below the ωN threshold, and
the coupling is large. One may expect a quantitative change
of the result for this state with a large component in the ωN
channel. However, a systematic study can only be carried out
after ωN photoproduction is fully analyzed.

5. N(1720) 3
2

+

In the P13 wave of the πN channel, two bare s-channel
states are included and we observe two resonance poles, the
N∗(1720) and the N∗(1900). The peak of N∗(1900) is very
strong, which affects the analyses of the N∗(1720) since it
is not very narrow; cf. Table III. Such interference severely
increases the ambiguity. As seen from Table III, the ele-
mentariness from the first spectral density function is around
34.1%, while the second gives 68.5%, which mainly comes
from the shoulder of the N∗(1900) peak; see Fig. 4. There-
fore an unambiguous interpretation of the numbers above is
difficult. The locally constructed function gives a value of
more than 60%, preferring the elementary nature. On the other
hand, the off-shell residues of the πN and π� channels are
extremely large, so the naive measure of the elementariness is
less than 50%. In a word, we cannot draw any firm conclusion
on this state.
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6. N(1900) 3
2

+

The N∗(1900) can hardly be seen in the purely hadronic
observations, but is believed to be very important for KY
photoproduction [69–73]. In the JüBo model, it is not sig-
nificant if photoproduction is not considered. For instance,
in the JüBo_omegaN solution [60], the pole lies in a rather
distant region in the complex plane (the pole width �R >

600 MeV) and the couplings are very weak. However, in
the JüBo2022 solution [45] it becomes a significant narrow
resonance.

We meet a situation similar to the N∗(1650) for this state.
The second spectral density function from the model in Fig. 4
simply suggests 100% elementariness for this state and also
the local construction indicates nearly 100% elementariness.
In contrast, the complex compositeness in Table V show a
very large ρN composition of this state. Note that ρN is an
effective three-body channel, for which the constraints from
data are relatively weak.

7. N(1520) 3
2

−

The D13 wave of πN is rather clear; there is only one
s-channel bare state and only one resonance pole. The spectral
density functions in Fig. 4, whether directly from the model
or locally constructed, indicate a small elementariness of this
state. Furthermore, in Table V, the compositions of N∗(1520)
in the three-body channels are relatively large. The model
uncertainty for this state seems to be small. All this suggests
the N∗(1520) to be composite.

8. N(1675) 5
2

−

As shown in Fig. 4, the spectral density function directly
given by the model provides a very small elementariness
for N∗(1675). However, the local construction from Eq. (81)
fails for this state. The residue of the ρN (2) channel, i.e.,
S = 3/2 and |J − L| = 1/2, is quite large, and the imaginary
part of the ρN (2) loop function is positive in Eq. (81). We
have checked the unitarity condition: every LII

κ must have
a negative imaginary part when the energy is z − i0+, with
z real and higher than the corresponding threshold. Even
though Im LII

ρN (2)(MR − i0+) < 0, at the pole Im LII
ρN (2)(MR −

i�R/2) > 0. The N∗(1675) is not broad, but the sign is still
changed by the finite width. If one uses Eq. (83), the elemen-
tariness would be nearly 100%, which is not so trustworthy
because the couplings are rather small, and the pole width
almost totally comes from the constant width in the mass
parameter M0. On the bright side, the constant width does
not cause negative values near the pole mass; see Fig. 4.
In addition, the violation of the sum rule is not large for
this construction,

∫ ∞
mπ +mN

wlc(z)dz � 0.97, deviating from the
standard value of 1 only by 3%, and this spectral density
function from plan B does not show any negative value in the
energy region we study.

Furthermore, the complex compositenesses in Tables IV
and V prefer a larger elementariness, which is opposite to the
spectral density function from the model. So we cannot draw
a certain conclusion on the N∗(1675).

9. N(1680) 5
2

+

Unlike the N∗(1675), the uncertainties of the N∗(1680) in
this study are not large. The spectral density functions given
by the model and the local construction agree with each other
well in Fig. 4, both of which lead to an elementariness larger
than 67%. The complex compositenesses in Tables IV and
V may indicate non-negligible compositions of πN and π�

channels, but the naive measure of the elementariness is still
more than 55%. It is expected that the N∗(1680) tends to be
elementary.

Note again that the pole position of the N∗(1680) is closer
to the ωN threshold in the JüBo_omegaN solution [60], and
the coupling is not small. There is a possibility that the
N∗(1680) becomes more composite when ωN is considered.

C. Analyses of the � states

The elementariness for the selected � states is summarized
in Table VI. The complex quantities of the Gamow states
are listed in Table VII. The corresponding spectral density
functions are plotted in Fig. 5. The results are explained and
discussed one by one in what follows.

1. �(1620) 1
2

−

There are significant uncertainties for this state. The spec-
tral density function given by the model in Fig. 5 is very small,
which indicates strongly that this state only very weakly
related to the s-channel bare state. The local construction
gives an exactly moderate elementariness 50.0%. However,
the complex compositenesses in Table VII are small, and the
naive measure of the elementariness is even 69.4%. Since the
three scenarios lead to three different results, it is hard to
draw a conclusion for this state. Note again that, although in
JüBo2022 with the inclusion of the mixed-isospin γ p → K	

reactions more experimental information on the � states was
taken into account, the database for the � states is still smaller
than that for the N∗ states. Thus it is understandable that some
outputs are uncertain.

2. �(1232) 3
2

+

As the lowest � state, there has been a lot of discussions on
the �(1232) in the literature. In the quark model the �(1232)
can be described by a qqq core, though with the Goldstone
mesons as also the degrees of freedom [7]. Reference [14]
also claims the deficiency of the simple quark model when
studying the �(1232). As for the studies of the compositeness,
there are different proposals, for example Ref. [74] finds a siz-
able πN component in the resonance, while Ref. [43] obtains
a larger elementariness. Note that the interplay of the compact
(bare) state with the pion loops around the nucleon was al-
ready discussed in Ref. [68] within baryon chiral perturbation
theory with explicit resonance fields, and it was shown that
both components are required to achieve a proper description
of the P33 partial wave of pion-nucleon scattering.

In the JüBo model the situation is even more complicated,
and unfortunately we cannot draw firm conclusions. The �

particle appears as the ground state in the initial or final π�

channel and also as s-channel intermediate states in various
processes. In addition, there are some u-channel potentials
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TABLE VI. The elementariness of the selected N∗ states. The label “(F)” means that the local construction of Eq. (81) has failed and
Eq. (83) is used instead.

State Pole position (MeV) Z1 Z2 Ztot Z lc Z̃

�(1620) 1
2

−
1607 − 42i 18.9% 18.9% 50.0% 69.4%

�(1232) 3
2

+
1215 − 46i 53.4% 0.9% 53.8% 82.6% (F) 30.5%

�(1600) 3
2

+
1590 − 68i 39.7% 13.3% 47.8% 77.5% 69.7%

�(1700) 3
2

−
1637 − 148i 59.7% 59.7% 44.9% 47.8%

with � being exchanged. Those three �′s should be physi-
cally the same, but due to practical reasons there are technical
simplifications. The initial/final state � only couples to the
πN channel, and the coupling constant and bare mass are
fixed; see Refs. [10,48]. The � pole in the amplitude is gen-
erated by the s-channel bare state, which couples to all the
I = 3/2 channels, and the bare mass and coupling constants
are fit parameters. Meanwhile, the u-channel exchanged � is
just regarded as a stable particle with the mass 1232 MeV. Be-
cause of numerical limitations, it is at the moment impossible
to overcome these inconsistencies.

Anyway, we may start the analyses with the initial/final
state �. Its bare mass in this model is M0 = 1415 MeV, with
the coupling to the πN channel g2/(4π ) = 0.36. The resulting
pole position in the propagator of Eq. (60) is 1211 − 37i MeV.
This is very similar to the single channel toy model, and the
spectral density function can be obtained directly from the
imaginary part of Eq. (60); see Fig. 6. The resulting elemen-
tariness is 69.6%, suggesting the elementary interpretation.
One can also calculate the complex elementariness of the
Gamow state by directly applying Eq. (40): Z = 0.64 − 0.32i
with the compositeness (only of πN channel) X = 1 − Z =
0.36 + 0.32i. Then the naive measure of the elementariness
is 59.5%, qualitatively in agreement with the spectral density
function.

As for the pole of �(1232) in the amplitude, there are two
s-channel bare states in the P33 wave, and the spectral density
functions show a typical mixture. The two structures, the first
of which is the �(1232), both show up in the first function.
The elementariness directly from the model is 53.8%. The
local construction of Eq. (81) fails. Similarly to the N∗(1675)
state discussed in the last section, here the π� residue is large

and the imaginary part of the π� loop function is positive.
Then the whole imaginary part is positive, making the g2

1 in
Eq. (81) negative. If we use Eq. (83), the constructed spectral
density function gives an elementariness about 82.6%. This
“plan B” does not apparently violate the sum rule either:∫ ∞

mπ +mN
wlc(z)dz � 0.93. Besides, this spectral density func-

tion from plan B does not show any negative value in the
energy region we study. The spectral density function may
suggest the �(1232) to be more elementary than composite,
but on the contrary the Gamow state has a large composition
of the π� channel, leading to a rather small measure of
the elementariness; see Table VII. We cannot claim this is
certainly true because of the inconsistencies discussed above.

3. �(1600) 3
2

+

Though the �(1600) and the �(1232) are in the same
wave, there is much less uncertainty for the �(1600). In
Fig. 5, it is seen that the peak of �(1600) mainly stays on
the first curve. The total elementariness from the two is rather
moderate (47.8%), while the local construction succeeds and
results in 77.5%. On the other hand, as shown in Table VII,
the biggest partial compositeness is of the π� channel, while
the naive measure of the elementariness is 69.7%. Combining
the three results, the �(1600) is likely to be an elementary
state. This is in accordance with the observation in Ref. [45]
that the �(1600) is now largely induced by a bare s-channel
pole, whereas it was dynamically generated in previous JüBo
studies [53–55].

4. �(1700) 3
2

−

The result for the �(1700) in this study is interesting.
The three scenarios agree with each other, but all give rather

TABLE VII. The compositeness and elementariness of the selected � Gamow states. The percentages in the parentheses are the naive
measures from Eq. (87). The meaning of the channel indices are ρN (1) → |J − L| = 1

2 , S = 1
2 ; ρN (2) → |J − L| = 1

2 , S = 3
2 ; ρN (3) →

|J − L| = 3
2 , S = 3

2 ; π�(1) → |J − L| = 1
2 ; π�(2) → |J − L| = 3

2 .

State XπN XρN (1) XρN (2) XρN (3) Xπ�(1) Xπ�(2) XK	 Z

�(1620) 1
2

− 0.10 − 0.03i
(8.6%)

−0.02 − 0.09i
(8.0%)

−0.00 − 0.00i
(0.3%)

0.13 − 0.09i
(13.0%)

0.01 + 0.00i
(0.7%)

0.79 + 0.20i
(69.4%)

�(1232) 3
2

+ 0.63 + 1.16i
(28.5%)

0.02 − 0.01i
(0.4%)

−0.00 + 0.01i
(0.2%)

0.06 − 0.03i
(1.4%)

1.54 − 0.58i
(35.4%)

−0.01 − 0.01i
(0.3%)

−0.00 + 0.15i
(3.3%)

−1.24 − 0.70i
(30.5%)

�(1600) 3
2

+ −0.04 + 0.07i
(3.5%)

0.00 − 0.01i
(0.3%)

0.01 − 0.03i
(1.3%)

−0.00 − 0.00i
(0.1%)

−0.42 + 0.21i
(21.0%)

−0.00 − 0.00i
(0.0%)

−0.08 + 0.05i
(4.1%)

1.53 − 0.29i
(69.7%)

�(1700) 3
2

− −0.03 + 0.05i
(2.3%)

−0.00 + 0.01i
(0.4%)

−0.03 + 0.02i
(1.3%)

−0.03 + 0.00i
(1.3%)

−0.01 − 0.03i
(1.5%)

0.45 − 0.95i
(45.4%)

0.00 + 0.00i
(0.0%)

0.64 + 0.91i
(47.8%)
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FIG. 5. The spectral density functions for all the selected � states. Blue solid line: the Breit-Wigner denominator in Eq. (57). Orange
dashed (green dash-dotted) line: the first (second) spectral density function from the model. Red dotted line: the locally constructed function
in Eq. (82) [for �(1232) Eq. (83) is applied]. The vertical lines label the integral region of Eq. (77).

moderate values. As seen from Fig. 5, the spectral density
function from the model and the local construction behave
similarly. The model gives the value of the elementariness
as 59.7%, while the local construction results in is 44.9%.
In Table VII, the naive measure of the elementariness is
also moderate (47.8%), and the largest composition seems
to be π�. One might claim that physically this state is

1.1 1.15 1.2 1.25 1.3 1.35

z [GeV]
0

2

4

6

8

w
(z

)

FIG. 6. The spectral density functions the initial/final state
�(1232). Blue solid line: the Breit-Wigner denominator in Eq. (57).
Orange dashed line: the spectral density function from the model.
The vertical lines label the integral region of Eq. (77).

really half elementary and half composite, but notice that
the width of the �(1700) resonance (almost 300 MeV) is
the biggest among all the selected states, causing visible
ambiguities.

V. CONCLUSION AND OUTLOOK

This paper studies the composition of the N∗ and � res-
onances, based on the coupled-channels dynamics of the
Jülich-Bonn model. Results from three scenarios are com-
pared to draw the conclusions: the spectral density functions
directly from the model, the local construction from the pole
parameters, and the complex compositenesses. The first two
scenarios stem from the physical scattering states, which give
probabilities as output, while the last is defined by the Gamow
states and is different from the first two in the basic philoso-
phy. The three results roughly depict the model dependence
of this study. We have selected 13 states, 8 of which have
reached relatively certain results: N (1535) 1

2
−

, N (1440) 1
2

+
,

N (1710) 1
2

+
, and N (1520) 3

2
−

have chances of being com-

posite, whereas N (1650) 1
2

−
, N (1900) 3

2
+

, N (1680) 5
2

+
, and

�(1600) 3
2

+
have tendencies to be elementary. For those 8

states, at least two of the three scenarios result in qualitative
agreements.

However, model uncertainties do exist. Some of the them
are caused by the three-body effective channels; especially the
uncertainty of the �(1232) state is highly related to the π�

channel. Including rigorous three-body unitarity and crossing
symmetry is a challenge left for future studies. Moreover,
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theoretically, the connections between the spectral density
functions and the Gamow states still need to be understood
in a deeper way. Note that for N (1650) 1

2
−

, N (1900) 3
2

+
,

and �(1232) 3
2

+
the complex compositenesses of the Gamow

states lead to opposite conclusions on the spectral density
functions. Moreover, relating the results which are based on
a pure hadronic model to the descriptions in quark models
appears to be difficult. However, it is clear that a compact
state in such an approach must have a mapping onto a quark
model state, which we have assumed throughout. All in all,
this topic itself is difficult in nature. One cannot expect very
clear interpretations and definite conclusions for every state,
since only the states like the deuteron can be highly related
to physical observables. We believe this paper presents the
presently achievable status of such type of investigation. We
also hope this paper can inspire the community toward further
constructive discussions on this topic.

In the future, the ωN channel can be included in the
study of the compositions, after the ωN photoproduction
is included in this model. Moreover, including more high-
quality data also from other photoproduction channels will
lead to refined pole values. The same methods can be ap-
plied on the other sectors, e.g., the �∗ resonances or the Pc

exotic states, which are also being studied in the Jülich-Bonn
model.
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