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Isospin asymmetric matter in uniform and nonuniform strong magnetic fields
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Isospin asymmetric quark matter is investigated with the Polyakov Nambu–Jona-Lasinio model at zero
temperature in a strong magnetic field. The isospin symmetry/asymmetry can be controlled by altering the
fraction parameter α of the two kinds of interactions, i.e., the scalar coupling and instanton-induced coupling.
Specially, the flavor decoupled state with α = 0 is strongly isospin asymmetric. It is accompanied by the
discrepancy of the u and d quarks in the chiral phase transitions, which is eliminated up to α = 0.5. It is found
that there exists a critical value αc, above which the simultaneous chiral restoration would happen for the flavor
isodoublet, no matter whether their masses are equal or not. The αc can be decreased by the increase of the
magnetic field. Finally, it is suggested that the presence of the Polyakov potential increases the maximum central
magnetic field of compact stars up to 3.5 × 1018 G.
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I. INTRODUCTION

The study of the quantum chromodynamics (QCD) phase
diagram attracts a lot of attention theoretically and experimen-
tally. The three basic characteristics of QCD, chiral symmetry,
quark confinement, and asymptotic freedom, play an impor-
tant role in determining the properties of hadrons and the
phase diagram at finite temperature and density [1–5]. Under-
standing these aspects could help us to get better knowledge of
strongly interacting matter. However, the QCD equation is dif-
ficult to solve using a purely mathematical method. Specially,
the larger coupling constant in the low energy regime restricts
the application of perturbative QCD. On the other hand, the
sign problem in Monte Carlo simulation prevents of lattice
QCD simulation [6]. Consequently, more often results are
phenomenologically investigated by effective models based
on the spirit of QCD.

The asymptotic freedom indicates that interaction of
quarks becomes weaker with decreasing distance and be-
comes stronger as the separation increases. It is described by
a variational coupling constant or represented by a density-
and temperature-dependent mass of quasiparticles in the liter-
ature [7–9]. The chiral symmetry breaking was successfully
investigated in the Nambu–Jona-Lasinio (NJL) model at fi-
nite temperature by the dynamical generation of quark mass,
which can act as an order parameter of chiral phase tran-
sition [10]. At high densities of a good simulation of the
compact star, the deconfinement phase transition is expected
to take place, which is characterized by a approximately Z(3)
center symmetry breaking. Phenomenologically, it has been
widely realized by introducing a Polyakov potential in the
NJL model at finite temperature. Consequently, the Polyakov
Nambu–Jona-Lasinio (PNJL) model had long been widely
employed in the investigation of the chiral phase diagram and
the confinement-deconfinement transition [11–15]. However,
in the conventional version of the PNJL model, the physics
of confinement from the Polyakov potential would be lost at
zero temperature. Recently, by introducing a Polyakov-loop-

dependent coupling strength, the deconfinement transition in
the PNJL model has been improved to be operative in the zero
temperature regime [16,17].

Recently, the investigation of QCD in strong magnetic
fields shed new light on the whole phase diagram. The typ-
ical strength of strong magnetic fields could be of the order
of 1012 G on the surface of pulsars. Some magnetars can
have even larger magnetic fields as high as 1016 G at the
surface [18–21] and 1018 or 1019 G in the interior of certain
compact stars [22–24]. By comparing the magnetic and grav-
itational energies, the physical upper limit to the total neutron
star is of order 1018 G [25,26]. And for self-bound quark
stars, the limit could go higher, on the order of about 1020

G [24]. A realistic profile of the magnetic field distribution
inside strongly magnetized neutron stars is proposed such that
the magnetic fields increase relatively slowly with increasing
baryon chemical potential in polynomial form instead of ex-
ponential form [27]. At the energies available ar the CERN
Large Hadron Collider (LHC), it is estimated a field as large
as 5 × 1019 G can be produced. The higher order of 1025 G
might have occurred during the electroweak phase transition
in the early universe. But how strong the central magnetic field
could be in compact star is an open question, which depends
on the constraint of the parallel pressure of the system.

This paper is organized as follows. In Sec. II, we present
the thermodynamics of the asymmetric magnetized quark
matter in the SU(2) PNJL0 model. In Sec. III, the numerical
results for the chiral restoration and deconfinement phase tran-
sition of isospin asymmetric matter are shown in both uniform
and nonuniform magnetic fields. The last section is a short
summary.

II. THERMODYNAMICS OF PNJL MODEL
AT ZERO TEMPERATURE

Following the work in the SU(2) version of the PNJL
model, the Lagrangian density in a strong magnetic field is
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given by [16,28]

L = L0 + L1 + L2 + Lv − U (�, �̄, T ) (1)

with a free part

L0 = ψ̄ (iγμDμ − m)ψ (2)

and a vector interaction part

Lv = −Gv (ψ̄γμψ )2 (3)

and two different scalar interaction parts (see, e.g., [29–31])

L1 = Gs1[(ψ̄ψ )2+(ψ̄ �τψ )2+(ψ̄ iγ5ψ )2+(ψ̄ iγ5�τψ )2], (4)

L2 = Gs2[(ψ̄ψ )2 − (ψ̄ �τψ )2−(ψ̄ iγ5ψ )2+(ψ̄ iγ5�τψ )2], (5)

where ψ represents a flavor isodoublet (u and d quarks) and
�τ are isospin Pauli matrices. The coupling of the quarks
to the electromagnetic field is introduced by the covari-
ant derivative Dμ = ∂μ − ieQAμ, where Q = diag(qu, qd ) =
diag(2/3,−1/3) is the quark electric charge matrix. The inter-
action is invariant under SUL(2) × SUR(2) × UV (1) transfor-
mations. L1 exhibits an additional UA(1) symmetry, whereas
this is not true for L2. L2 has the structure of a ’t Hooft deter-
minant in flavor space [32]. This interaction can be interpreted
as being induced by instantons and reflects the UA(1) anomaly
of QCD. If we choose Gs1 = Gs2 = Gs/2, the Lagrangian
density will recover the conventional version of the PNJL
model. In this work, our study focuses on the flavor mixing
and the instanton effects by defining adjustable coupling con-
stants dependent on a parameter α as [31,33]

Gs1 = (1 − α)Gs, Gs2 = αGs. (6)

We now want to study the properties of the asymmetric
system at zero temperature. The up and down quark chemical

potentials

μu = μ + δμ, μd = μ − δμ (7)

are in general different. Here μ = μB/3 is the quark num-
ber chemical potential and δμ = μI/2 is proportional to the
isospin chemical potential.

The choice of potential for the deconfinement order param-
eter as a function of temperature and chemical potential allows
us to construct a realistic phase diagram. In the literature,
the Polyakov potential U (�, �̄, T ) drives the phase transition
from the color confined to the color deconfined phase at finite
temperature. In order to extend the confinement description
to zero temperature, we take � = �̄ for the nonzero quark
chemical potentials at the mean-field approximation. The total
thermodynamical potential density for the two-flavor isospin
asymmetric quark matter in the mean-field approximation
reads

	PNJL =
∑
i=u,d

	i + 2Gs1
(
σ 2

u + σ 2
d

)

+ 4Gs2σuσd − Gv (ρu + ρd )2 + U (�, T ) (8)

by introducing the constitute dynamical mass Mi and renor-
malized chemical potential μ̃i:

Mi = mi − 4Gs1σi − 4Gs2σ j, i �= j ∈ u, d (9)

μ̃i = μi − 2Gvρ. (10)

The first term 	i is defined as 	i = 	vac
i + 	

mag
i + 	med

i .
At T = 0, the vacuum, magnetic field, and medium contribu-
tions to the thermodynamical potential are [34–36]

	vac
i = Nc

8π2

⎡
⎢⎣M4

i ln

⎛
⎜⎝ +

√
M2

i + 2

Mi

⎞
⎟⎠ − 

√
M2

i + 2
(
M2

i + 22
)
⎤
⎥⎦, (11)

	
mag
i = −Nc|qiB|2

2π2

[
ζ ′(−1, xi ) − 1

2

(
x2

i − xi
)

ln(xi ) + x2
i

4

]
, (12)

	med
i = −|qi|B

2π2

∫ pF
z

0
3(μ̃i − Eni )d p = −Nc|qi|B

4π2

nmax
i∑

n=0

αn

⎧⎪⎨
⎪⎩μ̃i

√
μ̃2

i − M2
ni − M2

ni ln

⎡
⎢⎣ μ̃i +

√
μ̃2

i − M2
ni

Mni

⎤
⎥⎦

⎫⎪⎬
⎪⎭, (13)

where xi = M2
i

2|qi|B , Eni =
√

M2
ni + p2

z , Mni =
√

M2
i + 2n|qi|B, and the color degenerate factor 3 is recovered once more due to

the decoupling of the color interaction with the Polyakov potential. The spin degeneracy factor αn = 2 − δn0 is 1 for the lowest
Landau level (LLL)and 2 for higher Landau levels. At zero temperature, the occupied Landau levels have the maximum value

nmax
i = μ̃2

i −M2
i

2|qi|B . The condensation contribution from the quark with flavor i is

σi = σ vac
i + σ

mag
i + σ med

i . (14)
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The terms σ vac
i , σ

mag
i , and σ med

i represent the vacuum, magnetic field, and medium contributions to the quark condensation at
zero temperature, respectively [34–36]:

σ vac
i = −MiNc

2π2

⎡
⎢⎣

√
2 + M2

i − M2
i ln

⎛
⎜⎝ +

√
2 + M2

i

Mi

⎞
⎟⎠

⎤
⎥⎦, (15)

σ
mag
i = −Mi|qi|BNc

2π2

{
ln[�(xi)] − 1

2
ln(2π ) + xi − 1

2
(2xi − 1) ln(xi )

}
, (16)

σ med
i = Mi|qi|BNc

2π2

∑
ni=0

αni

∫ ∞

0

d pz

Eni
�(μ̃i − Eni ) = Mi|qi|BNc

2π2

nmax
i∑

n=0

αni ln

⎛
⎜⎝ μ̃i +

√
μ̃2

i − M2
ni

Mni

⎞
⎟⎠. (17)

We associated the chiral condensate with quark-antiquark
pairs and considered it as a constant. In Ref. [37], it is declared
that the energy separation between quarks and antiquarks
grows so that it is no longer energetically favorable to excite
antiquarks from the Dirac sea to form pairs with the quarks at
the Fermi surface. On the other hand, pairs of quarks and holes
with parallel momenta were suggested to be energetically
favorable and give rise to the so-called inhomogeneous chiral
condensates. More recently, one particular inhomogeneous
phase, the so-called dual chiral density wave (DCDW), was
characterized by a spatially modulated chiral condensation in
both scalar and pseudoscalar channels [37,38]. Such situations
are not included in this study.

The simple polynomial form for the Polyakov potential
was improved by replacing the higher order polynomial term
with a logarithmic form [39–41]. At finite temperature, the
following ansatz is suggested [42,43]:

U (μ,�) = (a0T 4 + a1μ
4 + a2T 2μ2)�2

+ a3T 4
0 ln(1 − 6�2 + 8�3 − 3�4). (18)

At zero temperature, we adopt

U0(μ,�) ≡ a1μ
4�2 + a3T 4

0 ln(1 − 6�2 + 8�3 − 3�4),

(19)

where T0 = 190 MeV is the critical temperature for decon-
finement in the pure gauge sector, in agreement with lattice
results. At zero temperature, U0 is used to assure confinement
physics.

In strong magnetic fields, we employ the phenomenology
of the scalar and vector interactions dependent on the traced
Polyakov loop as

Gs1 → Gs1(1 − �2), Gs2 → Gs2(1 − �2),

Gv → Gv (1 − �2), (20)

and the effective coupling interaction would vanish in the de-
confined phase due to the dependence on the order parameter
in Eq. (20).

Finally, the total thermodynamic potential of asymmetric
matter at zero temperature is given by

	(μ,�, B) =
∑

i

	i + 2Gs1
(
σ 2

u + σ 2
d

) + 4Gs2σuσd − Gvρ
2

+ U (μ,�, σ, ρ), (21)

where

U (μ,�, σ, ρ) = U0(μ,�) − 2Gs1�
2
(
σ 2

u + σ 2
d

)
− 4Gs2�

2σuσd + Gv�
2ρ2. (22)

From the thermodynamics potential one can easily obtain
the quark number density ρ = ∑

i=u,d ρi with the i flavor
contribution

ρi = 3|qi|B
2π2

∑
ni=0

αni

√
μ̃2

i − M2
i − 2ni|qi|B. (23)

By minimizing the thermodynamical potential with respect
to the quark condensate σi and the Polyakov loop �, we have
a set of the coupled gap equations [44]:

∂	

∂σi
= 0,

∂	

∂�
= 0. (24)

III. NUMERICAL RESULT

In the nonrenormalizable model, a regularization proce-
dure is usually applied by a three-momentum noncovariant
cutoff  = 719.23 MeV. The quark current masses as free
parameters are adopted as mu = md = 4.548 MeV. The four-
fermion couplings are Gs = 1.954/2 and Gv = 0.3Gs [45].
We take δμ = 30 MeV as half of the isospin chemical poten-
tial. We adopt the parameters a1 = −0.05 and a3 = −0.17 for
the confinement potential, guided by Ref. [16]. The presence
of the vector interaction accounts for the realization of the
deconfinement transition at zero magnetic field. In follow-
ing subsections, the cases of uniform strong magnetic field
and chemical-potential-dependent nonuniform strong mag-
netic field are studied.

A. Results with uniform strong magnetic field

In Fig. 1, the dynamical mass M for u and d quarks is
shown as a function of the chemical potential μ at different
α values in the magnetic field B = 3 × 1018 G. The u- and
d-quark masses are marked by the solid and dashed lines,
respectively. The multiple first-order transitions occur at zero
temperature due to the fermion energy dependence on the
Landau level. In particular, for the α = 0 case the curve of Md

has two jumps, around μ = 310 MeV and μ = 440 MeV. Ac-
cording to Ref. [15], the critical chemical potential is defined
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FIG. 1. The dynamical masses of u, d quarks are shown versus
the chemical potential at B = 3 × 1018 G for different α. The u-quark
masses are marked by solid lines and the d-quark masses by dashed
lines.

as a threshold value, at which the order parameter decreases
to half of its vacuum value. Moreover, the case α = 0 is fully
flavor decoupled, where the critical chemical potentials for the
u and d quarks are mismatched. Specifically, in the range of
237 < μ < 310 MeV, the u quark is chiral restored while the
d quark is still chirally broken. At α = 0.5, the quark matter
is isospin symmetric so that the chiral transitions for u and d
quarks take place simultaneously and the mass Mu = Md can
be always maintained. In fact, as the parameter α increases
up to α = 0.15 marked by the blue lines, the u and d quarks
get chiral restoration simultaneously. So the critical value αc

is available to remove the mismatch of the chiral restoration
between the u and d quarks, which will be discussed later.

In Fig. 2, at the magnetic field B = 3 × 1018 G, the
Polyakov loop � is shown at three different values, α =
0, 0.15, 0.5. It is seen that all the lines almost overlap and
are insensitive to α, which can be accounted for by the fact
that α does not change the color structure but the flavor space.
So it is expected that α has no effect on the color deconfine-
ment transition. It can be concluded that the flavor mixing or
isospin asymmetry has no effect on the deconfinement phase
transition.

In Fig. 3, it is obvious that the stronger the magnetic field
is, the larger the critical chemical potential μu

c (or μd
c ) is,

which means that the condition of chiral restoration becomes
more severe in a stronger magnetic field. There exists a critical
value αc, above which the mismatch of the flavor isodoublet
is removed, and the chiral phase transition occurs simultane-
ously and the flavor mixing effect disappears.

The parameter α can change the isospin symmetry. In
general, the isospin symmetry can be broken by α away from
0.5. Correspondingly, the critical chemical potentials for u
and d are different. However, the difference between the μu

c
and μd

c is removed at α larger than a threshold value αc,
which is shown as a function of the magnetic field in Fig. 4.

FIG. 2. The Polyakov loop is shown versus the chemical poten-
tial for different α at B = 3 × 1018 G.

The decreasing function demonstrates that the stronger the
magnetic field is, the more likely the chiral restoration of the
flavor isodoublet will happen at the common critical chemical
potential. It can be concluded that the isospin symmetry struc-
ture is more favorable in the stronger magnetic field. In other
words, the strong magnetic field enables the u and d quarks to
be chirally restored simultaneously even at α �= 0.5.

B. Results with nonuniform magnetic field

In a strong magnetic field, the breaking of the rotational
symmetry produces an anisotropic structure, with the paral-
lel pressure and the transverse pressure in directions along
and perpendicular to the magnetic field respectively [24,46].
Some magnetars with larger magnetic fields as high as 1016

FIG. 3. The critical chemical potentials of u, d quarks are shown
versus α in different magnetic fields. The solid and dashed lines
denote the u and d quarks, respectively.
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FIG. 4. The threshold value αc for the disappearance of the mis-
match between μu

c and μd
c is shown with B.

G on the surface and 1018 G in the interior would exhibit
anisotropic structure. The anisotropic pressure was displayed
by a splitting of the parallel and transverse pressures in a
nonuniform magnetic field. There are some polynomial mag-
netic field profiles satisfying Maxwell equations [27,47], but
the accuracy of these profiles in a direction other than polar
and their compatibility with the presence of a non-negligible
toroidal component have not yet been studied. Furthermore,
these profiles are almost flat and they do not allow reaching
internal magnetic field strength values much beyond the order
of magnitude of the surface field [48].

We employ a magnetic field profile that is a function of the
baryon chemical potential:

B(μB) = Bs + Bc
(
1 − eb (μB−938)a

938
)
, (25)

where μB = 3μ, a = 2.5, b = −4.08 × 10−4, and Bs = 1015

G. The value 938 MeV is the of the baryon chemical potential
on the star surface. The parameters Bs and Bc correspond to
the orders of magnitude of the magnetic field at the surface
and the center of the star, respectively. Bc is estimated to
be in the range (0.1–4.2) × 1018 G according to the Einstein
and Maxwell equations self-consistently for non rotating and
rotating stars [49,50]. Another result suggested the maximum
field prevailing at the center is 5 × 1018 G [23]. And in
Ref. [51], Bc is limited to (1–3) × 1018 G. In our work, we
take the values of Bc ranging (2–4) × 1018 G.

In this calculation, the matter pressure should be normal-
ized by considering the zero pressure condition at the critical
point. So we have the normalized term [33,52]

�P = −	(μ,�, B) + 	(μ0,�0, B). (26)

Under strong magnetic fields, the total pressure of the
system should be a sum of the matter pressure and the field
pressure contributions. Then we have parallel and transverse

FIG. 5. Anisotropic pressure in a nonuniform magnetic field
B(μB) at the central value Bc = 2.0 × 1018 G.

pressures [53–57]

P‖ = �P − B2

8π
, (27)

P⊥ = �P − M B + B2

8π
, (28)

where the magnetic susceptibility reads [36,58]

M = −
∑

i

∂	i

∂B
. (29)

We investigate the anisotropic pressure of isospin asym-
metric quark matter in a nonuniform magnetic field at zero
temperature.

FIG. 6. Anisotropic pressure in a nonuniform magnetic field
without the Polyakov potential.
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FIG. 7. Same as Fig. 6 but with the Polyakov potential.

In Fig. 5, we plot the anisotropic pressures P‖ and P⊥
as functions of μ at Bc = 2 × 1018 G with different α. The
parallel pressure P‖ increases monotonically with μ, while
the transverse pressure P⊥ oscillates due to the oscillations of
the magnetization M . It is known as the de Haas–van Alphen
effect due to the change of Landau energy level in the mag-
netic field [59–61]. It was predicted for the first time by
Landau and then was confirmed experimentally in some met-
als [61,62]. In Ref. [63], the magnetization oscillations are
changed by the magnetic field and become slower as the
magnetic field increases. The nonuniform magnetic field in
Eq. (25) increases as the chemical potential increases. There-
fore, the transverse pressure tends to oscillate slowly at high
densities. At low chemical potentials, the amplitude of the
oscillations is small. Both P‖ and P⊥ are insensitive to α.
Therefore, the effect of α on the anisotropic pressure can be
ignored.

In Figs. 6 and 7, P‖ and P⊥ are plotted for different
central magnetic fields Bc at α = 0.5. It can be seen that
the transverse pressure P⊥ increases as the central magnetic
field increases, while the parallel pressure P‖ decreases. The
anisotropic structure is obviously enhanced by the increasing
central magnetic field. As the central magnetic field changes,
the monotonically increasing P‖ turns into a nonmonotonic
function of μ. This is due to the competition of the two factors
affecting the pressure behavior, namely, the positive matter
(chemical potential) contribution and the negative magnetic
field contribution. If the field contribution overwhelms the
matter contribution to the pressure, ∂P‖/∂μ < 0 appears. This
results from the chemical-potential-dependent magnetic field
B(μB) in Eq. (25). It indicates that the selected ansatz has this
peculiarity rather than a signal that violates the general self-
consistence. At Bc = 4.0 × 1018 G, the descending behavior
of P‖ in the region between two points is unstable according
to the mathematical characteristic of the selected ansatz. This

indicates the existence of a maximum central magnetic field
Bmax

c at which the derivative ∂P‖/∂μ = 0, marked by a full dot
on the dashed line. Without the Polyakov potential in Fig. 6,
the maximum value of the central magnetic field is deter-
mined as Bmax

c = 3.1 × 1018 G. By introducing the Polyakov
potential at zero temperature in our model, we can obtain an
enlarged central magnetic field Bmax

c = 3.5 × 1018 G as shown
in Fig. 7.

IV. CONCLUSION

In this paper, we have employed the PNJL0 model to inves-
tigate isospin-asymmetric matter at zero temperature, which
is realized by altering the fraction parameter α of the scalar
coupling and the instanton-induced interaction. At α = 0.5 for
the isospin symmetry state, the chiral phase transitions of u
and d flavors occur simultaneously with Mu = Md . At α = 0
for the strong isospin asymmetry state, the chiral transition
is accompanied by the discrepancy of the flavor isodoublet,
where the u quark gets chirally restored first. We have found
that there is a threshold value αc, above which the chiral
transition for the u and d quarks takes place simultane-
ously. The simultaneous phase transition happens even if their
masses are not equal. Moreover, αc would be decreased by
increasing magnetic field. Therefore, it could be concluded
that the simultaneous phase transition for isospin asymmetric
matter tends to be more favorable in a stronger magnetic
field.

The isospin asymmetry in flavor space is usually available
in compact stars. It has been numerically demonstrated that
the parameter α has no effect on the color deconfinement
transition, as expected. By introducing a nonuniform magnetic
field to simulate these realistic environments of compact stars,
it has been found that the presence of the Polyakov potential
would yield the maximum central magnetic field Bmax

c from
3.1 × 1018 to 3.5 × 1018 G. The Polyakov potential will have
an important effect on the equation of state and consequently
on how strong a central magnetic field the compact star could
accommodate in the interior.

It was shown in Ref. [64] that the presence of a magnetic
field favors the formation of spatially inhomogeneous conden-
sate configurations at low temperatures and nonzero chemical
potential. More realistic systems should be considered in the
magnetic field that is named the magnetic dual chiral density
wave (MDCDW) [65]. It would be of some interest to extend
our present work to more realistic systems, where the chiral
condensate is associated with a hole-particle pair in the MD-
CDW phase.

ACKNOWLEDGMENTS

The authors would like to acknowledge support from the
National Natural Science Foundation of China under Grants
No. 11875181 and No. 11705163. This work was also spon-
sored by the Fund for Shanxi “1331 Project” Key Subjects
Construction.

015201-6



ISOSPIN ASYMMETRIC MATTER IN UNIFORM AND … PHYSICAL REVIEW C 109, 015201 (2024)

[1] E. S. Abers and B. W. Lee, Phys. Rep. 9, 1 (1973).
[2] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).
[3] M. E. Peskin and D. V. Schroeder, An Introduction To Quantum

Field Theory (Addison-Wesley, Reading, MA, 1995).
[4] A. W. Thomas and W. Weise, The Structure of the Nucleon

(Wiley, New York, 2001).
[5] H. Satz, Extreme States of Matter in Strong Interaction Physics:

An Introduction, Lecture Notes in Physics Vol. 841 (Springer,
Berlin, 2012), pp. 1–239.

[6] G. P. Lepage and P. B. Mackenzie, Phys. Rev. D 48, 2250
(1993).

[7] P. Levai and U. W. Heinz, Phys. Rev. C 57, 1879 (1998).
[8] P. Chakraborty and J. I. Kapusta, Phys. Rev. C 83, 014906

(2011).
[9] S. Plumari, W. M. Alberico, V. Greco, and C. Ratti, Phys. Rev.

D 84, 094004 (2011).
[10] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).
[11] A. M. Polyakov, Phys. Lett. B 72, 477 (1978).
[12] L. Susskind, Phys. Rev. D 20, 2610 (1979).
[13] B. Svetitsky and L. G. Yaffe, Nucl. Phys. B 210, 423 (1982).
[14] B. Svetitsky, Phys. Rep. 132, 1 (1986).
[15] M. Ferreira, P. Costa, and C. Providência, Phys. Rev. D 97,

014014 (2018).
[16] O. A. Mattos, T. Frederico, and O. Lourenço, Eur. Phys. J. C 81,

24 (2021).
[17] O. A. Mattos, T. Frederico, C. H. Lenzi, M. Dutra, and O.

Lourenço, Phys. Rev. D 104, 116001 (2021).
[18] G. Chanmugam, Annu. Rev. Astron. Astrophys. 30, 143 (1992).
[19] P. Moller, S. J. Warren, S. M. Fall, J. U. Fynbo, and P. Jakobsen,

Astrophys. J. 574, 51 (2002).
[20] B. Paczynski, Acta Astron. 42, 145 (1992).
[21] A. I. Ibrahim, C. B. Markwardt, J. H. Swank, S. Ransom, M.

Roberts, V. Kaspi, P. M. Woods, S. Safi-Harb, S. Balman, W. C.
Parke et al., AIP Conf. Proc. 714, 294 (2004).

[22] S. Chakrabarty, D. Bandyopadhyay, and S. Pal, Phys. Rev. Lett.
78, 2898 (1997).

[23] D. Bandyopadhyay, S. Chakrabarty, and S. Pal, Phys. Rev. Lett.
79, 2176 (1997).

[24] E. J. Ferrer, V. de la Incera, J. P. Keith, I. Portillo, and P. L.
Springsteen, Phys. Rev. C 82, 065802 (2010).

[25] D. Lai and S. L. Shapiro, Astrophys. J. 383, 745 (1991).
[26] I. S. Suh and G. J. Mathews, Astrophys. J. 546, 1126 (2001).
[27] V. Dexheimer, B. Franzon, R. O. Gomes, R. L. S. Farias,

S. S. Avancini, and S. Schramm, Phys. Lett. B 773, 487
(2017).

[28] H. Hansen, W. M. Alberico, A. Beraudo, A. Molinari, M. Nardi,
and C. Ratti, Phys. Rev. D 75, 065004 (2007).

[29] M. Asakawa and K. Yazaki, Nucl. Phys. A 504, 668 (1989).
[30] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[31] M. Frank, M. Buballa, and M. Oertel, Phys. Lett. B 562, 221

(2003).
[32] G. ’t Hooft, Phys. Rep. 142, 357 (1986).
[33] L. Yang and X. J. Wen, Int. J. Mod. Phys. A 33, 1850123 (2018).

[34] D. P. Menezes, M. Benghi Pinto, S. S. Avancini, and C.
Providencia, Phys. Rev. C 80, 065805 (2009).

[35] S. S. Avancini, D. P. Menezes, and C. Providencia, Phys. Rev.
C 83, 065805 (2011).

[36] D. P. Menezes, M. B. Pinto, and C. Providência, Phys. Rev. C
91, 065205 (2015).

[37] E. J. Ferrer and V. de la Incera, Nucl. Phys. B 931, 192 (2018).
[38] A. Candeloro, C. Degli Esposti Boschi, and M. G. A. Paris,

Phys. Rev. D 102, 056012 (2020).
[39] K. Fukushima, Phys. Lett. B 591, 277 (2004).
[40] S. Rößner, T. Hell, C. Ratti, and W. Weise, Nucl. Phys. A 814,

118 (2008).
[41] S. Rößner, C. Ratti, and W. Weise, Phys. Rev. D 75, 034007

(2007).
[42] V. A. Dexheimer and S. Schramm, Nucl. Phys. A 827, 579C

(2009).
[43] V. A. Dexheimer and S. Schramm, Phys. Rev. C 81, 045201

(2010).
[44] M. Buballa, Phys. Rep. 407, 205 (2005).
[45] S. S. Avancini, R. L. S. Farias, N. N. Scoccola, and W. R.

Tavares, Phys. Rev. D 99, 116002 (2019).
[46] E. J. Ferrer and A. Hackebill, Int. J. Mod. Phys. A 37, 2250048

(2022).
[47] D. Chatterjee, J. Novak, and M. Oertel, Phys. Rev. C 99, 055811

(2019).
[48] M. O. Celi, M. Mariani, M. G. Orsaria, and L. Tonetto, Universe

8, 272 (2022).
[49] M. Bocquet, S. Bonazzola, E. Gourgoulhon, and J. Novak,

Astron. Astrophys. 301, 757 (1995).
[50] C. Y. Cardall, M. Prakash, and J. M. Lattimer, Astrophys. J.

554, 322 (2001).
[51] A. E. Broderick, M. Prakash, and J. M. Lattimer, Phys. Lett. B

531, 167 (2002).
[52] H. Liang and X. J. Wen, Int. J. Mod. Phys. A 34, 1950170

(2019).
[53] V. R. Khalilov, Phys. Rev. D 65, 056001 (2002)
[54] A. A. Isayev and J. Yang, J. Phys. G 40, 035105 (2013).
[55] A. A. Isayev and J. Yang, Phys. Lett. B 707, 163 (2012).
[56] A. A. Isayev and J. Yang, Phys. Rev. C 84, 065802 (2011).
[57] A. A. Isayev, Phys. Rev. D 98, 043022 (2018).
[58] S. S. Avancini, V. Dexheimer, R. L. S. Farias, and V. S. Timóteo,

Phys. Rev. C 97, 035207 (2018).
[59] D. P. Menezes, M. Benghi Pinto, S. S. Avancini, A. Pérez

Martinez, and C. Providência, Phys. Rev. C 79, 035807 (2009).
[60] V. A. Miransky and I. A. Shovkovy, Phys. Rep. 576, 1 (2015).
[61] D. Ebert, K. G. Klimenko, M. A. Vdovichenko, and A. S.

Vshivtsev, Phys. Rev. D 61, 025005 (1999).
[62] W. J. de Haas and P. M. van Alphen, Proc. Am. Acad. Arts Sci.

33, 1106 (1936).
[63] J. O. Andersen and T. Haugset, Phys. Rev. D 51, 3073 (1995).
[64] I. E. Frolov, V. C. Zhukovsky, and K. G. Klimenko, Phys. Rev.

D 82, 076002 (2010).
[65] E. J. Ferrer and V. de la Incera, Phys. Lett. B 769, 208 (2017).

015201-7

https://doi.org/10.1016/0370-1573(73)90027-6
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevD.48.2250
https://doi.org/10.1103/PhysRevC.57.1879
https://doi.org/10.1103/PhysRevC.83.014906
https://doi.org/10.1103/PhysRevD.84.094004
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1016/0370-2693(78)90737-2
https://doi.org/10.1103/PhysRevD.20.2610
https://doi.org/10.1016/0550-3213(82)90172-9
https://doi.org/10.1016/0370-1573(86)90014-1
https://doi.org/10.1103/PhysRevD.97.014014
https://doi.org/10.1140/epjc/s10052-021-08827-0
https://doi.org/10.1103/PhysRevD.104.116001
https://doi.org/10.1146/annurev.aa.30.090192.001043
https://doi.org/10.1086/340934
https://acta.astrouw.edu.pl/Vol42/n3/pap_42_3_1.pdf
https://doi.org/10.1063/1.1781043
https://doi.org/10.1103/PhysRevLett.78.2898
https://doi.org/10.1103/PhysRevLett.79.2176
https://doi.org/10.1103/PhysRevC.82.065802
https://doi.org/10.1086/170831
https://doi.org/10.1086/318277
https://doi.org/10.1016/j.physletb.2017.09.008
https://doi.org/10.1103/PhysRevD.75.065004
https://doi.org/10.1016/0375-9474(89)90002-X
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1016/S0370-2693(03)00607-5
https://doi.org/10.1016/0370-1573(86)90117-1
https://doi.org/10.1142/S0217751X18501233
https://doi.org/10.1103/PhysRevC.80.065805
https://doi.org/10.1103/PhysRevC.83.065805
https://doi.org/10.1103/PhysRevC.91.065205
https://doi.org/10.1016/j.nuclphysb.2018.04.009
https://doi.org/10.1103/PhysRevD.102.056012
https://doi.org/10.1016/j.physletb.2004.04.027
https://doi.org/10.1016/j.nuclphysa.2008.10.006
https://doi.org/10.1103/PhysRevD.75.034007
https://doi.org/10.1016/j.nuclphysa.2009.05.127
https://doi.org/10.1103/PhysRevC.81.045201
https://doi.org/10.1016/j.physrep.2004.11.004
https://doi.org/10.1103/PhysRevD.99.116002
https://doi.org/10.1142/S0217751X22500488
https://doi.org/10.1103/PhysRevC.99.055811
https://doi.org/10.3390/universe8050272
https://doi.org/10.1086/321370
https://doi.org/10.1016/S0370-2693(01)01514-3
https://doi.org/10.1142/S0217751X19501707
https://doi.org/10.1103/PhysRevD.65.056001
https://doi.org/10.1088/0954-3899/40/3/035105
https://doi.org/10.1016/j.physletb.2011.12.003
https://doi.org/10.1103/PhysRevC.84.065802
https://doi.org/10.1103/PhysRevD.98.043022
https://doi.org/10.1103/PhysRevC.97.035207
https://doi.org/10.1103/PhysRevC.79.035807
https://doi.org/10.1016/j.physrep.2015.02.003
https://doi.org/10.1103/PhysRevD.61.025005
https://doi.org/10.1103/PhysRevD.51.3073
https://doi.org/10.1103/PhysRevD.82.076002
https://doi.org/10.1016/j.physletb.2017.02.066

