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Core-corona procedure and microcanonical hadronization to understand strangeness
enhancement in proton-proton and heavy ion collisions in the EPOS4 framework
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The multiplicity dependence of multistrange hadron yields in proton-proton and lead-lead collisions at several
TeV allows one to study the transition from very big to very small systems, in particular, concerning collective
effects. I investigate this, employing a core-corona approach based on new microcanonical hadronization
procedures in the EPOS4 framework, as well as new methods allowing one to transform energy-momentum
flow through freeze-out surfaces into invariant-mass elements. I try to disentangle effects due to “canonical
suppression” and “core-corona separation”, which will both lead to a reduction of the yields at low multiplicity.
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I. INTRODUCTION

An enhancement of multistrange hadrons in relativistic
heavy ion collisions compared with proton-proton scattering
is one of the oldest signals proposed to detect the creation
of a “quark-gluon plasma” [1]. It was observed first (as ex-
pected) in heavy ion collisions [2–6] but, unexpectedly, such
“signals” have also been detected in proton-protons collisions,
where the enhancement concerns high-multiplicity compared
with low-multiplicity events [7]. Even more, when one plots
ratios of multistrange hadrons to pions, as a function of the
multiplicity dn/dη at rapidity zero, for both proton-proton (at
7 TeV) and heavy ions (PbPb at 2.76 TeV), one observes a
unique curve increasing monotonically from low-multiplicity
proton-proton up to central PbPb. Also shown in Ref. [7], the
standard Monte Carlo event generators do not really describe
the data.

During the past five years, the EPOS4 project was developed
(see first publications [8–10]), being an attempt to construct
a realistic model for describing relativistic collisions of dif-
ferent systems (from protons-proton to nucleus-nucleus) at
energies from several GeV per nucleon up to several TeV. So
the model should be able to deal with strangeness enhance-
ment, but not only. It is a “general purpose” approach that
is meant to describe any observable. The results shown in this
paper are only a very small fraction of simulation results since,
as a first test of the new approach, simulations were performed
at low energies, i.e., 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, 130,
and 200 GeV/nucleon, and as well at high energies, i.e., 2.76,
5.02, 7, 8, 13 TeV/nucleon, for different systems, looking for
yields, spectra, and flow, for light and heavy flavor. All this
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is done with the same code version, namely EPOS4.0.0, which
is at this moment being published via a dedicated web page.
No attempt has been made to “fit” one particular curve for one
particular system, the idea is more to see to what extent one
understands the enormous amount of data accumulated over
the past two decades.

A fundamental ingredient of the EPOS4 approach is the
observation that multiple (nucleonic or partonic) scatterings
must happen in parallel, and not sequentially, based on very
elementary considerations concerning timescales. To take this
into account, EPOS4 brings together ancient knowledge about
S-matrix theory (to deal with parallel scatterings) and modern
concepts of perturbative QCD and saturation, going much
beyond the usual factorization approach. The parallel scatter-
ing principle requires sophisticated Monte Carlo techniques,
inspired by those used in statistical physics to investigate the
Ising model.

In the EPOS4 approach, one distinguishes “primary scat-
terings” and “secondary scatterings”. The former refer to the
above-mentioned parallel scatterings with the initial nucleons
(and their partonic constituents) being involved, happening
at very high energies instantaneously. The theoretical tool is
S-matrix theory, using a particular form of the proton-proton
scattering S-matrix (Gribov-Regge approach [11–14]), which
can be straightforwardly generalized to be used for nucleus-
nucleus collisions. Although these basic assumptions are not
only well-motivated, but also very simple and transparent, the
practical application is complicated. This is due to the fact
that when developing matrix elements in terms of multiple-
scattering diagrams, the large majority of the diagrams cancel
when it comes to inclusive cross sections. But in EPOS4 one
keeps all contributions since one wants to go beyond inclu-
sive cross sections (important when studying high multiplicity
events). The challenge for EPOS4 is to use the full parallel
scattering scenario, but in a smart way such that for inclu-
sive cross section the cancellations actually work. This is
the new part in EPOS4, strongly based on an interplay be-
tween parallel scatterings and saturation. This is discussed in
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FIG. 1. Double scattering, each box representing a cut Pomeron
G (single inelastic scattering).

detail in separate publications [8–10]. Our S-matrix approach
has a modular structure, it is based on so-called “Pomerons”
(representing elementary parton-parton scatterings), and these
Pomerons are constructed based on “parton ladders”, which
makes the link to perturbative QCD. Also, this part has been
completely redone, with particular care concerning the role of
heavy flavor [9].

In this paper, I want to focus on the secondary scatterings,
and in particular on the hadronization of “plasma droplets”. In
Sec. II, I summarize briefly the “parallel scattering approach”
for primary scatterings. In Sec. III, I discuss how the EPOS4
multiple-scattering diagrams translate into particle produc-
tion, which means first the production of so-called prehadrons,
which may originate from Pomerons or from remnants. Based
one these prehadrons, a core-corona procedure will be em-
ployed, which allows one to identify the “core”, which will
then be treated as a fluid which evolves and eventually decays
into hadrons. In Sec. IV, I discuss the main topic of this paper,
namely, the hadronization of the core.

II. PARALLEL SCATTERING SCENARIO IN EPOS4

Let me briefly summarize the EPOS4 approach, considering
first high-energy collisions, where a parallel scattering ap-
proach for primary scatterings is mandatory, in AA collisions
but also concerning multiple partonic scatterings in pp reac-
tions. In Refs. [8–10], it is shown in detail how such a “parallel
scattering scheme” can be constructed rigorously based on
S-matrix theory, which will be sketched in the following.

The starting point is the elastic-scattering T-matrix T
for pp scattering, expressed as a product of “elementary”
T-matrices TPom representing parton-parton scattering via
Pomeron exchange. The expression can be easily generalized
for AA scattering. In both cases, pp or AA, this formalism
allows a strict parallel scattering picture. The precise content
of the Pomerons will be discussed later. The connection with
inelastic scattering provides the optical theorem, using so-
called cutting rules, which allows one to express the total cross
section (which by definition adds up all inelastic processes) in
terms “cut Pomerons” G, as shown for the case of two inelastic
scatterings in Fig. 1. The light-cone momentum fractions x+
and x− are shared between the 2 Pomerons and the remnants
(W in the plot represents some vertex function). Each cut
Pomeron G represents a squared amplitude of a single inelas-
tic scattering.

The important new issue in Refs. [8–10] is the understand-
ing of how energy conservation ruins factorization (which

FIG. 2. The cut Pomeron G.

strictly speaking makes the model inapplicable) and how to
solve the problem via an appropriate definition of G. The
cut Pomeron, representing a single inelastic scattering is the
fundamental quantity in the EPOS formalism. For the moment,
one considers the Pomeron as a “box” (the precise internal
structure will be discussed later), with two external legs repre-
senting two incoming partons carrying light-cone momentum
fractions x+ and x−, so G = G(x+, x−, s, b), with the energy
squared s, and the impact parameter b, see Fig. 2.

Let me define the “Pomeron energy fraction” xPE =
x+x− = M2

Pom/s, with MPom being the transverse mass of
the Pomeron, which is the crucial variable characterizing cut
Pomerons: the bigger xPE, the bigger the Pomeron’s invariant
mass and the number of produced particles. Large invariant
masses also favor high-pt jet production.

Let me consider a AA collision (including pp as a special
case). I define, for a given cut Pomeron connected to projec-
tile nucleon i and target nucleon j, a “connection number”
Nconn = (NP + NT)/2, with NP being the number of Pomerons
connected to i, and with NT being the number of Pomerons
connected to j. The case Nconn = 1 corresponds to an iso-
lated Pomeron, which may take all the energy of the initial
nucleons, whereas in case of Nconn > 1 the energy will be
shared. To quantify the effect of the energy sharing, one de-
fines f (Nconn )(xPE) to be the inclusive xPE distribution, i.e., the
probability that a single Pomeron carries an energy fraction
xPE, for Pomerons with given values of Nconn. The main prob-
lem which ruins factorization is the fact that the distribution
for Nconn > 1 will be deformed with respect to the Nconn = 1
case, due to energy sharing. I define the corresponding “de-
formation function” Rdeform(xPE) as a ratio of f (Nconn )(xPE) over
f (1)(xPE). I also use the notation R(Nconn )

deform(xPE) to underline its
Nconn dependence. As shown in Refs. [8,10], this function can
be calculated and tabulated. As discussed in very much detail
in Ref. [9], one also calculates and tabulates some function
GQCD(Q2, x+, x−, s, b), which contains as a basic element
a cut parton ladder based on Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) parton evolutions [13,15,16] from
the projectile and target side, with an elementary QCD cross
section in the middle, Q2 being the low-virtuality cutoff in the
DGLAP evolution. The latter is usually taken to be constant
and of the order of 1 GeV, whereas here one allows any value.
With all this preparation, one is now able to connect G (used
in the multi-Pomeron diagrams) and GQCD [which contains all
the perturbative QCD (pQCD) diagrams], as follows: For each
cut Pomeron, for given x±, s, b, and Nconn, one postulates

G(x+, x−, s, b) = n

R(Nconn )
deform(xPE)

GQCD
(
Q2

sat, x+, x−, s, b
)
,

(1)
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FIG. 3. Rigorous parallel scattering scenario, for n = 3 parallel
scatterings, including nonlinear effects via saturation scales. The red
symbols should remind one that the parts of the diagram representing
nonlinear effects are replaced by simply using saturation scales.

with

G independent of Nconn. (2)

But Q2
sat does depend on Nconn (and also on x±). The symbol

n is a factor not depending on x±. This is the fundamental
equation in the new EPOS4 approach. As shown in Refs. [8,10],
this deformation in the denominator of Eq. (1) corrects per-
fectly the deformation of the xPE distribution, the only effect
of energy sharing is a modification of Q2

sat, and the latter
will only affect low-pt processes. In this way, one recovers
factorization, and binary scaling in AA (with RAA = 1) at large
transverse momenta for inclusive cross sections (but only for
them). In other words, at large pt , the full multiple-scattering
machinery produces exactly the same result as compared with
simply taking one single Pomeron (single scattering), which
allows one to define and compute (in the EPOS framework)
parton distribution function, tabulate them, and then compute
inclusive jet cross sections based on these (using standard
procedures).

But such a “shortcut” (also referred to as “EPOS4 factoriza-
tion mode”) is only possible for inclusive cross sections, and
only at high pt . But this represents only a very small fraction
of all possible applications, and there are very interesting
cases outside the applicability of that approach. A prominent
example, one of the highlights of the past decade in our do-
main concerns collective phenomena in small systems. It has
been shown that high-multiplicity pp events show very similar
collective features, as earlier observed in heavy ion collisions
[17]. High multiplicity means automatically “multiple parton
scattering”. As discussed earlier, this means that one has to
employ the full parallel scattering machinery developed ear-
lier, based on S-matrix theory. One cannot use the usual parton
distribution functions (representing the partonic structure of a
fast nucleon), one has to treat the different scatterings (hap-
pening in parallel) individually, and for each scattering, one
has a parton evolution according to some evolution function
E (representing the partonic structure of a fast parton), as
sketched in Fig. 3. One still has DGLAP evolution, for each
of the scatterings, but one introduces saturation scales. But,
most importantly, these scales are not constants, they depend
on the number of scatterings, and they depend as well on x+
and x−. An example of a multiple-scattering AA configuration

FIG. 4. Rigorous parallel scattering scenario, for n = 3 parallel
scatterings for a collision of a nucleus A with a nucleus B, including
nonlinear effects via saturation scales.

is shown in Fig. 4. The diagrams shown in Figs. 3 and 4
are meant to be “symbolic”, the real structure is somewhat
more complex. Also for simplicity, one consider only gluons
in the diagrams. I also do not consider (for simplicity) timelike
parton emissions, but in the real EPOS4 simulations they are of
course taken care of based on angular ordering. For a complete
description, see Ref. [9].

But all this “multiple-scattering discussion” is not the
full story. The S-matrix part concerns “primary scatterings”,
happening instantaneously at t = 0. As a result, in the case
of a large number of Pomerons, one has correspondingly a
large number of “prehadrons”, and based on these, “secondary
interactions” occur: fluid formation and decay and hadronic
rescatterings. This will be discussed in the next section.

III. THE ROLE OF CORE, CORONA, AND REMNANTS

In this section, I discuss briefly how the EPOS4 multiple-
scattering diagrams translate into particle production, which
means first the production of so-called prehadrons. As dis-
cussed below, our Pomerons are mapped into kinky relativistic
strings, where string decay traditionally produces string seg-
ments which correspond to hadrons. But one considers the
possibility of having a dense environment, and here the string
segments cannot “evolve” into hadrons. So one uses the term
“prehadrons” for these segments, and they either “fuse” to
produce the core, or become hadrons if they escape the core.
A similar argument is used for excited remnants, which may
decay into hadrons, but again this may happen in a dense area.
In Ref. [9], one discusses the different types of Pomerons and
their relation with pQCD, including technical details for the
computations, and one also discusses how the pQCD diagrams
translate into kinky strings. String decay into segments (now
called prehadrons) is discussed in detail in Ref. [18]. Based on
these prehadrons, a core-corona procedure will be employed,
which allows identifying the “core”, which will then be treated
as a fluid that evolves and eventually decays into hadrons,
which still may collide with each other.

In Fig. 5, I consider an example of a multiple cut Pomeron
(i.e., multiple scattering) configuration of two colliding nuclei
A and B at Large Hadron Collider (LHC) energies (sev-
eral TeV), each nucleus composed of two nucleons (just for
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FIG. 5. Multiple-scattering configuration of two colliding nuclei
A and B at LHC energies, each nucleus being composed of two
nucleons, with three scatterings (from three cut Pomerons). Dark
blue lines mark active quarks, red dashed lines active antiquarks, and
light blue thick lines projectile and target remnants. One of the target
nucleons is just a spectator.

illustration). Dark blue lines mark active quarks, red dashed
lines active antiquarks, and light blue thick lines projectile
and target remnants [nucleons minus the active (anti)quarks].
I have chosen an example with two scatterings of “sea-sea”
type, and one of “val-sea” type (see Ref. [9]). One con-
siders each incident nucleon as a reservoir of three valence
quarks plus quark-antiquark pairs. The “objects” which rep-
resent the “external legs” of the individual scatterings are
colorless: quark-antiquark pairs in most cases as shown in
the figure, but one may as well have quark-diquark pairs or
even antiquark-antidiquark pairs—in any case, a 3 and a 3̄
color representation. In general, each of the horizontal gluon
lines would develop the so-called timelike cascade, which is
not considered here for the simplicity of the discussion. I
also consider only gluons here, in general, there are as well
g → q + q̄ splittings. This multiple-scattering picture works
perfectly also at lower energies [BNL Relativistic Heavy Ion
Collider (RHIC)]. With decreasing energy, it becomes simply
more and more likely that the Pomerons in Fig. 5 are replaced
by purely soft ones, as indicated in Fig. 6. Also the Pomerons
get less energetic, producing fewer particles.

FIG. 6. Like Fig. 5, but for lower energy.

FIG. 7. Sketch of the core-corona separation for a (a) “big” and a
(b) “small” system. The dots are prehadrons in the transverse plane;
red refers to core, blue to corona.

For a given diagram as for example Fig. 5, one constructs
the corresponding color flow diagram (two arrows per gluon,
forward and backward arrows for quarks and antiquarks). One
then follows the color flow arrows, for example starting with a
3̄ being an external leg on the projectile side, until one finds a 3
which is in our example an external leg on the target side. This
defines a chain of partons. Assuming that the external legs
are simply quarks and antiquarks, one gets six chains of the
type q̄ − g − g − · · · − g − q, mapped (in a unique fashion) to
kinky strings, where each parton corresponds to a kink. This
is explained in detail in Ref. [9]. The kinky strings are then
decayed into prehadrons.

A second source of particle production are the remnants. In
case of multiple scattering as in Fig. 5, the projectile and target
remnants remain colorless, but they may change their flavor
content during the multiple collisions. The quark-antiquark
pair “taken out” for a collision (the “external legs” for the
individual collisions), may be u-s̄, then the remnant for an
incident proton has flavor uds. In addition, the remnants get
massive, much more than a simply resonance excitation. One
may have remnants with masses of 10 GeV/c2 or more, which
contribute significantly to particle production (at large rapidi-
ties).

In the above discussion, I mentioned the production of
“prehadrons” from strings and from remnant decays. Based
on these prehadrons, one employs a so-called core-corona
procedure (introduced in Ref. [19], updated in Ref. [20]), at
some given (early) proper-time τ0, see Fig. 7. The method
is used for all systems, big ones (as central AA) or small
ones (peripheral AA, or even pp scattering). One considers all
prehadrons at τ0, marked as dots in Fig. 7. For each prehadron,
one computes

pnew
t = pt − 0.25[ fEL1 + Z ( fEL2 − fEL1)]pgEL

t

∫
γ

ρhEL dL,

(3)

where γ is the trajectory of the prehadron moving out of
the system, and Z = (Npart − 2)/Nmax

part the “centrality” based
on the number of participants. I define “cone prehadrons”
as prehadrons within a jet cone radius R with respect to a
parton with pt � 1 GeV/c, considering all the partons which
constitute the kinky string being the origin of the prehadron
in question. All others are “noncone prehadrons”. The jet
cone radius is defined as R2 = (�η)2 + (�φ)2, with �η and
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�φ being, respectively the difference in pseudorapidity and
azimuthal angle, with respect to the parton. I use jet cone radii
of 0.3 (pp) and 0.2 (PbPb). I use different sets of parame-
ters { fEL1, fEL2, gEL, hEL} for noncone and cone prehadrons,
namely, {0.1,−, 0.5, 0.375} (pp cone), {0.4,−, 0, 1} (pp
noncone), {0.3, 0.3, 0.5, 0.375} (PbPb cone), {0.5, 0.7, 0, 1}
(PbPb noncone). The prehadron in question is then considered
to be of “core” or “corona” type, based on the following
criteria:

(1) For pnew
t � 0, the prehadron is considered to be a “core

prehadron”.
(2) For pnew

t > 0, the prehadron escapes, it is called
“corona prehadron”.

The core prehadrons constitute “bulk matter” and will be
treated via hydrodynamics. The corona prehadrons become
simply hadrons and propagate with reduced energy (due to
the energy loss). In Fig. 7, I distinguish between big and small
systems. Actually, the method used is the same, but there are
relatively more core prehadrons in the big systems. Corona
particles are either very energetic (then they move out even
from the center) or they are close to the surface, or one has a
combination of both.

The core-corona procedure is a crucial element in the
EPOS4 approach, which allows soft and hard elements to
emerge naturally from a unique formalism (rather than con-
structing a two-component approach). It is also important to
understand that a hard process (in the usual terminology),
which is in the EPOS4 framework a high transverse momentum
pQCD process, will also contribute to low-pt particle produc-
tion, since only string breaks close to the high-pt kink will
produce high-pt particles.

The importance of the core-corona picture is also empha-
sized in Refs. [21–23].

Let me investigate the core-corona effects in EPOS4 first for
proton-proton collisions. One wants to understand the relative
importance of the core part, and one also wants to know
which fraction is coming from remnant decay. In Fig. 8, I
show results for different event classes (defined via Pomeron
numbers) in proton-proton collisions at 7 TeV. I show in each
case four different curves: all prehadrons (red full), all core
prehadrons (red dotted), prehadrons from remnant decay (blue
full), and core prehadrons from remnant decay (blue dotted).
Not too surprisingly, remnant contributions show up in gen-
eral at large rapidities, but in all cases they do contribute to the
core. Comparing the red full and dotted curves, one sees that
the core fraction is in all cases substantial, most significantly
for the event class “10–15 Pomerons”, but even for small
Pomeron numbers, the core contribution remains important.
As a small side remark: it is often said that “collectivity” is
seen in high-multiplicity pp scattering. In our EPOS4 analysis,
it is even essential in minimum bias collisions (with an aver-
age Pomeron number of around two), very strongly supported
by data.

Let me now turn to AA scattering, to understand the rela-
tive importance of the core part, and of the fraction coming
from remnant decay. In Fig. 9, I show results for different
centralities in PbPb collisions at 2.76 TeV, namely (from top
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FIG. 8. The prehadron yield as a function of space-time rapidity
for different Pomeron numbers in proton-proton collisions at 7 TeV.
The curves refer to all prehadrons (red full), all core prehadrons
(red dotted), prehadrons from remnant decay (blue full), and core
prehadrons from remnant decay (blue dotted).

to bottom): 0%–10%, 30%–40%, 70%–80%, and 80%–100%
(based on the distribution of the impact parameter). Also
here, the remnant contributions show up preferentially at large
rapidities, and in all cases, they do contribute to the core.
Comparing the red full and dotted curves, one sees that the
core fraction (ratio of dn/dηs of the core contribution over
all) is in all cases substantial: 0.97 for 0%–10%, 0.95 for
30%–40%, 0.85 for 70%–80%, and 0.77 for 80%–100%. One
also sees that this “core dominance” extends over a wide
rapidity range.

Having identified core prehadrons, one computes the cor-
responding energy-momentum tensor T μν and the flavor flow
vector at some position x at initial proper time τ = τ0 as

T μν (x) =
∑

i

pμ
i pν

i

p0
i

g(x − xi ), (4)

and

Nμ
q (x) =

∑
i

pμ
i

p0
i

qig(x − xi ), (5)

with qi ∈ {u, d, s} being the net flavor content and pi

the four-momentum of prehadron i. The function g is a
Gaussian smoothing kernel, in Milne coordinates given as
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FIG. 9. The prehadron yield as a function of space-time rapidity,
for different centralities in PbPb collisions at 2.76 TeV. The curves
refer to all prehadrons (red full), all core prehadrons (red dotted),
prehadrons from remnant decay (blue full), and core prehadrons from
remnant decay (blue dotted).

g(x) = h(η/d‖)h(x/d⊥)h(y/d⊥), with h(s) = 1√
2π

exp(− 1
2 s2),

with parameters d‖ and d⊥.
The parameter d‖ is given as min(1.0, r(s)), with r(s) =

max(0.5, y(s)/y(sref )), where y(s) is the rapidity of the
projectile nucleons in the nucleon-nucleon center-of-mass
for a squared nucleon-nucleon energy s, and where sref =
(2.76 TeV)2 is some reference value. The parameter d⊥ is
given as 0.3 + 0.3Z for PbPb and as 0.3 − 0.02 min(NPom −
1, 12) for pp, where Z = (Npart − 2)/Nmax

part is the centrality
based on the number of participants and NPom the number of
(cut) Pomerons (characterizing the event activity in pp).

The Lorentz transformation of T μν into the comoving
frame provides the energy density ε and the flow velocity
components vi, which will be used as the initial condition for a
hydrodynamical evolution [20]. This is based on the hypothe-
sis that equilibration happens rapidly and affects essentially
the space components of the energy-momentum tensor. In
Fig. 10 (upper plot), I show the energy density at the initial
proper time τ0 as a function of the transverse coordinate r for
different event classes (defined via Pomeron numbers) in pp
collisions at 7 TeV. The values of τ0 is 0.4 fm/c in EPOS4.0.0.
I also indicate in the figure the freeze-out energy density
(blue dashed line). For each event, one determines (based on
the energy density distribution) the event plane angle ψ and

10
-1

1

10

 i
n
it

ia
l 

fl
u
id

 e
n
er

g
y
 d

en
si

ty
 ε

 [G
eV

/f
m

3
] EPOS 4.0.0   energy density   pp 7 TeV

1 Pom

freeze-out

10
-1

1

10
2-4 Poms

10
-1

1

10
5-9 Poms

10
-1

1

10

0 1 2

 r [fm]

10-15 Poms

10
-1

1

10

 i
n
it

ia
l 

fl
u
id

 e
n
er

g
y
 d

en
si

ty
 ε

 [G
eV

/f
m

3
] EPOS 4.0.0   energy density   PbPb 2.76 TeV

0-10%

freeze-out

10
-1

1

10

30-40%

10
-1

1

10

0 2 4 6 8 10

 r [fm]

70-80%

FIG. 10. Energy density at the initial proper-time τ0 as a function
of the transverse coordinate r. The full red lines correspond to an
azimuthal angle φ = 0, and the dotted red lines to φ = π/2. The
blue dashed lines represent the freeze-out energy density. I show
results for different event classes (defined via Pomeron numbers)
in pp collisions at 7 TeV (upper plot) and for different centralities
(defined via impact parameter) in PbPb collisions at 2.76 TeV (lower
plot).
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rotate the system accordingly (to have after rotation event
plane angles zero). The plots in Fig. 10 represent averages
over such rotated events, the full lines correspond to azimuthal
angles φ = 0, the dotted lines to φ = π/2. The difference
between the two lines reflects the azimuthal asymmetry. As
already seen in Fig. 8, even in the case of a single Pomeron,
there is some core production, and one gets actually an energy
density of several GeV/fm3, but the radial extension is very
small, and the lifetime (before freeze-out) very small. For
large Pomeron numbers, the energy densities and the radial
extensions get bigger, but the latter remain of the order of
1 fm/c.

In Fig. 10 (lower plot), I show the energy density at the
initial proper-time τ0 as a function of the transverse coordinate
r for different centralities (defined via impact parameter) in
PbPb collisions at 2.76 TeV. The values of τ0 are between
2 fm/c and 1 fm/c from central to peripheral in EPOS4.0.0.
Also here one does the rotations according to the event plane
angles, as discussed above for pp scattering, before taking
event averages. Based on these, the full lines correspond to az-
imuthal angles φ = 0, the dotted line to φ = π/2. As already
seen in Fig. 9, even in peripheral collisions, there is some core
production, and one gets actually an energy density of about
2 GeV/fm3 for 70%–80% centrality, but the radial extension
is small, and the lifetime as well.

It follows a viscous hydrodynamic expansion. Starting
from the initial proper time τ0, the core part of the system
evolves according to the equations of relativistic viscous hy-
drodynamics [20,24], where one uses presently η/s = 0.08.
The “core-matter” hadronizes on some hypersurface defined
by a constant energy density εH (presently 0.57 GeV/fm3).
In earlier versions [25], one used a so-called Cooper-Frye
procedure. This is problematic in particular for small systems:
not only do energy and flavor conservation become important,
but one also encounters problems due to the fact that one gets
small “droplets” with huge baryon chemical potential, with
strange results for heavy baryons. In EPOS4, one systemati-
cally uses microcanonical hadronization, with major technical
improvements compared with earlier versions, as I discuss
below.

IV. MICROCANONICAL HADRONIZATION OF THE CORE

In EPOS4, one systematically uses microcanonical
hadronization. Due to several technical improvements,
our procedures work for all kinds of systems (big and small
ones), and one uses it for proton-proton as well as heavy
ion scattering. But not only for technical reasons. The usual
Cooper-Frye procedure amounts to a smooth transition
from a fluid to a particle description. However, one has a
violently expanding system into the vacuum, where around
some critical energy density the system goes very quickly
from one state (plasma) to a very different one (hadrons),
in a complicated fashion. So one assumes—whatever the
precise mechanism might be—that the system decays into
multihadron states, randomly. And the most random way
corresponds to maximizing the entropy, which amounts to the
microcanonical ensemble. Being a crucial element of the new
EPOS4 approach, I discuss this in the following.

0

2.5

5

7.5

0.5 1 1.5

X =  E / <E>

d
N

/d
X

FIG. 11. The distribution of X = E/〈E〉, i.e., the ratio of final
energy to initial energy, for a temperature of 130 MeV and volumes
V = 50 fm3 (red curve) and V = 1000 fm3 (blue dashed curve).

It is important to note that

(1) there is no need to match the dynamical part of hydro
evolution, one considers a sudden statistical decay;

(2) one has full energy and flavor conservation, which is
important for small systems;

(3) the procedure is extremely fast and can be used for
“big systems” and in particular study the limiting case
of “very large plasma droplets” (infinite-volume limit).

A. Infinite-volume limit

Let me first look at the infinite-volume limit, which is the
grand canonical ensemble. Here, for single-particle spectra
(particle species k), one has the distribution

fk = gkV

(2π h̄)3 exp

(
−Ek

T

)
, (6)

with degeneracy gk , volume V , energy Ek and temperature T .
The average energy is

〈E〉 =
∑

k

gkV

(2π h̄)3

∫ ∞

0
Ek exp

(
−Ek

T

)
4π p2d p, (7)

Changing variables via EkdEk = pd p, and using

K1(z) = z
∫ ∞

1
exp (−zx)

√
x2 − 1dx, (8)

3K2(z) = z2
∫ ∞

1
exp (−zx)

√
x2 − 1

3
dx, (9)

one gets

〈E〉 =
∑

k

4πgkV

(2π h̄)3 m2
kT
[
3T K2

(mk

T

)
+ mkK1

(mk

T

)]
. (10)

This formula allows one to compare microcanonical and
grand-canonical decay using the same average energy (this
will be done later). Generating hadrons according to Eq. (6),
one may compute the total energy E of the produced particles
and then compare with the average energy 〈E〉, Eq. (10). In
Fig. 11, I plot the distribution of E/〈E〉, for a temperature
of 130 MeV and two values for the volume V , namely V =
50 fm3 and V = 1000 fm3. This shows the amount of viola-
tion of energy conservation, which increases with decreasing
volume.
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B. Microcanonical hadronization of plasma droplets

Let me now turn to microcanonical decay of a “plasma
droplet” of volume V and energy E (also referred to as mass
M). Here, all the states are equally probable, so the weight of
a decay of the droplet in its center-of-mass system (CMS) into
n hadrons with momenta 
pi is given as

dP = CvolCdegCidentdNRPS, (11)

with the constants (the indices referring to volume, degener-
acy, and identical particles)

Cvol = V n

(2π h̄)3n , Cdeg =
n∏

i=1

gi, Cident =
∏
α∈S

1

nα!
, (12)

and with

dNRPS = δ(E − �Ei )δ(� 
pi )
∏

A

δQA,�qAi

n∏
i=1

d3 pi, (13)

with Ei = (m2
i + p2

i )1/2 being the energy and 
pi the three-
momentum of particle i. Here, Cdeg accounts for degeneracies
(gi is the degeneracy of particle i), and Cident accounts for
the occurrence of identical particles (nα is the number of
particles of species α). The term δQA,�qAi reflects conser-
vation laws (baryon (A = B), electric charge (A = C), and
strangeness (A = S). It should be noted that one has to use the
nonrelativistic phase space (NRPS) dNRPS rather than the
Lorentz-invariant phase space (LIPS) dLIPS used for the de-
cay of massive particles, where asymptotic states are defined
over an infinitely large volume, whereas here one considers a
finite volume (see discussion in Ref. [26]). But of course, one
uses the relativistic expressions Ei = (p2

i + m2
i )1/2 for hadron

energies.
Numerical procedures to deal with these n-body phase-

space expressions are quite involved and have a long history.
Cerulus and Hagedorn [27] provided in 1958 a way to evaluate
the NRPS integrals NRPS = ∫

dNRPS, which they used to
compute particle production in high-energy collisions. Shortly
after it was proposed to better use a covariant formula, re-
ferred to as the Lorentz-invariant phase-space (LIPS) integral.
The corresponding algorithms for Monte Carlo applications
were discussed by James [28] in 1968 and heavily used for
computing particle production. Being still relevant concern-
ing the decay of a quark gluon plasma, the NRPS integrals
and the corresponding Hagedorn prescriptions were used for
Monte Carlo realizations (Werner and Aichelin [29] in 1994,
Becattini and Ferroni [26] in 2004) of particle production in
heavy ion collisions. In 2012 (Bignamini et al. [30]), it was
proposed to use the fact that the nonrelativistic phase-space
(NRPS) element is up to a factor equal to the Lorentz-invariant
phase-space (LIPS) element, which is much easier to handle
for n not too large.

The Cerulus-Hagedorn method employed in Ref. [29] is
not very efficient and needs enormous computing efforts at
intermediate n (around n = 10) and at very large n, whereas
the LIPS method employed in Ref. [30] works well at small n
but gets very time consuming at large n.

Here one employs a hybrid method, i.e., an improved (and
very efficient) Cerulus-Hagedorn method for large n, and the

LIPS method for small n, such that one has finally very effi-
cient procedures for any n, even for very big values (for very
big plasma droplets).

Let me first discuss the “improved Cerulus-Hagedorn
method”. Cerulus and Hagedorn [27] proposed to write the
phase-space integral as

NRPS = (4π )n
∫ n∏

i=1

p2
i δ

(
E −

n∑
i=1

Ei

)

× W (p1, . . . , pn)
n∏

i=1

d pi, (14)

with pi = | 
pi|, and with the “random walk function” W (also
called angular integral)

W (p1, . . . , pn) := 1

(4π )n

∫
δ

(
n∑

i=1

pi
ui

)
n∏

i=1

d�i, (15)

with 
ui = 
pi/pi and �i referring to the corresponding solid
angle. The crucial point is an efficient calculation of the an-
gular integral W . It may be written as (omitting the arguments
p1, . . . , pn)

W = 1

(4π )n

1

(2π )3

∫∫
e−i
λ�p j 
u j

n∏
j=1

d� jd
3λ, (16)

which leads to

W =
∫ ∞

0
F (λ)dλ, (17)

with the integrand being

F (λ) = λ2

2π2

n∏
j=1

sin p jλ

p jλ
= λ2

2π2

n∏
j=1

sin πa j

πa j
, (18)

with a j = p jλ/π . One may use Euler’s product formula to get

n∏
j=1

sin πa j

πa j
=

n∏
j=1

∞∏
k=1

(
1 − a2

j

k2

)
, (19)

which is for large n approximately equal to

exp

⎛⎝−π2

6

n∑
j=1

a2
j

⎞⎠ (20)

(having used
∑∞

k=1
1
k2 = π2

6 ). This means that the expression∏n
j=1{sin p jλ/p jλ} is well approximated by

exp(−P2λ2), with P =
√√√√1

6

n∑
j=1

p 2
j . (21)

The crucial point is the following: although this “approxima-
tion” is not precise enough to be used directly, one may use
the fact that one has a rough estimate of the integrand F (λ)
to make a variable transformation which allows one to make
a very accurate and efficient numerical integration. Thanks to
the approximation F (λ) ≈ λ2

2π2 exp(−P2λ2), one knows that

F0(λ) = F (λ) exp(P2λ2) (22)
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is a slowly varying function of λ (polynomial dependence).
The angular integral may then be written as

W =
∫ ∞

0
F (λ)dλ = 1

P

∫ ∞

0
F0

( x

P

)
exp(−x2)dx. (23)

So one has an integral of the form
∫

f (x)e−x2
dx, with a well-

behaved function f , which allows one to evaluate the integral
with very high precision by using the Gauss-Hermite method,
i.e.,

W ≈ 1

P

K∑
k=1

wGH
j F0

(
xGH

j

P

)
,

with nodes and weights xGH
j and wGH

j found in text books.
With only six nodes one gets excellent results.

Having solved the problem of computing W , the next step
is to write dNRPS in terms of independent variables, which
can be done (see Ref. [29] and also Appendix A) as

dNRPS = dr1 . . . drn−1
(4π )nT n−1

(n − 1)!

n∏
i=1

piEiW (p1, . . . , pn),

(24)

with n − 1 independent variables ri defined in [0,1], and with
zi = r1/i

i , xi = zixi+1, si = xiT , ti = si − si−1, Ei = ti + mi,
and T = M −∑n

i=1 mi, where a configuration is defined by
the number of hadrons, their species (only configurations
respecting the conservation laws �qAi = QA are consid-
ered), and their momenta. In addition to ri, one needs
2n more variables, to take care of the random orienta-
tions in space of the momentum vectors as (x, y, z), with
x = (1 − z2)1/2 cos(2πu), y = (1 − z2)1/2 sin(2πu), and z =
2w − 1, characterized in terms of two independent variables
u,w ∈ [0, 1] (for each of the n hadrons).

However, this does not work for small n (below 30), be-
cause in that case the angular integral W cannot be calculated
reliably, as discussed earlier. Here, one uses the LIPS method
[28,30]. The NRPS and LIPS integrands are very similar, the
only difference is an additional 1/2Ei factor in the LIPS case.
So one uses

dNRPS = dLIPS

n∏
i=1

2Ei, (25)

with (see Appendix B)

dLIPS = dr1 · · · drn−2
π (2π )n−2

M

n−1∏
i=1

p(Mi+1; Mi, mi+1)

×
⎛⎝M −

n∑
j=1

mj

⎞⎠n−2

1

(n − 2)!
, (26)

with n − 2 independent variables ri defined in [0,1], and with
xi+1 = x′

i , x′
i = zix′

i+1, and (zi )i = ri, and

Mi =
i∑

j=1

mi + xi

⎛⎝M −
n∑

j=1

mj

⎞⎠, (27)

and with

p(m; ma, mb) =
√{

1

2m

(
m2 + m2

a − m2
b

)}2

− m2
a. (28)

These formulas correspond to a sequence of successive two-
body decays M = Mn → Mn−1 + mn, Mn−1 → Mn−2 + mn−1,
etc., where the decays are considered in the CMS sys-
tem of the decaying mass Mi (the only way to get simple
formulas), with the decay products having random orienta-
tions (x, y, z) in space, with x = (1 − z2)1/2 cos(2πu), y =
(1 − z2)1/2 sin(2πu), and z = 2w − 1, characterized in terms
of two independent variables u,w ∈ [0, 1] (for each of the
n − 1 decays). At the end of the procedure—starting from
the last decay, going backward until the first decay—one has
to perform a sequence of Lorentz boosts to have finally the
momenta in the CMS frame of the decaying droplet. This
will become time-consuming for large n (>50), whereas for
smaller n the procedure is very fast.

So one has excellent methods for computing dNRPS, for
large n [based on Eq. (24)], and for small n [based on Eqs. (25)
and (26)], and fortunately around n ≈ 30–50 both methods
work, so finally one has very fast procedures for any size of
droplets. So one is ready to employ Markov chain methods
to generate configurations according to the weights dNRPS.
A configuration of n hadrons is characterized by their particle
species and momenta, the latter ones expressed in terms of
k independent variables (all of them defined in [0,1]). Based
on the above discussion, in the case of the improved Cerulus-
Hagedorn method [using Eq. (24)], one has k = n − 1 + 2n,
in case of the LIPS method [using Eqs. (25) and (26)], one
has k = n − 2 + 2(n − 1). For details concerning the Markov
chain methods, see Appendix C, where one discusses in par-
ticular the (new) algorithm to define the proposal matrix in the
Markov chain.

Having a reliable method for very large n is in partic-
ular useful in order to investigate the convergence towards
the infinite-volume limit. I will first—also as a check that
the procedures work—compare our microcanonical results
with grand-canonical decay, knowing that the latter is the
limit of the former for large droplets. I consider a “com-
plete” set of hadrons, compatible with a recent particle data
group (PDG) list. I consider the decay of droplets of differ-
ent invariant masses M (corresponding to the total energy
E in the above formulas). The volume is chosen such that
one has always the same energy density, namely, M/V =
εFO = 0.57 GeV/fm3, which corresponds to a temperature of
T = 167 MeV.

In Figs. 12 and 13, I show momentum distributions of
pions (red), kaons (blue), protons (green), lambdas (yellow),
� baryons (light green), and � baryons (gray), where one
counts particles and antiparticles. I show results for differ-
ent masses M, namely M = 200 GeV, M = 100 GeV, M =
50 GeV, M = 25 GeV, M = 12.5 GeV, and M = 6.25 GeV.
I show results for microcanonical particle production (points)
compared with the grand canonical one (lines). The grand
canonical results are all taken for the same volume, namely,
V0 = M0/εFO, with M0 = 50 GeV, to have always the same

014910-9



K. WERNER PHYSICAL REVIEW C 109, 014910 (2024)

10
-3

1

10

 d
n
/d

p
 [(

G
eV

/c
)-1

] π  K  p  Λ  Ξ  Ω
  M = 200 GeV

grand can. (lines)

micro can. (points)

10
-3

1

10

 d
n
/d

p
 [(

G
eV

/c
)-1

] π  K  p  Λ  Ξ  Ω
  M = 100 GeV

grand can. (lines)

micro can. (points)

10
-3

1

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 p [GeV/c]

 d
n
/d

p
 [(

G
eV

/c
)-1

] π  K  p  Λ  Ξ  Ω
  M = 50 GeV

grand can. (lines)

micro can. (points)

FIG. 12. Momentum distributions of pions (red), kaons (blue),
protons (green), lambdas (yellow), � baryons (light green), and �

baryons (gray), where one counts particles and antiparticles. I show
results for masses M = 200 GeV, M = 100 GeV, and M = 50 GeV.
I show results for microcanonical particle production (points) com-
pared with the grand canonical one (lines).

reference curve, therefore one multiplies the microcanonical
results with M0/M, to have the correct normalization.

Looking at the M = 200 GeV results (upper plot in
Fig. 12), one sees no difference between the microcanonical
and the grand canonical results, which means that this sys-
tem (M = 200 GeV and V = M/εFO) corresponds already to
the “infinite-volume limit”. Considering M = 100 GeV and
M = 50 GeV (middle and lower plots in Fig. 12), one sees
slight deviations of the microcanonical curves from the grand
canonical ones, for heavy particles (� baryons and � baryons)
and at large pt . For pions and kaons, the two scenarios are still
identical.

Looking at the plots in Fig. 13, representing M = 25 GeV,
M = 12.5 GeV, and M = 6.25 GeV, one sees increasing
differences between microcanonical and the grand canonical
results, the biggest ones for heavy particles, in particular the �

baryons. Finally, not only the shape of the distributions is af-
fected, but even the absolute yield. In case of M = 6.25 GeV,
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FIG. 13. Same as Fig. 12, but for masses M = 25 GeV, M =
12.5 GeV, and M = 6.25 GeV.

one observes a strong � baryon suppression in the micro-
canonical compared with the grand canonical case.

So far one considers the decay of a static plasma droplet of
given mass M and volume V (with M/V = εFO), according to
the microcanonical probability distribution, whereas in reality,
one has an expanding fluid, where fluid cells pass eventually
below the critical energy density εFO. I discuss in the follow-
ing how to treat such a case.

C. Flow through hypersurface elements

Let me assume that one has an expanding fluid, charac-
terized by an energy-momentum tensor T μν and some vector
Jμ

A representing the current of conserved quantities A (charge,
baryon number, strangeness). The energy-momentum tensor
can be expanded in the case of a viscous fluid in terms of the
energy density ε, the flow vector uμ (four-velocity of fluid
cell), the shear stress tensor, and bulk pressure. Given the
space-time dependence of the energy density, one may define
a “freeze-out (FO) hypersurface” via

ε(τ, η, r, ϕ) = εFO, (29)
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FIG. 14. (a) FO hypersurface element. (b) Cooper-Frye
hadronization as particle flow through FO hypersurface element.
(c) The flow of energy-momentum dPμ through the surface element
d�μ.

such that a point on the FO hypersurface can be expressed as
xμ(τ, η, r, ϕ) with

x0 = τ cosh η, x1 = r cos ϕ, x2 = r sin ϕ, x3 = τ sinh η,

(30)

with for example r = r(τ, η, ϕ). A hypersurface element
[sketched in Fig. 14(a)] may then be defined as

d�μ = εμνκλ

∂xν

∂τ

∂xκ

∂ϕ

∂xλ

∂η
dτdϕdη. (31)

One uses Milne coordinates and the corresponding natural
frame (see Appendix D) for all vector and tensor represen-
tations.

Cooper-Frye hadronization amounts to calculating the pro-
duction of particles with four-momenta pμ according to

E
dn

d3 p
=
∫

d�μ pμ fT (uν pν ), (32)

with fT (E ) being “thermal” (grand canonical) distribution at
a given temperature. As sketched in Fig. 14(b), the Cooper-
Frye procedure amounts to considering particle flow through
FO hypersurface elements. Here one is going to proceed
differently. Rather than considering particle flow, one consid-
ers energy-momentum flow. As sketched in Fig. 14(c), one
defines the flow of energy-momentum dP and the flow of
conserved charges dQA through the surface element d� as

dPμ = T μνd�ν, (33)

dQA = Jν
Ad�ν, (34)

with A ∈ {C, B, S}, corresponding electric charge, baryon
number and strangeness. Momentum and charges are con-
served, i.e.,

∫
�

dPμ = 0 and
∫
�

dQA = 0 for a closed surface
�, and as a consequence, if one starts at some given proper
time τini, one gets ∫

�FO

dPμ = Pμ
ini, (35)∫

�FO

dQA = QAini, (36)

τ

r

FIG. 15. Closed hypersurface �ini (red) plus �FO (magenta).

provided the hypersurface �ini corresponding to tini plus the
FO hypersurface �FO represent a closed hypersurface, as
sketched in Fig. 15. This means, when integrating dPμ and
dQA over the complete FO hypersurface, one recovers com-
pletely the initial energy-momentum and conserved charges,
and one therefore considers dPμ and dQA as the “basic
objects” which allow one to realize particle production by
respecting the conservation of energy-momentum and of con-
served charges.

In practice, one discretizes the hypersurface, and consider
small (but finite) elements ��(K ) which cover the whole
hypersurface �FO, as sketched in Fig. 16, to be explained in
the following. Before defining hypersurface and hypersurface
elements, the hydrodynamic evolution is completed and all
relevant quantities (energy density, flow velocity, current of
conserved charges, ...) are known on a four-dimensional grid
(τi, η j, rk, ϕn), with constant step sizes �a = ai+1 − ai for the
four variables a ∈ {τ, η, r, ϕ}.

The ranges for r and η are adapted to the system size
(PbPb is obviously bigger than pp) and the energy (for LHC
one needs larger η ranges than for RHIC energies). First the
transverse size R is determined (based on the core distribution
in space), event-by-event, such that the freeze-out surface will
be covered, with R from 3 fm (peripheral) to 10 fm (central)
for PbPb at 2.76 TeV, and with R = 2.4 for pp at 7 TeV. Then
a longitudinal width (in space-time rapidity) W is determined,
as 21.2r(s), with r(s) = y(s)/y(sref ), where y(s) is the rapidity
of the projectile nucleons in the nucleon-nucleon center-of-
mass for a squared nucleon-nucleon energy s, and where
sref = (2.76 TeV)2 is some reference value. Then one de-
fines �r = R/74, c�τ = 2R/50, �η = W/26, �ϕ = 2π/60
(EPOS4.0.0 default).

The hypersurface defined by ε(τ, η, r, ϕ) = εFO is com-
puted based on the knowledge of the energy density on
the grid and is given in terms of four-vectors x = x(i, j,n)

FIG. 16. Small hypersurface elements �� (K ) covering the whole
hypersurface �FO.

014910-11



K. WERNER PHYSICAL REVIEW C 109, 014910 (2024)

depending on three indices i, j, n as

x0 = τi cosh η j, x1 = ri, j,n cos ϕn, (37)

x2 = ri, j,n sin ϕn, x3 = τi sinh η j, (38)

with ri, j,n being the root of f (r) = ε(τi, η j, r, ϕn) − εFO for
fixed i, j, n computed via linear interpolation from the known
values of f (rk ) and f (rk+1), where k has been determined
such that f (rk ) and f (rk+1) have opposite sign (and [rk, rk+1]
contains the root). Knowing the hypersurface given as x =
x(i, j,n), one defines hypersurface elements ��(i, j,n) as

��(i, j,n)
μ = εμνκλ

{
∂xν

∂τ

∂xκ

∂ϕ

∂xλ

∂η

}
x=x(i jn)

�τ�ϕ�η, (39)

where the partial derivatives are obtained from Eq. (30) and
�τ , �ϕ, and �η are the step sizes of our grid. Having
determined ri, j,n via interpolation, one employs the same
interpolation procedure to construct the energy-momentum
tensor T μν and the current of conserved charges Jν

A corre-
sponding to ri, j,n, from the known values of these quantities
at grid points (τi, η j, rk, ϕn) and (τi, η j, rk+1, ϕn) and use
then for the interpolated values the symbols T (i, j,n) μν and
J (i, j,n)ν

A . To simplify the following discussion, one introduces
an integer K = K (i, j, n), being uniquely related to the triplet
(i, j, n), so one uses the quantities ��(K )

μ , T (K ) μν , and

J (K )ν
A . One then computes the energy-momentum flow vector

�P(K ) μ = T (K ) μν��(K )
ν and the flow of conserved charges

�Q(K )
A = J (K )ν

A ��(K )
ν .

For each hypersurface element ��(K ) and its associated
flow vector �P(K ), one defines an invariant-mass element

�M (K ) =
√

�P(K ) · �P(K ), (40)

where “·” refers to a product of four-vectors. One also defines
an associated flow four-velocity U as

U (K ) = �P(K )/�M (K ). (41)

The four-velocity U μ is not equal to the fluid velocity uμ, this
would only be true in case of zero pressure.

If one was only interested in global particle yields, one
might sum up all the masses to get the total effective invariant
mass:

Meff =
Kmax∑
K=1

�M (K ), (42)

sum up the charges as

QeffA =
Kmax∑
K=1

�Q(K )
A , (43)

and decay this object according to microcanonical hadroniza-
tion, as discussed in the previous section. But in that case,
one has no information transverse momentum and rapidity
dependencies of particle production.

But one can do better. One still computes Meff and per-
forms the microcanonical decay, as discussed above. But one
actually has much more information than just the masses.
One knows in addition for each hypersurface element ��(K )

FIG. 17. For all hypersurface elements (their centers, black
points), the coordinates (τ, η, r, ϕ) are known.

the associated four-velocity U (K ), representing the energy-
momentum flow through the surface element, and one knows
all its coordinates, see Fig. 17. Since one counts the hypersur-
face elements ��(K ) as K = 1, 2, 3 . . . Kmax, one may define
a probability law P on this set {1, 2, 3, . . . , Kmax} as

P(K ) = �M (K )∑
K �M (K )

, (44)

representing the relative weight of a particular hypersurface
element. After having done the microcanonical decay, one
may consider P(K ) as the weight of having produced a par-
ticle at a hypersurface position given by the coordinates τK ,
ϕK , rK , ηK , corresponding to the hypersurface element ��(K ).
In other words, one generates the coordinates τK , ϕK , rK , ηK

of the produced hadrons according to the law P(K ). In addi-
tion, one may consider P(K ) also as the weight of having a
four-velocity U (K ), and so one generates not only the position
according to P(K ), but also the four-velocity U (K ), which one
then uses to Lorentz boost the particles into the lab frame
(remembering that the microcanonical decay is done in the
center-of-mass frame of an effective invariant mass). In other
words, one gives back the flow, which has been taken out to
construct the effective invariant mass.

In the actual realization of the generation of a set of parti-
cles from the Monte Carlo procedure [microcanonical decay
plus subsequent sampling based on P(K ) and the following
boosts of the generated particles according to U (K )] one will
not have 100% energy-momentum conservation, so one re-
peats the sampling based on P(K ) and the following boosts
several times, to take the “best” selection, giving an accuracy
on the 1% level.

To test the above procedure, one considers a realistic ex-
panding fluid and the corresponding hypersurface created in
a single AuAu simulation at 200 AGeV with an impact pa-
rameter of 8 fm, considering a limited τ range (two steps).
Transverse flow velocities on the freeze-out surface reach up
to 0.45c. The total effective mass is around 160 GeV, so this
should correspond already to the infinite-volume limit. One
therefore computes particle yields in two ways: using the
above method of microcanonical decay plus Lorentz boosts
according to U (K ), based on Monte Carlo simulations, and
using the grand canonical method by doing a three-
dimensional (3D) momentum integration of Eq. (6), including
as well Lorentz boosts according to U (K ). The results are
shown in Fig. 18, where I plot transverse momentum distri-
butions for different hadron species, from top to bottom: π ,
K , �, �, and � (since one is just interested in comparing two

014910-12



CORE-CORONA PROCEDURE AND MICROCANONICAL … PHYSICAL REVIEW C 109, 014910 (2024)

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

0 1 2 3
 p

t
 [GeV/c]

  
y
ie

ld

EPOS4
π
K

Λ
Ξ
Ω

GrandCan = full
MicroCan = dotted

same test fluid

FIG. 18. Particle yields in pt bins of width 0.2 GeV/c computed
based on “microcanonical decay + boost” (dotted lines) and based
on “grand canonical decay + boost” (full lines), for the same test
fluid, see text.

methods, one computes yields in pt bins of width 0.2 GeV/c,
not divided by bin size). As expected, one observes indeed the
same result (which is also a good check of the numerics, since
the two methods are completely independent of each other).

At very high energies, the above procedure may be prob-
lematic, since the FO hypersurface may extend over a wide
η range, and it is not obvious if it is correct to consider the
whole surface as one object with one single effective invariant
mass. One therefore has the possibility (and will use it) to
split the surface into several pieces corresponding to inter-
vals in η with width �η, as [ηi − �η/2, ηi + �η/2], with
ηi+1 − ηi = �η. One may then do the sum as in Eq. (42),
but just summing the hypersurface elements within I (ηi ) =
[ηi − �η/2, ηi + �η/2], i.e.,

�Meff (ηi ) =
∑

η(K )∈I (ηi )

�M (K ), (45)

[and correspondingly for QeffA(ηi)] where η(K ) is the η value
associated with K . Rather than a single effective mass, one
has now a discrete set of masses �Meff (ηi), which one may
decay independently in their center-of-mass frames (in the
same way as discussed for Meff ). One also notes the rapidities
yi corresponding to �Meff (ηi), which allows one to finally
boost the particles into the lab frame. It should be noted that
the numerical values of yi are very close to ηi.

One has to do this splitting carefully. If the �η interval
is chosen to be very small, one may create artificially small
masses, with the corresponding suppression of heavy mass
hadrons. In this sense, the width �η is a physical param-
eter, measuring the width where hypersurface elements are
causally connected. I will come back to this point later.

Let me finally address a technical issue. When constructing
objects for given η intervals, after summing �Q(K )

A elements
within this interval, one may end up with noninteger values,
which is modified by taking the next-closest integer instead.
The violation of the global conservation laws even at RHIC
energies is small (less than 1%), so for the moment no cor-
rection is applied. This might be changed in the future, but
in particular at low energies there are even more important
issues to be considered (breakdown of the parallel scattering

FIG. 19. Energy density in the transverse plane (x, y) for proton-
proton scattering involving (from top to bottom) 2, 6, and 12
Pomerons. The left column represents the start time τ0 (of the hydro
evolution), and the right column a later time τ1, close to final freeze-
out.

scheme, first of all). But it is planned to reconsider these issues
in a future work dedicated to lower energies.

D. Core hadronization in pp scattering

I apply the procedures discussed in the last section to
investigate proton-proton scattering at LHC energies (I show
results for a center-of-mass energy of 7 TeV), and I will try
to understand what kind of effective masses are produced and
where they are produced in space and time.

Let me consider (randomly chosen, but typical) proton-
proton-scattering events involving 2 Pomerons, 6 Pomerons,
and 12 Pomerons. In Fig. 19, I plot for the three cases the
energy density in the transverse plane (x, y). I consider in
each case two snapshots, namely, at the start time of the hydro
evolution τ0 = 0.40 fm/c (left column) and a later time τ1

(different values, 1.5–2.5 fm/c) close to final freeze-out (right
column). In all cases, the initial distributions have elongated
shapes (just by accident, due to the random positions of inter-
acting partons). One can clearly see that the final distributions
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FIG. 20. Mass distribution �M/�η as a function of the space-
time rapidity η, for an event with 2 Pomerons, an event with 6
Pomerons, and an event with 12 Pomerons.

are as well elongated, but perpendicular to the initial ones, as
expected in a hydrodynamical expansion.

As explained in the last section, one computes effective
mass elements representing the momentum flow through sur-
face elements. It is in particular useful to split the η range
into intervals [ηi − �η/2, ηi + �η/2], with ηi+1 − ηi = �η,
and sum up the corresponding hypersurface elements to get a
set of effective masses �Meff (ηi ). In this way, one obtains an
“effective-mass distribution” �M/�η, which one may plot as
a function of η, as shown in Fig. 20 for the above-mentioned
events with 2 Pomerons (corresponding roughly to minimum
bias), events with 6 Pomerons (roughly three times minimum
bias), and events with 12 Pomerons (roughly 6 times min-
imum bias). As expected, the dM/dη values increase with
increasing Pomeron number, somewhat less than linear.

The total energy (of the core part) may be estimated as

E =
∑ �M

�η
(ηi ) cosh (ηi )�η (46)

by using the fact that yi is very close to ηi. One gets for the
three cases:

E =
⎧⎨⎩573 GeV (2 Pom)

1843 GeV (6 Pom)
2225 GeV (12 Pom).

(47)

These numbers should be compared with the total available
energy, which is 7000 GeV. This shows that the total energies
of the core part in all three cases represent only a relatively
small fraction of the total energy, but the observable effects
are big! One may now compute the total effective masses as

Meff =
∑ �M

�η
(ηi )�η, (48)

and one gets for the three cases:

Meff =
⎧⎨⎩30.6 GeV (2 Pom)

61.4 GeV (6 Pom)
115.4 GeV (12 Pom).

(49)

These numbers are much smaller than the energies E , the
latter ones containing the kinetic energy of the longitudinal
expansion. So the masses M are the relevant quantities con-
cerning the production yields for the different particle species,

FIG. 21. Hypersurface element positions projected into the η-τ
plane.

and these masses will be used in the microcanonical decay
procedures.

The effective masses �Meff (ηi) are sums of small hyper-
surface elements ��(K ), each one corresponding to a set of
coordinates τ , η, r, ϕ, which allows one to plot projections
of these coordinates into the η-τ plane, as done in Fig. 21 for
our 12-Pomeron example. This shows that the hypersurface is
quite extended in space and time. In general, hadronization at
large space-time rapidities (corresponding to large rapidities)
happens early, the latest hadronization takes place around
η = 0, the extension in time is around 2 fm/c, the width in
η is around 10 units.

In particular the important width in η brings up (again) the
question of how to deal with the splitting of the complete hy-
persurface into pieces of width �η, as sketched in Fig. 22. For
small systems (like pp scattering), the total effective masses
are not very big, in our three examples between 30 and 115
GeV, and splitting these into small pieces will lead to very
small effective masses, with big effects concerning the pro-
duction of heavy baryons. As shown in Sec. IV B, for masses
at 25 GeV, one sees already deviations in the microcanonical
result compared with the grand canonical one. So the big
question is does the system decay as single effective mass Meff

or as several independent objects of width �η.
In Refs. [31,32], Oliinychenko et al. presented a sampling

method for the transition from relativistic hydrodynamics
to particle transport, which preserves the local event-by-
event conservation of energy, momentum, baryon number,
strangeness, and electric charge, for each sampled configu-
ration in spatially compact regions (patches). In our method,
using finite �η amounts to cutting the hypersurface into dis-
tinct regions, defined by η ranges. In principle it would be
possible to further cut these regions into smaller pieces, which

η

τ

η

τ
Δη

FIG. 22. Splitting of the complete hypersurface (left) into pieces
of width �η (right).
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indeed might be necessary to study local fluctuations. This
is an option for future development, but I do not follow this
possibility in this paper, since I mainly focus on the transition
to small systems, where already the regions defined by η

ranges are small.

E. The role of the splitting parameter �η in core hadronization

Let me consider �η as a free parameter, in order to try
several choices of �η in the following, to learn how it affects
the results. One choice will be �η = ∞, which means one has
just one single object as in Fig. 22 (left). In addition, one also
investigates �η = 4.5 and �η = 1.8, as in Fig. 22 (right).

One should keep in mind that the total width of the FO
hypersurface is around 10 fm/c, at LHC energies, see Fig. 21,
and the total effective masses in pp scattering are between
several tens up to more than 100 GeV, depending on the
Pomeron number.

One considers only the core contributions for the moment,
decayed according to microcanonical hadronization, for pp
and PbPb scattering. Particle ratios (with respect to pions
always) are computed as a function of the charged multi-
plicity 〈dnch/dη(0)〉, which allows one to put pp and PbPb
results on the same plot. One considers simulation results
from EPOS4.0.0 for pp at 7 TeV and PbPb at 2.76 TeV, com-
pared with data from ALICE [6,7,33–35]. In Fig. 23, I show
results for K/π (upper plot), p/π (middle plot), and �/π

(lower plot), and in Fig. 24 results for �/π (upper plot) and
�/π (lower plot). In all cases, I show simulation results for
�η = ∞ (green dashed-dotted lines), �η = 4.5 (blue dotted
lines) and �η = 1.8 (red dashed lines). For the simulation
results, thin line style is used for pp, and thick lines for PbPb,
whereas for the data, circles are used for pp and stars for PbPb.
The short black horizontal lines on the right side of the plots
correspond to predictions from the “thermal model” [36].

First of all, one sees that all the curves show a continuous
behavior, when passing from pp to PbPb. Concerning the
PbPb results, there is no difference between the three �η

choices, with the only exception of �/π ratios, where
the �η = ∞ gives a flat ratio, whereas, for �η = 4.5
and �η = 1.8, the curves drop slightly on the left end
(peripheral collisions). The situation is quite different for the
pp curves. In all cases, the curves drop when going to smaller
multiplicities, and this drop is more and more pronounced
with decreasing �η, and comparing the curves with fixed �η,
the drop is increasing with particle mass: the biggest effect is
seen for �/π ratios. One should also keep in mind that grand
canonical particle production (what has been used in earlier
EPOS version) leads to flat curves, the same for pp and PbPb.
So one sees a big effect of microcanonical hadronization
compared with the grand canonical one, and the deviation
depends strongly on �η.

Concerning the comparison with experimental data, one
sees that none of the choices of �η can explain the data: for
big values of �η, one stays clearly above the data, and for
small values, the ratios do drop sufficiently, but too fast. So it
is clear that even a “tuning” of �η will not help to reproduce
the data—for a pure core approach. I will investigate the full
core-corona approach in the next section.
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FIG. 23. Ratio K/π (upper plot), p/π (middle plot), and �/π

(lower plot), for pp at 7 TeV and PbPb at 2.76 TeV as a function of
the multiplicity dnch/dη(η = 0), compared with ALICE data.

As a side remark, it is of course possible to reduce baryon
production by using a smaller value of the freeze-out energy
density εFO, as shown in Fig. 25 (left), where I plot the ra-
tio �/π for a pp simulation at 7 TeV, using �η = ∞ and
εFO = 0.2. But as seen in 25 (right), the average pt is much
too high. Similar results are obtained for other baryons. So
it seems impossible to reproduce in this way ratios and other
important observables at the same time, as it will be possible
in the core-corona approach where, in addition, one employs
a unique value of εFO for all systems.
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FIG. 24. Same as Fig. 23, but for �/π (upper plot) and �/π

(lower plot).

F. Results for the full core-corona picture
in pp and PbPb scattering

In the following, results concerning the full core-corona
approach will be discussed. Let me briefly recall the proce-
dure: as explained in detail in Sec. III, primary interactions
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FIG. 25. Ratio �/π (left plot) and average pt (right plot) for pp
at 7 TeV, for �η = ∞ and εFO = 0.2. EPOS simulations are compared
with data from ALICE [7].

lead to the production of prehadrons, a core-corona proce-
dure separates the core and corona prehadrons. The former
constitute the core, the latter are considered to be hadrons.
The core is meant to be matter, which evolves according to
viscous hydrodynamics, which allows one to compute the
space-time dependence of the energy-momentum tensor T μν

(expressed in terms of energy density ε, the flow vector uμ,
the shear stress tensor, and bulk pressure) and of the vector Jμ

A
representing the current of conserved quantities A.

As shown in Sec. IV C, based on the energy density ε, one
defines a freeze-out (FO) hypersurface via ε(τ, η, r, ϕ) = εFO,
which allows defining (after discretization) small hypersur-
face elements ��μ. Together with the knowledge of T μν ,
this allows one to compute energy-momentum flow four-
vectors �P and invariant-mass elements �M = √

�P · �P,
which may be summed up to get effective invariant masses
�Meff (ηi ), covering space-time rapidity intervals of width
�η, which are decayed microcanonically (this is called
“hadronization”).

As discussed in the previous section, the outcome of core
hadronization depends on �η. I use in the following �η = ∞,
which seems to be “the best” value when comparing with data,
in the sense of a comparison with very large set of data con-
cerning very different observables, for many different systems
and energies, much beyond what is shown in this paper. The
aim of this work is not to accommodate local fluctuations, in
that case one needed in particular for heavy ion collisions to
introduce “local patches” and not only finite �η, which would
be an easy extension of the present work. The main focus
here is the transition from big to small systems, and for small
systems the value of �η is important, and (from our findings)
the best global fit is obtained for �η = ∞, which is simply
an empirical fact, somewhat counterintuitive. Anyway, �η is
one of the EPOS parameters the user may change.

After the hadronization of the fluid, the created hadrons
as well as the corona prehadrons (having been promoted to
hadrons) may still interact via hadronic scatterings, and here
one uses UrQMD [37,38].

In the following, I want to study core and corona contri-
butions to hadrons production, for pp and PbPb collisions at
LHC energies. I will distinguish between the following:

(A): The “core+corona” contribution: primary inter-
actions (S-matrix approach for parallel scatter-
ings), plus core-corona separation, hydrodynamic
evolution, and microcanonical hadronization, but
without hadronic rescattering.

(B): The “core” contribution: like (A), but considering
only core particles.

(C): The “corona” contribution: like (A), but considering
only corona particles.

(D): The “full” EPOS4 scheme: like (A), but in addition
hadronic rescattering.

In cases (A)–(C), one needs to exclude the hadronic af-
terburner because the latter affects both core and corona
particles, so in the full approach, the core and corona con-
tributions are not visible anymore.
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FIG. 26. The core fraction [core/core+corona] for pp at 7 TeV
and PbPb at 2.76 TeV as a function of the multiplicity dnch/dη(η =
0).

In Fig. 26, I show the core fraction [core/core+corona]
in pp at 7 TeV and PbPb at 2.76 TeV as a function of the
multiplicity dnch/dη(η = 0), being defined as pion yield from
core over core+corona contribution (since pions are by far the
most frequent species).

I will take core+corona as a reference, and plot ratios
X/core+corona versus pt , with X being the corona contribu-
tion, the core, and the full contribution, for four event classes
and four different particle species.

In Fig. 27, I show results for pp collisions at 7 TeV, for
(from top to bottom) pions (π±), kaons (K±), protons (p and
p̄), and lambdas (� and �̄), which correspond to hadrons
with increasing masses. The four columns represent four dif-
ferent event classes defined in terms of the number NPom of
Pomerons (from left to right): 1, 2–4, 5–9, 10–15, which
may be compared with the average number of Pomerons in
minimum bias pp at 7 TeV of around two.

Looking at the green (core) and blue (corona) curves, one
observes that the core contribution increases with NPom, but it
also increases with the hadron mass (from top to bottom). The
biggest core contribution is observed for lambdas for events
with 10–15 Pomerons. There is an interesting pt dependence.
In all cases, the maximum of the green core curves is around
1–2 GeV/c, with bigger values for the heavier particles. This
is clearly a flow effect, the core particles are produced from
a radially expanding fluid, which moves particles to higher pt

values, as compared with a decaying static droplet.
Whereas the core contribution goes down toward small

NPom, one still observes a nonvanishing contribution even for
NPom = 1, which means even a very small number of strings
may create a core and flow effects. And this is actually needed
to describe experimental data, as I discuss later. It is often
said that “collective effects” show up in high multiplicity pp
events, but it seems that flow effects are present everywhere.

The red curves represent full over core+corona, the differ-
ence between the two is the effect of the hadronic cascade in
the full case. Here, one sees only a small effect, essentially
some baryon-antibaryon annihilation, which suppresses the
baryon yield at small pt .
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FIG. 27. The X/core+corona ratio, with X being the corona
contribution (blue), the core (green), and the full contribution (red),
for four event classes and four different particle species, for pp at
7 TeV.

In Fig. 28, I show ratios X/core+corona versus pt , for
PbPb collisions at 2.76 TeV, again for (from top to bottom)
pions (π±), kaons (K±), protons (p and p̄), and lambdas (�
and �̄). The four columns represent four different centrality
classes, namely, 0%–5%, 20%–40%, 60%–80%, 80%–100%.

Looking at the green (core) and blue (corona) curves, one
observes that the core contribution increases with centrality,
but it also increases with the hadron mass (from top to bot-
tom). Concerning the pt dependence, one also observes a
maximum of the green core curves around 1–2 GeV/c, less
pronounced compared with the pp results, but still, at very low
pt the core contribution goes down, so even at very small pt

values the corona contributes. The crossing of the green core
and the blue corona curves (core = corona) occurs between
around 2 GeV/c (mesons, peripheral) and 5 GeV/c (baryons,
central).

The red curve, full over core+corona, represents the effect
of the hadronic cascade in the full case. The pions are not
much affected, but for kaons and even more for protons and
lambdas, rescattering makes the spectra harder. One should
keep in mind that rescattering involves particles from fluid
hadronization, but also corona particles from hard processes.
Concerning the baryons, rescattering reduces (considerably)
low pt yields, due to baryon-antibaryon annihilation.

In the following, I show results of particle production in
pp scattering at 7 TeV and PbPb collisions at 2.76 TeV. In
Fig. 29, I show ratios of hadron yields over pion yields,
at rapidity zero, for proton-proton scattering at 7 TeV and
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FIG. 28. The X/core+corona ratio, with X being the corona
contribution (blue), the core (green), and the full contribution (red),
for four centrality classes and four different particle species, for PbPb
at 2.76 TeV.

PbPb at 2.76 TeV, as a function of the average multiplic-
ity 〈dnch/dη(η = 0)〉. Concerning the EPOS simulations, I
show the different contributions: core (green dashed-dotted
lines), corona (blue dotted lines), core+corona (co+co, yel-
low dashed lines), and full (red full lines). Thin lines are used
for pp and thick ones for PbPb. I also show ALICE data
[6,7,33–35], using black symbols, stars for PbPb, and circles
for pp. I consider charged kaons, protons, lambdas, as well as
� baryons and � baryons.

One sees almost flat lines for the corona contributions, sim-
ilar for pp and PbPb, which is understandable, since corona
means particle production from string fragmentation, which
does not depend on the system. One observes also flat curves
for the core at high multiplicity, which is again expected since
the core hadronization is determined by the freeze-out energy
density, which is system independent. However, when the
system gets very small, one gets a reduction of heavy parti-
cle production due to the microcanonical procedure (with its
energy and flavor conservation constraints), whereas a grand
canonical treatment would give a flat curve down to small
multiplicities. This effect increases with particle mass, it is
biggest for Omega baryons, where the reduction is about a
factor of two.

The yellow core+corona curves simply interpolate be-
tween the corona and the core curves, with the core weight
increasing continuously with multiplicity. The increase is
biggest for the �. Here, the core curve is far above the corona
one, which simply reflects the fact that � production is much
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FIG. 29. Ratio to π for (from top to bottom) K , p, �, �, � for
pp at 7 TeV and PbPb at 2.76 TeV as a function of the multiplicity
dnch/dη(η = 0). I show the different contributions: core, corona,
core+corona, and full (see text), compared with ALICE data.
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more suppressed in string decay, compared with statistical
(“thermal”) production. This explains why the core+corona
contribution increases by one order of magnitude from low
to high multiplicity, because simply the relative weight of
the core fraction increases from zero to unity. Both micro-
canonical decay and core-corona procedure contribute to the
decrease of the ratios toward small multiplicity, but it seems
that the core-corona mechanism is more important.

Finally, there is some effect from hadronic rescattering
(difference between full and co+co), mainly a suppression
due to baryon-antibaryon annihilation at large multiplicities.

Whereas the particle ratios are essentially smooth curves,
from pp to PbPb, the situation changes completely when
looking at the average transverse momentum 〈pt 〉 versus mul-
tiplicity, as shown in Fig. 30, where I show simulation results
for pp (thin curves) and PbPb (thick curves) for charged π

mesons, charged K mesons, (anti)protons, � (anti)baryons, �

(anti)baryons, and � (anti)baryons. I again show the different
contributions: core (green dashed-dotted lines), corona (blue
dotted lines), core+corona (co+co, yellow dashed lines), and
full (red full lines). Simulation are compared with ALICE data
[6,7,33–35], using black symbols, stars for PbPb, and circles
for pp.

Here, one sees (for all curves) a significant discontinuity
when going from pp to PbPb. The corona contributions are
not flat (as the ratios), but they increase with multiplicity,
in the case of pp even more pronounced as for PbPb. This
is a “saturation effect”: the saturation scale increases with
multiplicity, which means that with increasing multiplicity the
events get harder, producing higher pt . The situation is differ-
ent for PbPb, where an increase in multiplicity is mainly due
to an increase in the number of active nucleons, with a more
modest increase of the saturation scale with multiplicity. Also,
the core curves increase strongly with multiplicity, and here as
well more pronounced in the case of pp, due to the fact that
one gets for high-multiplicity pp high energy densities within
a small volume, leading to strong radial flow. Again, the
core+corona contribution is understood based on the continu-
ous increase of the core fraction from low to high multiplicity.

It is very useful (and necessary) to consider at the same
time the multiplicity dependence of particle ratios and of
mean pt results, since their behavior is completely different
(the former is continuous, the latter jumps). Despite these
even qualitative differences between the two observables, the
physics issues behind these results is the same, namely satura-
tion, core-corona effects which mix flow (being very strong)
and nonflow, and microcanonical hadronization of the core.

Another very important and useful variable is the multi-
plicity dependence of D meson production, where “D” stands
for the sum of D0, D+, and D∗+. This is much more than just
“another particle”, since the D meson contains a charm quark,
the latter being created exclusively in the parton ladder and
not during fragmentation or in the plasma. In Fig. 31, I plot the
normalized D meson multiplicity (d2N/dyd pt/〈d2N/dyd pt 〉)
as a function of the normalized charged particle multiplicity
(dNc/dy/〈dNc/dy〉) for different pt ranges in pp scattering at
7 TeV, compared with ALICE data [39]. It is interesting to see
in which way the simulations and the data deviate from the
reference curve, which is the dashed black line representing
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π , K , p, �, �, � for pp at 7 TeV and PbPb at 2.76 TeV as a function
of the multiplicity dnch/dη(η = 0). I show the different contribu-
tions: core, corona, core+corona, and full (see text), compared with
ALICE data.
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identical multiplicity dependence for D mesons and charged
particles. Considering the EPOS results without hydro (green
lines), for low pt (1–2 GeV/c) the curve is slightly above
the reference, but with increasing pt the green curves get
steeper, which is due to the fact that with increasing multiplic-
ity the saturation scale increases, and the events get harder,
producing more easily both high-pt and charmed particles.
Considering EPOS with hydro (red curves), the increase com-
pared with the green curves is much stronger, which is due to
the fact that “turning on hydro” will reduce the multiplicity
(the available energy is partly transformed into flow). The
red curves are close to the experimental data, both showing
a much stronger increase compared with the reference curve,
with the effect getting bigger with increasing pt . So one
may conclude this paragraph: to get these final results (the
strong increase), two phenomena are crucial, namely, satu-
ration which makes high multiplicity events harder, and the
“hydro effect” which reduces multiplicity and “compresses”
the multiplicity axis.

V. SUMMARY

After recalling briefly the EPOS4 parallel scattering ap-
proach, as well as the core-corona method, I presented new
developments concerning the microcanonical decay of plasma
droplets, providing very efficient methods to decay droplets
of all sizes, allowing the study of the transition towards
the grand canonical limit (the method usually employed).
I then discussed in detail new methods to construct effec-

tive (droplet) masses from energy-momentum flow through
freeze-out hypersurfaces of expanding fluids in pp or AA colli-
sions, and I discussed results of microcanonical decay of these
droplets. Finally, I investigated the multiplicity dependence
of multistrange hadron yields in proton-proton and lead-lead
collisions at several TeV, which allows the study of the tran-
sition from very big to very small systems, in particular
concerning collective effects. Here, the “full model” was em-
ployed: our core-corona approach, using new microcanonical
hadronization procedures, as well as the new methods allow-
ing to transform energy-momentum flow through freeze-out
surfaces into invariant-mass elements. It was tried to disentan-
gle effects due to “canonical suppression” and “core-corona
effects”, which will both lead to a reduction of the yields at
low multiplicity.

APPENDIX A: THE NONRELATIVISTIC
PHASE-SPACE INTEGRAL

The NRPS integral Eq. (14) may be written as (writing 

instead of NRPS)

 = (4π )n
∫ ∞

m1

dE1 · · ·
∫ ∞

mn

dEn

n∏
i=1

piEi (A1)

× δ

(
M −

n∑
i=1

Ei

)
W (p1, . . . , pn). (A2)

With ti := Ei − mi and T := M −∑n
i=1 mi one obtains

(M, m1, . . . , mn) = (4π )n
∫ ∞

0
dt1 · · ·

∫ ∞

0
dtn

n∏
i=1

piεi

× δ

(
T −

n∑
i=1

ti

)
W (p1, . . . , pn).

(A3)

One now introduces “accumulated” kinetic energies si via

si :=
i∑

j=1

t j, (A4)

with the inverse ti = si − si−1, s0 = 0, and dti = dsi. One
obtains

(M, m1, . . . , mn) = (4π )n
∫ ∞

0
ds1

∫ ∞

s1

ds2 · · ·
∫ ∞

sn−1

dsn

×
n∏

i=1

piεiδ(T − sn)W (p1, . . . , pn).

(A5)

The integration over sn is trivial and may be performed to
obtain

(M, m1, . . . , mn)

= (4π )n
∫ ∞

0
ds1

∫ ∞

s1

ds2 · · ·
∫ ∞

sn−3

dsn−2

∫ T

sn−2

dsn−1
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×
n∏

i=1

piεiW (p1, . . . , pn). (A6)

All upper limits may be replaced by T . Introducing energy
fractions, xi := si/T , one gets

(M, m1, . . . , mn) = (4π )nT n−1
∫

0�x1�···�xn−1�1
dx1 · · · dxn−1

×
n∏

i=1

piεiW (p1, . . . , pn). (A7)

Using the definition

ψ (p1, . . . , pn) := (4π )nT n−1

(n − 1)!

n∏
i=1

piεiW (p1, . . . , pn), (A8)

One may write

(M, m1, . . . , mn)

= (n − 1)!
∫

0�x1�···�xn−1�1
dx1 · · · dxn−1ψ (x1, . . . , xn−1),

(A9)

where ψ (x1, . . . , xn−1) is meant to be ψ (p1, . . . , pn) with pi

and εi expressed in terms of x1, . . . , xn−1. This may be solved
via Monte Carlo as

(M, m1, . . . , mn) = 1

N

N∑
β=1

ψ
(
x(β )

1 , . . . , x(β )
n−1

)
, (A10)

where the x(β )
i are ordered random numbers,

0 � x(β )
1 � x(β )

2 � · · · � x(β )
n−1 � 1. (A11)

So for each Monte Carlo step, n − 1 random numbers have
to be generated, ordered according to size, and then used
to evaluate ψ (x(β )

1 , . . . , x(β )
n−1). To avoid ordering, one may

introduce the variables

zi := xi

xi+1
, (A12)

using the definition xn := 1. One gets

dxi = dzixi+1 = dzi

n−1∏
j=i+1

z j, (A13)

the last equation holding for i < n − 1; so one has

n−1∏
i=1

dxi =
n−1∏
i=1

dzi

n−2∏
i=1

n−1∏
j=i+1

z j =
n−1∏
i=1

dzi

n−1∏
i=1

zi−1
i . (A14)

From Eq. (A9), one gets

(M, m1, . . . , mn)

=
∫ 1

0
dz1 · · ·

∫ 1

0
dzn−1

n−1∏
i=1

izi−1
i ψ (z1, . . . , zn−1), (A15)

where obviously ψ (z1, . . . , zn−1) is meant to be
ψ (p1, . . . , pn) with pi expressed in terms of zi. One now

introduces

ri :=
∫ zi

0
iξ i−1dξ = zi

i (A16)

to obtain

(M, m1, . . . , mn) =
∫ 1

0
dr1 · · ·

∫ 1

0
drn−1ψ (r1, . . . , rn−1).

(A17)

The ri are now uncorrelated, no ordering is required. The final
result is  = ∫

d with

d = dr1 . . . drn−1
(4π )nT n−1

(n − 1)!

n∏
i=1

piEiW (p1, . . . , pn),

(A18)

with ri ∈ [0, 1], and with zi = r1/i
i , xi = zixi+1, si = xiT , ti =

si − si−1, Ei = ti + mi, and T = M −∑n
i=1 mi.

APPENDIX B: THE LORENTZ-INVARIANT PHASE-SPACE
INTEGRAL

For given mass M, for given n, and for given masses
m1, . . . , mn, one defines the LIPS phase-space integral
LIPS = ∫

dLIPS as

LIPS =
∫

δ(M − �Ei )δ
3(� 
pi )

n∏
i=1

d3 pi

2Ei
, (B1)

which may be written as [28]

LIPS =
∫

δ4(P − �pi )
n∏

i=1

δ
(
p2

i − m2
i

)
d4 pi (B2)

=
∫ {∫

δ4

(
P − Pl −

∑
i>l

pi

)

×
∏
i>l

δ
(
p2

i − m2
i

)
d4 piδ

(
P2

l − M2
l

)
d4Pl

×
∫

δ4

⎛⎝Pl −
∑
i�l

pi

⎞⎠∏
i�l

δ
(
p2

i − m2
i

)
d4 pi

⎫⎬⎭dM2
l ,

(B3)

which leads to

LIPS =
∫

LIPS(M; Ml , ml+1, . . . , mn)

× LIPS(Ml ; m1, . . . , ml )dM2
l . (B4)

Iterating this equation, one gets (using Mn = M, M1 = m1)

LIPS = 1

2m1

∫ n−1∏
i=1

2MiLIPS(Mi+1; Mi, mi+1)
n−1∏
i=2

dMi,

where the two-body LIPS factor may be written as

LIPS(M; ma, mb)

=
∫

δ4(P − pa − pb)δ
(
p2

b − m2
b

)
θ (Eb)d4 pb

d3 pa

2Ea
(B5)
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FIG. 32. Successive two-body decays.

=
∫

δ
(
(P − pa)2 − m2

b

)
θ ((P − pa)0)

d3 pa

2Ea
. (B6)

Evaluating this expression in the center-of-mass system, one
gets

P = (M, 
0), pa = (Ea, 
p ), pb = (Eb,−
p ),

and so

(P − pa)2 − m2
b = P2 − 2Ppa + p2

a − m2
b (B7)

= M2 − 2MEa + m2
a − m2

b, (B8)

which gives

LIPS(M; ma, mb) (B9)

=
∫

δ
(
M2 − 2MEa + m2

a − m2
b

)
θ (M − Ea)

padEad�

2

(B10)

= pa

4M

∫
d�. (B11)

So one gets

LIPS(M; ma, mb) = π

M
p(M; ma, mb), (B12)

where p is the momentum of the two-body decay in the rest
frame, given as

p(M; ma, mb) =
√

E2
a − m2

a, (B13)

with (from integrating the mass-shell δ function)

Ea = 1

2M

(
M2 + m2

a − m2
b

)
. (B14)

The n-body phase-space element is then

LIPS = π (2π )n−2

M

n−1∏
i=1

p(Mi+1; Mi, mi+1)
n−1∏
i=2

dMi, (B15)

which amounts to successive two-body decays (James, 1968),
see Fig. 32, as Mn → Mn−1 + mn, Mn−1 → Mn−2 + mn−1, etc.
As a consequence, the integration limits are

Mi−1 + mi � Mi. (B16)

Defining variables xi via

Mi =
i∑

j=1

mj + xi

⎛⎝M −
n∑

j=1

mj

⎞⎠, (B17)

with

0 � x2 � · · · � xi−1 � xi · · · � xn−1 � 1, (B18)

one recovers indeed Mi−1 + mi � Mi. So one gets

dLIPS = π (2π )n−2

M

n−1∏
i=1

p(Mi+1; Mi, mi+1)

×
⎛⎝M −

n∑
j=1

mj

⎞⎠n−2
n−1∏
i=2

dxi, (B19)

with ordered xi. With xi+1 = x′
i , x′

i = zix′
i+1, and (zi )i = ri, one

gets

n−1∏
i=2

dxi = 1

(n − 2)!

n−2∏
i=1

dri, (B20)

with independent variables ri ∈ [0, 1], and so

dLIPS(M; m1, . . . , mn)

= π (2π )n−2

M

n−1∏
i=1

p(Mi+1; Mi, mi+1)

×
⎛⎝M −

n∑
j=1

mj

⎞⎠n−2

1

(n − 2)!

n−2∏
i=1

dri, (B21)

with xi+1 = x′
i , x′

i = zix′
i+1, and (zi)i = ri, and

Mi =
i∑

j=1

mj + xi

⎛⎝M −
n∑

j=1

mj

⎞⎠. (B22)

The successive two-body decays are done in the center-of-
mass of the decaying object. In the Monte Carlo procedure,
the particles have therefore to be boosted into the frame of
the object they are originating from, in an iterative fashion,
starting with the last decay.

APPENDIX C: SAMPLING VIA MARKOV CHAINS

One wants to generate randomly hadron configurations
{H, P}, with H = {h1, . . . , hn} specifying the hadron species
and P = {
p1, . . . , 
pn} their momenta, according to the weight
given in Eq. (11), which can be written as [see Eqs.
(12,13,24,25,26)]

dQW (H, Q), (C1)

with Q = {q1, . . . qk} representing k independent variables
with qi ∈ [0, 1], which characterize P. Depending on the
method one uses, one has k = 3n − 1 (improved Cerulus-
Hagedorn method) or k = 3n − 4 (LIPS method). The
expression for W can be found by comparing with
Eqs. (11,12,13,24,25,26), keeping in mind that there one only
writes the nontrivial variables ri, the variables u and w are
simply uniform random variables in [0,1]. So to have complete
expressions, one needs to add terms like

∏
f (u j )

∏
f (w j )

with f being the function defined as f = 1 in [0,1] and zero
elsewhere.
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There is one technical point that needs to be discussed.
Rather than considering configurations (like the two hadron
configuration “one pion and one kaon”), one considers or-
dered sequences of hadrons (like “first hadron = pion, second
hadron = kaon”). In addition, one allows in the sequence
{h1, . . . hL} also “holes”, hi = 0, and one uses a fixed length L.
The number of hadrons is then the number of nonzero places
in the sequence. Consequently, one adds a factor

1

n!

{∏
α∈S

nα!

}
n!(L − n)!

L!
(C2)

to our probability distribution W .
To simplify the notation, I use in the following:

K = {H, Q} (C3)

for a configuration, and
∑

K · · · means by definition∑
H

∫ · · · dQ. Finally, one defines the normalized distribution
�(K ) = W (K )/

∑
k W (K ), so one has∑

K

�(K ) = 1. (C4)

To generate K according to �(K ), one considers a se-
quence of random configurations

K0, K1, K2, . . . , (C5)

with some �t being the law for Kt . Let A and B be possi-
ble configurations. One defines an operator T as T �t (B) =∑

A �t (A)p(A → B), with p(A → B) being called transition
probability (or matrix). Normalization:

∑
B p(A → B) = 1.

Considering homogeneous Markov chains, the law for �t+1

is by definition given as T �t . A law is called stationary if
T � = �. According to the fundamental theorem of Markov
chains, one knows, if a stationary law T � = � exists, then
T k�0 converges in a unique fashion towards �, for any �0. A
sufficient condition for T � = � is detailed balance, defined
as

�(A)p(A → B) = �(B)p(B → A), (C6)

and ergodicity, which means that for any A, B there must exist
some r with the probability to get from A to B in r steps being
nonzero. Henceforth, one uses the abbreviations

�A := �(A), pAB := p(A → B). (C7)

Following Metropolis-Hastings [40–42], one makes the ansatz

pAB = wABuAB, (C8)

with a so-called proposal matrix w and an acceptance matrix
u. Detailed balance now reads

uAB

uBA
= �B

�A

wBA

wAB
, (C9)

which is obviously fulfilled for

uAB = F

(
�B

�A

wBA

wAB

)
, (C10)

with some function F fulfilling F (z)/F (z−1) = z. One takes

F (z) = min (z, 1). (C11)

The power of the method is due to the fact that an arbitrary w
may be chosen, in connection with u being given by Eq. (C10).
So the task is twofold: one needs an efficient algorithm to
calculate, for given K , the weight �(K ), and one needs to
find an appropriate proposal matrix w which leads to fast
convergence (small Ieq), which is not trivial. The first task can
be solved, as shown in Sec. IV B.

In the following, I discuss how to construct an appropriate
proposal matrix wAB. Let nspecs be the number of hadron
species considered [the latter being the list of hadrons accord-
ing to the particle data group (PDG), without charm, bottom,
top]. The index nspecs + 1 is used for the “hole” (missing
particle), which is formally considered as particle species.
One defines weights for the hadron species h as

e(h) =
{

fh/
{
2
∑

fh
}

for hadrons h

1/2 for the hole,
(C12)

with fh being the grand canonical yields, see Eq. (6).
One defines the proposal matrix wAB in terms of an algo-
rithm which constructs B starting form some configuration
A. As discussed above, a configuration has the structure
{{h1, . . . , hn}, {q1, . . . qk}}, where hi refers to the particle
species of hadron i, and the qi are independent variables
(defined in [0,1]) which define the momenta of the hadrons
(the qi are not associated to individual hadrons). Start from
A = {{h1, . . . , hn}, {q1, . . . qk}}:

A1: Chose randomly two integer numbers i and j �= i be-
tween 1 and n, and replace hi and h j in A by h′

i and h′
j ,

the latter having been generated with weights e(h′
i )

and e(h′
j ). Let me name the new configuration A′.

A2: Chose randomly two more integer numbers k and l �=
k between 1 and n, different from i and j.

A3: Establish a list of pairs of particle species h′
a and h′′

a ,
a = 1, 2, 3, . . . , N , considering those which conserve
flavor, if hi, h j , hk , and hl are replaced by h′

i, h′
j , h′

a,
and h′′

a . Associate a weight ca = e(h′
a)e(h′′

a ) to pair a.
Choose a pair index a with weight ca/

∑N
a=1 ca.

A4: Replace hk and hl in A′ by h′
a and h′′

a , with the a chosen
in the previous step, which gives the new configura-
tion B.

A5: In case of change hadron to hole or vice versa, replace
one of the qi by q′

i, chosen randomly in [0,1] (note that
qi is not associated directly to hadron i).

The asymmetry wAB/wBA is given as

wAB

wBA
= e(h′

i )e(h′
j )e(h′

a)e(h′′
a )

e(hi )e(h j )e(hk )e(hl )
. (C13)

Finally, one computes �B, and with �A already known (com-
puted in the step before), this allows one to compute

uAB = F

(
�B

�A

wBA

wAB

)
. (C14)

The proposal will be accepted with this weight, otherwise one
continues with configuration A.

With this choice (algorithm A1-5) of a proposal matrix,
fast convergence can be achieved. Concerning in A3 the “list
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of pairs that conserve flavor”, one predefines for all possible
flavor numbers Nu, Nd , Ns (each one between −6 and 6) tables
idpairsi(Nu, Nd , Ns; K) and wgtpairs(Nu, Nd , Ns; K) with the
hadron ids (i = 1 and i = 2) and the weights of the K th pair,
with K = 1, 2, . . ., which allows a very fast generation of
pairs (even with a “complete” set of hadron species, being
close to 400).

APPENDIX D: HYPERSURFACES AND MILNE
COORDINATES

One considers a hadronization hypersurface parametrized
in Minkowski space as xμ = xμ(τ, ϕ, η), with

x0 = τ cosh η, x1 = r cos ϕ, x2 = r sin ϕ,

x3 = τ sinh η, (D1)

where r = r(τ, ϕ, η) is some function of the three parameters
τ , ϕ, η. One allows for several sheets in the sense that for
given τ , ϕ, η, there are several values of r satisfying the
freeze-out condition. For each sheet, for given values of the
three parameters τ , ϕ, η, the hypersurface element is

d�μ = εμνκλ

∂xν

∂τ

∂xκ

∂ϕ

∂xλ

∂η
dτdϕdη, (D2)

with ε0123 = −ε0123 = 1. Computing the partial derivatives
∂xμ/dα, with α = τ, ϕ, η, one gets, still in Minkowski space,

d�0 =
{
−r

∂r

∂τ
τ cosh η + r

∂r

∂η
sinh η

}
dτdϕdη, (D3)

d�1 =
{

∂r

∂ϕ
τ sin ϕ + rτ cos ϕ

}
dτdϕdη, (D4)

d�2 =
{
− ∂r

∂ϕ
τ cos ϕ + rτ sin ϕ

}
dτdϕdη, (D5)

d�3 =
{

r
∂r

∂τ
τ sinh η − r

∂r

∂η
cosh η

}
dτdϕdη. (D6)

It is useful to choose Milne coordinates {x′μ} =
{τ, x, y, η}, which are expressed in terms of Minkowski
coordinates {xμ} = {t, x, y, z} as τ = (t2 − z2)1/2 and η =
1
2 ln((t + z)/(t − z)), or the other way round t = τ cosh η

and z = τ sinh η. The definitions of x and y coordinates are
unchanged. One chooses (+,−,−,−) signature of gμν in
Minkowski space. Let eμ be the natural basis with respect
to Minkowski coordinates. The natural basis vectors e′

λ with
respect to Milne coordinates are

e′
λ = eμMμ

λ , (D7)

with Mμ
λ = ∂xμ/∂x′λ. One gets

M =

⎛⎜⎜⎜⎝
cosh η

0
0

sinh η

0
1
0
0

0
0
1
0

τ sinh η

0
0

τ cosh η

⎞⎟⎟⎟⎠. (D8)

The corresponding metric is {gμν} = {e′
μ · e′

ν} =
diag(1,−1,−1,−τ 2). The transformation for contravariant

coordinates is

x′λ = (M−1)λμxμ, (D9)

with

M−1 =

⎛⎜⎜⎜⎝
cosh η

0
0

− 1
τ

sinh η

0
1
0
0

0
0
1
0

− sinh η

0
0

1
τ

cosh η

⎞⎟⎟⎟⎠. (D10)

The inverse transformation (Milne to Minkowski) is

xλ = Mλ
μx′μ. (D11)

For covariant components (Minkowski to Milne) one has

A′
λ = AμMμ

λ , (D12)

so for d�μ one gets in Milne coordinates

d�′
τ =

{
−r

∂r

∂τ
τ

}
dτdϕdη, (D13)

d�′
x =

{
∂r

∂ϕ
τ sin ϕ + rτ cos ϕ

}
dτdϕdη, (D14)

d�′
y =

{
− ∂r

∂ϕ
τ cos ϕ + rτ sin ϕ

}
dτdϕdη, (D15)

d�′
η =

{
−r

∂r

∂η
τ

}
dτdϕdη. (D16)

Considering a longitudinal velocity vector u, given as
(cosh y, 0, 0, sinh y) in Minkowski space, one gets in Milne
space u′λ = (M−1)λμuμ, i.e., (cosh(y − η), 0, 0, τ−1 sinh(y −
η)). It is useful here and actually for any vector to define
Ã′μ = hμ

α A′α and Ã′
μ = A′

αkα
μ with

h = diag(1, 1, 1, τ ), (D17)

k = diag(1, 1, 1, τ−1). (D18)

For scalar products, one has Ã′
μB̃′μ = A′

μB′μ. One uses the
same “tilde” definition for tensors, for example : T̃ ′μν =
hμ

α hν
βT ′αβ . For the velocity vector, one gets

ũ′ = (cosh (y − η), 0, 0, sinh (y − η)), (D19)

which is identical to the Minkowski expression, in a frame
which moves with rapidity η. Furthermore, one gets for the
hypersurface element

d�̃′
0 =

{
−r

∂r

∂τ
τ

}
dτdϕdη, (D20)

d�̃′
1 =

{
∂r

∂ϕ
τ sin ϕ + rτ cos ϕ

}
dτdϕdη, (D21)

d�̃′
2 =

{
− ∂r

∂ϕ
τ cos ϕ + rτ sin ϕ

}
dτdϕdη, (D22)

d�̃′
3 =

{
−r

∂r

∂η

}
dτdϕdη, (D23)

which is identical to the Minkowski expression, in a frame
which moves with rapidity η.
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One also defines “tilde” quantities for the transformation ma-
trices, as (M̃−1)αβ = hα

μ(M−1)μβ and M̃α
β = Mα

μkμ
β , which gives

M̃ =

⎛⎜⎜⎝
cosh η sinh η

1
1

sinh η cosh η

⎞⎟⎟⎠, (D24)

M̃−1 =

⎛⎜⎜⎝
cosh η − sinh η

1
1

− sinh η cosh η

⎞⎟⎟⎠. (D25)

For contravariant vector components Aμ and A′μ, covariant
vector components Bμ and B′

μ, and for tensors T μν and T ′μνof
rank two (with the prime ′ referring to Milne, without to
Minkowski), one has

Aλ = Mλ
μA′μ = Mλ

αδα
μA′μ = Mλ

αkα
ν hν

μA′μ

= M̃λ
ν Ã′ν, (D26)

Bμ = B′
λ(M−1)λμ = B′

λδ
λ
α (M−1)αμ = B′

λkλ
ν hν

α (M−1)αμ

= B̃′
ν (M̃−1)νμ, (D27)

T μν = Mμ
α Mν

βT ′αβ = M̃μ
κ hκ

αM̃ν
λhλ

βkα
ωkβ

ρ T̃ ′ωρ

= M̃μ
κ M̃ν

λT̃ ′κλ, (D28)

so vector and tensor components in Minkowski space can be
entirely expressed in terms of (Milne) “tilde” quantities, as

Aλ = M̃λ
ν Ã′ν, (D29)

Bμ = B̃′
ν (M̃−1)νμ , (D30)

T μν = M̃μ
κ M̃ν

λT̃ ′κλ. (D31)

In particular, one has

BμAμ = B̃′
ν Ã′ν, (D32)

T μνBν = M̃μ
κ T̃ ′κλ B̃′

λ. (D33)

This has the following meaning:

(1) One considers vector and tensor components in Milne
coordinates.

(2) One performs trivial transformations to get “tilde”
quantities, essentially removing factors of τ or 1/τ .
The hydro calculations are actually done based on
these tilde quantities; no need to explicitly do any
transformation.

(3) One then gets the vector components in Minkowski
space (lab frame) by simply employing the transfor-
mation matrices M̃ (contravariant) or M̃−1 (covariant
components). Scalar products of vectors in Minkowski
space are equal to the corresponding product of “tilde”
quantities.

This procedure is understandable, since “tilde transforma-
tions” of vector and tensor components in Milne coordinates
correspond exactly to Minkowski components, but in a frame
boosted with y = η. The transformation M̃ (or M̃−1) is nothing
but the Lorentz boost back to the laboratory frame.

I apply this procedure for computing the energy-
momentum flow T μνd�ν as well as charge flows Jν

Ad�ν

through hypersurface elements.
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