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Fifth- and sixth-order net baryon number fluctuations in nuclear matter at low temperature
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We calculate the density fluctuations of net baryon number up to sixth order induced by the interactions of
nuclear matter, and explore their relationship with the nuclear liquid-gas phase transition (LGPT), including the
stable and metastable phases as well as the region far from the phase transition. The results show that dramatic
density fluctuations exist in the vicinity of LGPT, and the higher order density fluctuations are more sensitive
than the lower order ones to the interactions and structural properties of nuclear matter. The study also indicates
that, even far away from the critical region of LGPT, the hadronic interactions can still lead to larger fifth- and
sixth-order density fluctuations. In combination with the chemical freeze-out line fitted from the experimental
data, the derived results can be used to investigate the chiral phase transition and nuclear LGPT, as well as to
analyze related experimental signals.
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I. INTRODUCTION

Exploring the phase structure of strongly interacting mat-
ter is a crucial topic in high energy nuclear physics. One
of the tasks is to investigate the types of phase transition
from quark-gluon plasma to hadronic matter. Studies based
on the hadron resonance gas (HRG) model and lattice QCD
show that the phase transition at high temperature and low
chemical potential is a smooth crossover [1–7]. However, the
application of lattice QCD in the high-density region is limited
due to the sign problem associated with the fermion deter-
minant. Nevertheless, most studies with the effective quark
models (e.g., [8–20]), the Dyson-Schwinger equation ap-
proach [21–25], and the functional renormalization group
theory [26–28] suggest that the chiral phase transition in the
high chemical potential region undergoes a first-order phase
transition.

It is proposed that the phase structure of QCD can be
studied through the fluctuations and correlations of con-
served charges [29]. The net proton (proxy of net baryon)
cumulants have been measured at the Relativistic Heavy Ion
Collider (RHIC) [30,31], and a nonmonotonic behavior in
the fourth-order fluctuations as a function of collision en-
ergy was discovered [32,33], which has sparked extensive
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discussions about the existence of the QCD critical endpoint
(CEP). A recent publication from STAR Collaboration further
investigated the energy dependence of net proton number
fluctuations up to sixth order, showing not only a nonmono-
tonic behavior but also more strongly higher order density
fluctuations at lower collision energies [34]. Particularly, the
fluctuations of net proton number in collisions at center-of
mass energy

√
sNN = 3 GeV is markedly different from those

at 7.7 GeV and above. The study further suggests that, in
collisions at

√
sNN = 3 GeV, the fluctuation distribution of

net proton number is primarily dominated by the interaction
among hadrons [34].

The new experimental data from RHIC have drawn further
attention to the critical behavior of the QCD phase transition
and motivated the study of density fluctuations induced by the
interaction among hadrons [35–37]. It is well known that the
interaction in nuclear matter can lead to the liquid-gas phase
transition (LGPT) in the low-temperature region [38–44]. The
critical point of the nuclear LGPT is estimated to be at a tem-
perature of approximately 15 MeV and a chemical potential
of around 923 MeV, although the values slightly depend on
the nuclear models. So far various properties of nuclear mat-
ter and the liquid-gas phase transition have been extensively
studied in the literature [38–54].

The presence of strong density fluctuations in collisions at√
sNN = 3 GeV raises the question of how the haddronic inter-

action and LGPT affect the higher order density fluctuations
in lower-energy regimes. The authors in Ref. [46,47,55] cal-
culated the density fluctuations up to fourth order induced by
hadronic interactions and analyzed the relationship between
the lower-order density fluctuations and nuclear LGPT. In
Ref. [56,57], a van der Waals model was used to study the
higher-order fluctuation distributions of net baryon number in
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both the pure and mixed phases. Recently, in Ref. [37] the
properties of the second-order susceptibility of net baryon
number density for positive- and negative-parity nucleons
were examined near the chiral and nuclear liquid-gas phase
transitions using the double parity model, in which both
the chiral phase transition and nuclear LGPT are effectively
included. However, a systematic study of the fifth- and sixth-
order density fluctuations in combination with the recent
experimental data is still absent.

Considering the density fluctuations dominated by the
interactions among hadrons at lower energy regimes (be-
low 3 GeV) and the plan of the HADES Collaboration at
GSI Helmholtzzentrum für Schwerionenforschung to measure
higher order net proton and net charge fluctuations in central
Au + Au reactions at collision energies ranging from 0.2A
to 1.0A GeV to probe the LGPT region [58], it is important
to investigate the fifth- and sixth-order density fluctuations
in nuclear matter. In this study, we will calculate the net
baryon distributions up to sixth order using the nonlinear
Walecka model. The density fluctuations in the the stable and
metastable phases of nuclear LGPT, as well as the area far
from the critical region, will all be explored. We will discuss
the relations between the nucleon-nucleon interaction, the nu-
clear LGPT, and the organization structure of the higher order
density fluctuations of net baryon number. This investigation
has significance for indicating the chiral phase transition and
the nuclear LGPT, as well as for the analysis of related exper-
imental signals.

The paper is organized as follows. In Sec. II, we introduce
the formulas to describe fluctuations of conserved charges
and the nonlinear Walecka model in the mean-field approx-
imation. In Sec. III, we illustrate the numerical results of
net-baryon number fluctuations, and discuss their relations
with nucleon-nucleon interactions and the LGPT in nuclear
matter. A summary is given in Sec. IV.

II. FLUCTUATIONS OF CONSERVED CHARGES
AND THE NONLINEAR WALECKA MODEL

For a thermodynamic system, the fluctuations of conserved
charges are sensitive observables for a phase transition, in
particular for a critical phenomenon. The pressure of a system
in the grand-canonical ensemble is related to the logarithm of
the partition function [59]:

P

T 4
= 1

V T 3
ln[Z (V, T, μB, μQ, μS )], (1)

where μB, μQ, μS are the chemical potentials of conserved
charges: the baryon number, electric charge, and strangeness
in the strong interaction, respectively. The generalized sus-
ceptibilities can be derived by taking the partial derivatives
of the pressure with respect to the corresponding chemical
potentials [33]:

χ
BQS
i jk = ∂ i+ j+k[P/T 4]

∂ (μB/T )i∂ (μQ/T ) j∂ (μS/T )k
. (2)

The cumulants of multiplicity distributions of the
conserved charges are connected with the generalized

susceptibilities by

CBQS
i jk = ∂ i+ j+ k ln[Z (V, T, μB, μQ, μS )]

∂ (μB/T )i∂ (μQ/T ) j∂ (μS/T )k
= V T 3χ

BQS
i jk . (3)

To eliminate the volume dependence in heavy-ion collision
experiments, observables are usually constructed by the ratio
of cumulants, and then can be compared with theoretical cal-
culations of the generalized susceptibilities with

CBQS
i jk

CBQS
lmn

= χ
BQS
i jk

χ
BQS
lmn

. (4)

The nonlinear Walecka model is used to calculate fluctua-
tions of net baryon number in nuclear matter. This model is
generally used to describe the properties of finite nuclei and
the equation of state of nuclear matter. The study in Ref. [60]
also indicates the approximate equivalence of this model to
the hadron resonance gas model at low temperature and small
density. The Lagrangian density for a nucleons-meson system
in the nonlinear Walecka model [61] is

L =
∑

N

ψ̄N [iγμ∂μ − (mN − gσ σ )

− gωγμωμ − gργμτ · ρμ]ψN + 1

2

(
∂μσ∂μσ − m2

σ σ 2
)

− 1

3
bmN (gσ σ )3 − 1

4
c (gσ σ )4 + 1

2
m2

ωωμωμ

− 1

4
ωμνω

μν + 1

2
m2

ρρμ · ρμ − 1

4
ρμν · ρμν, (5)

where ωμν = ∂μων − ∂νωμ, ρμν = ∂μρν − ∂νρμ. The interac-
tions between baryons are mediated by σ, ω, ρ mesons.

The thermodynamical potential of the nucleons-meson sys-
tem can be derived in the mean-field approximation as


 = −β−1
∑

N

2
∫

d3k
(2π )3

[ln(1 + e−β(E∗
N (k)−μ∗

N ) )

+ ln(1 + e−β(E∗
N (k)+μ∗

N ) )] + 1

2
m2

σ σ 2 + 1

3
bmN (gσ σ )3

+ 1

4
c(gσ σ )4 − 1

2
m2

ωω2 − 1

2
m2

ρρ
2
3 , (6)

where β = 1/T , E∗
N =

√
k2 + m∗2

N , and ρ3 is the third compo-
nent of ρ meson field. The effective chemical potential μ∗

N is
defined as μ∗

N = μN − gωω − τ3N gρρ3 (τ3N = 1/2 for proton,
−1/2 for neutron).

By minimizing the thermodynamical potential

∂


∂σ
= ∂


∂ω
= ∂


∂ρ3
= 0, (7)

the meson field equations can be derived as

gσ σ =
(

gσ

mσ

)2[
ρs

p + ρs
n − bmN (gσ σ )2 − c(gσ σ )3

]
, (8)

gωω =
(

gω

mω

)2

(ρp + ρn), (9)
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FIG. 1. Phase diagram of LGPT in nuclear matter, extracted
chemical freeze-out temperature versus baryon chemical potential
from STAR experiments [63] and SIS data [64–66], as well as the the
fitted chemical freeze-out curve from Ref. [62]. “Line A” is derived
with ∂σ/∂μB taking the maximum value for a given temperature.

gρρ3 = 1

2

(
gρ

mρ

)2

(ρp − ρn). (10)

In Eqs. (8)–(10), the nucleon number density

ρi = 2
∫

d3k
(2π )3

[ f (E∗
i − μ∗

i ) − f̄ (E∗
i + μ∗

i )], (11)

and the scalar density

ρs
i = 2

∫
d3k

(2π )3

m∗
i

E∗
i

[ f (E∗
i − μ∗

i ) + f̄ (E∗
i + μ∗

i )], (12)

where f (E∗
i − μ∗

i ) and f̄ (E∗
i + μ∗

i ) are the fermion and an-
tifermion distribution functions.

For a given temperature and chemical potential (or baryon
number density), the meson field equations can be solved. In
the present study, the symmetric nuclear matter is considered
to give an essential description of the density fluctuations. The
model parameters, gσ , gω, gρ , b, and c, are fitted with the
compression modulus K = 240 MeV, the symmetric energy
asym = 31.3 MeV, the effective nucleon mass m∗

N = mN −
gσ σ = 0.75mN (mN is the nucleon mass in vacuum), and
the binding energy B/A = −16.0 MeV at nuclear saturation
density with ρ0 = 0.16 fm−3.

III. NUMERICAL RESULTS AND DISCUSSIONS

We first plot in Fig. 1 the phase diagram of nuclear matter
in the temperature-chemical potential plane. The black solid
line is the first-order liquid-gas phase transition line with a
critical endpoint at Tc = 15.9 MeV and μc = 909.8 MeV. The
black dashed curve, marked with “Line A”, is derived with
∂σ/∂μB taking the maximum value for a given temperature,
which is connected to the nuclear liquid-gas phase transition.
This plot is somewhat similar to the chiral crossover trans-
formation line and first-order phase transition in the quark
model. They both correspond to the fastest change or jump of
thermodynamic order parameter (σ field in the Walecka model

FIG. 2. Phase diagram of LGPT and the chemical freeze-out line
in the T -ρB plane derived in the nonlinear Walecka model on the
basis of the chemical freeze-out line shown in Fig. 1 with the fitted
formula in Eq. (13).

and chiral condensate in the quark model) related to fermion
mass. And the subsequent numerical results indeed indicate
a similar structure of density fluctuations to QCD phase tran-
sition. The fluctuation distributions near “Line A” above the
critical temperature are most dramatic. These characteristics
reveal essentially similar physical properties of the two phase
transitions because they belong to the same universal class.

In Fig. 1, we also plot the fitted chemical freeze-out curve
and the data from heavy-ion collision experiments [62] for the
convenience of later discussion of experimental signals. The
fitted chemical freeze-out line can be described with

T (μB) = a − bμ2
B − cμ4

B, (13)

where a = 0.166 GeV, b = 0.139 GeV−1, and c =
0.053 GeV−3.

We plot in Fig. 2 the phase diagram of the liquid-gas
transition in the temperature-density plane. The spinodal line
is given with a red dashed curve. The area under the spinodal
line is the unstable phase. The region between the spinodal
line and the first-order phase transition line is the metastable
phase. We also plot the chemical freeze-out curve, which will
be referenced to discuss the density fluctuations in the T -ρB

plane. The freeze-out line in Fig. 2 is translated from the curve
in Fig. 1 based on the calculation in the nonlinear Walecka
model. Using the fitted relation of T and μB at freeze-out
given by Eq. (13), we can calculate the baryon density by
solving Eqs. (8)–(10). A distinct feature is that the baryon den-
sity on the chemical freeze-out line is nonmonotonic with the
decrease of collision energy (or temperature). This behavior
has been confirmed by the experimental data in combination
with hadron resonance gas model [55,67]. A similar result was
also found in the σ -ω model in Ref. [60].

Besides, Fig. 2 shows that the freeze-out baryon number
density is close to zero near T = 0. This is consistent with the
experimental data mentioned above as well as the theoretic
prediction, because the chemical freeze-out at low tempera-
ture should occur in the gas phase of the first-order LGPT of
nuclear matter. From Fig. 2, it can be seen that the baryon
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FIG. 3. Ratios of net baryon number susceptibilities as func-
tions of chemical potential for different temperatures. (a) χB

3 /χB
1 .

(b) χB
4 /χB

2 (kurtosis). (c) χB
5 /χB

1 (hyperskewness). (d) χB
6 /χB

2 (hy-
perkurtosis). The solid dots demonstrate the density fluctuations at
chemical freeze-out given in Fig. 1.

FIG. 4. Ratios of net baryon number susceptibilities as functions
of baryon density for different temperatures. (a) χB

3 /χB
1 . (b) χB

4 /χB
2

(kurtosis). (c) χB
5 /χB

1 (hyperskewness). (d) χB
6 /χB

2 (hyperkurtosis).
The solid dots demonstrate the density fluctuations at chemical
freeze-out given in Fig. 1.
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FIG. 5. Contour plots of the ratios of net baryon number susceptibilities, χB
3 /χB

1 , χB
4 /χB

2 , χB
5 /χB

1 , and χB
6 /χB

2 , in the T -μB phase diagram.

density in the gas phase is much smaller than that in the liquid
phase. As a matter of fact, the baryon number densities at
chemical freeze-out derived from experiments with

√
sNN =

3–200 GeV are all smaller than the nuclear saturation density
ρ0 [67].

We demonstrate in Fig. 3 the ratios of susceptibilities,
χB

3 /χB
1 , χB

4 /χB
2 , χB

5 /χB
1 , and χB

6 /χB
2 , as functions of baryon

chemical potential for T = 75, 50, 25 MeV. The numerical
results show that all these ratios of susceptibilities change
from 1 to 0 as the chemical potential increases. Such a be-
havior is analogous to the density fluctuations of chiral phase
transition from a chiral broken phase to a chiral restored
phase [15]. The dynamical nucleon mass plays a similar role
for nuclear matter. The strong density fluctuation for each
temperature is roughly located in the region where ∂σ/∂μB

changes rapidly. The collection of maxima of ∂σ/∂μB at
different temperatures above the critical endpoint corresponds
to the dashed Line A plotted in Fig. 1.

Figure 3 also shows that the amplitude of density fluctua-
tions is relatively small at T = 75 MeV. As the temperature
decreases and approaches the critical region, the density fluc-
tuations gradually increase and diverge at the CEP. This
indicates a close relationship between the density fluctua-
tions of conserved charges and the phase transition of nuclear
matter. From Fig. 3, we can see that the higher-order den-
sity fluctuations (hyperskewness, χB

5 /χB
1 , and hyperkurtosis,

χB
6 /χB

2 ) are dramatic than those of lower orders (χB
3 /χB

1 and
χB

4 /χB
2 ), meaning that the higher-order fluctuations are more

sensitive to observation in experiments. Similar behaviors

aroused by the chiral phase transition have been found in the
beam energy scan experiments at RHIC STAR [34]. Addition-
ally, we can observe from Fig. 3 that χB

3 /χB
1 and χB

4 /χB
2 have

one maximum and one minimum, while χB
5 /χB

1 (χB
6 /χB

2 ) has
two maxima and one minimum (two minima).

The solid dots on the curves in Fig. 3 demonstrate the
fluctuation distributions at the points of chemical freeze-out,
corresponding to the chemical freeze-out line plotted in Fig. 1.
It can be observed that χB

3 /χB
1 and χB

4 /χB
2 are all positive for

T = 75, 50, and 25 MeV at chemical freeze-out. However,
χB

5 /χB
1 and χB

6 /χB
2 are negative at T = 75 and 50 MeV,

and become positive at T = 25 MeV. Note that the nega-
tive χB

5 /χB
1 and χB

6 /χB
2 also appear at chemical freeze-out

at higher temperatures for the QCD phase transition [34].
Interestingly, it is found that the ratios of net proton number
distributions, C4/C2, C5/C1, and C6/C2 at

√
sNN = 3 GeV

with the collision centrality 0%–40%, are very close to the
numerical results of χB

4 /χB
2 , χB

5 /χB
1 , and χB

6 /χB
2 at T =

28 MeV and μB = 864 MeV in the nonlinear Walecka model.
However, the physical conditions, T = 28 MeV and μB =
864 MeV, are different from the chemical freeze-out condition
derived in collisions at a center-of-mass energy of 3 GeV.
For the latter case, T ≈ 70 MeV and μB ≈ 750 MeV are
extracted at the chemical freeze-out. We also notice that there
is a different argument based on the data of only the net pro-
ton cumulants C4/C2 with collision centralities 0%–5% [47].
Higher accuracy data of hyperskewness and hyperkurtosis at
lower collision energies are needed to distinguish between the
two scenarios.
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FIG. 6. Contour plots of the ratios of net baryon number susceptibilities, χB
3 /χB

1 , χB
4 /χB

2 , χB
5 /χB

1 , and χB
6 /χB

2 , in the T -ρB phase diagram.

We further plot the ratios of net baryon number suscepti-
bilities in the temperature-density plane in Fig. 4. Compared
with the results in Fig. 3, the distributions of density fluctu-
ations appear to be broadened in the T -ρB plane. The solid
dots in Fig. 4 indicate that the baryon density at chemical
freeze-out decreases as the temperature descends from 75 to
25 MeV. In contrast, Fig. 3 shows that the chemical potential
at freeze-out increases as the temperature decreases from 75
to 25 MeV. These results are consistent with the chemical
freeze-out curve given in Figs. 1 and 2, since the variation of
baryon density along the chemical freeze-out line is nonmono-
tonic in the temperature-density phase diagram. In order to
visualize the organization structure of density fluctuations in
the phase diagram, we present the contour plots of net baryon
number fluctuations in Figs. 5 and 6. The two figures explic-
itly demonstrate that the ratios of higher-order susceptibilities
exhibit more pronounced density fluctuations than those of
lower-order ones. At the meanwhile, we can see that, the
closer the density fluctuations are to the critical endpoint of
the phase transition, the more frequently the oscillatory behav-
ior of the density fluctuations appears. Additionally, in Fig. 6,
we also present the net baryon number density fluctuations
in the metastable phase. It can be observed that the ratios
of net-baryon susceptibilities change continuously from the
stable phase to the metastable phase. On the boundary of
first-order liquid-gas phase transition (excluding the critical

point), the density fluctuations have finite values, while the
density fluctuations tend to diverge on the spinodal line (red
line).

These behaviors of net baryon number fluctuations can
be simply understood according to the relationship between
P/T 4 and μB/T . For each given temperature above the crit-
ical endpoint, P/T 4 increase monotonically as a function of
μB/T . For a lower temperature, the slop of P/T 4 increases
faster with μB/T near the region where ∂σ/∂μB changes
rapidly, and the maximum slope is also larger. Such a fea-
ture results in the higher-order susceptibility oscillating much
more sharply in a relatively narrow range at lower temper-
ature. The center of oscillation moves roughly along Line
A (shown in Fig. 1) towards the CEP of liquid-gas phase
transition.

To improve the theoretical calculation in the future, more
degrees of freedom of hadrons and interactions should be
included at relatively higher temperature. On the experimen-
tal side, we should keep in mind that the initial volume
fluctuation effects in experiments become significant due to
lower charged particle multiplicity at lower-energy collisions.
Nevertheless, this study qualitatively predicts the behavior
of net baryon number fluctuations at chemical freeze-out at
low temperatures. With the increase of statistical data and
the improvement of data precision in the second phase of the
beam energy scan at RHIC STAR, the deep combination of
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theory and experiment will bring important opportunities for
exploring the phase structure of strongly interacting matter.

IV. SUMMARY AND CONCLUSION

Fluctuations of conserved charges are sensitive probes to
explore the phase transition of strongly interacting matter. In
this research, using the nonlinear Walecka model we investi-
gated the fluctuations of net baryon number up to sixth order
caused by hadronic interactions in nuclear matter, and ex-
plored the relationship between higher-order baryon number
fluctuations and nuclear liquid-gas phase transition, including
the stable and metastable phases as well as the region far from
the phase transition.

The calculation indicates that the fluctuations of net baryon
number gradually increase from the high-temperature region
to critical region of nuclear LGPT. In particular, the fluctu-
ations are prominent near the region where the σ field or the
nucleon mass changes rapidly for each temperature. It exhibits
behavior similar to the chiral phase transition of quark matter.
This can be further attributed to the two phase transitions
having the same universal class.

Compared with the kurtosis and skewness of net baryon
number fluctuations, the values of hyperkurtosis (χB

6 /χB
2 ) and

hyperskewness (χB
5 /χB

1 ) are more dramatic, which provides
more sensitive signals to detect the phase transformation. In
combination with heavy-ion collision experiments, we further
extracted density fluctuations at chemical freeze-out, and ob-
tain the variation trend of baryon number fluctuations with the
decrease of temperature (collision energy). With the release
of more precise data in the BES II program in the future,
the results obtained in this research can be used to analyze the
QCD phase transition and nuclear liquid-gas phase transition.
In addition, more physical mechanisms, such as the initial
volume fluctuation effects, the nonequilibrium evolution, and
more hadronic degrees of freedom with complex interactions,
need to be considered to better understand the evolution of
heavy-ion collision experiments at relatively lower collision
energy.
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