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Heavy quark drag and diffusion coefficients in the prehydrodynamic QCD plasma
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Kinetic and chemical equilibrations play important roles in the formation of the quark-gluon plasma (QGP)
in relativistic heavy-ion collisions (HICs). These processes further influence the production of hard and electro-
magnetic probes in HICs, in particular, the thermalization of heavy quarks, which are produced at an extremely
early time before the formation of the QGP. I calculate the drag and diffusion coefficients of heavy quarks in
the prehydrodynamic quantum chromodynamic (QCD) plasma with the state-of-the-art QCD effective kinetic
theory (EKT) solver. The time, momentum, and angular dependencies of these coefficients for gluon and quark
contributions are presented separately, showing the effects of isotropization and chemical equilibration from the
QCD plasma. I also provide a simple formula to estimate the heavy quark drag and diffusion coefficients, as
well as its energy loss, within the prehydrodynamic plasma at different coupling strengths based on the attractor
theory. Finally, I discuss the validity of these estimations with leading-order calculations and leading-logarithmic
rescaling factors.
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I. INTRODUCTION

Thermalization is omnipresent, and there are two main
categories of thermalization systems that are being widely
studied due to the simplification of degrees of freedom at
certain scales. One is the thermalization of many-body closed
quantum systems, where the microscopic dynamics of single
particles can be coarse grained and the emergent behavior is
more interesting. The other one is the thermalization of open
quantum systems, where the objects have degrees of freedom
or scales that are distinct from the background medium en-
vironment, and tracing out the environment leaves a simple
dynamical description of the system in the medium. Rela-
tivistic heavy-ion collisions (HICs) are such experiments in
which both categories are present for us to understand the
fundamental strong interaction.

The quark-gluon plasma (QGP) containing free quark and
gluon degrees of freedom, as a many-body system, can only be
produced in the early universe or HICs nowadays. The main
period of the QGP evolution in HICs is successfully described
by a near-equilibrium macroscopic theory, the relativistic hy-
drodynamics [1–8], in terms of the energy-momentum tensor.
A more involved tool that can describe the nonequilibrium and
prehydrodynamic QGP is the effective kinetic theory (EKT)
[9], in terms of particle distributions. This theory was ini-
tially implemented as Yang-Mills kinetics [10,11] including
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gluons, and was developed into quantum chromodynamic
(QCD) kinetics [12,13] including both gluons and quarks.
Various models using similar approaches or as simplified
versions of EKT exist [14–22]. Although the prehydrody-
namic QGP in HICs is complicated as it is anisotropic and
chemically out of equilibrium, there are still some universal
descriptions of the prehydrodynamic QGP based on simple
conservation laws, independent of the microscopic physics,
such as the attractor theory [23–32].

On the other hand, heavy quarks have mass scales that
are distinct from light partons in the QGP, and are produced
as open quantum systems due to their large mass thresholds.
Heavy quark thermalization is contributed by energy loss and
diffusion. Most of the heavy quarks are produced within the
momentum range p � mHQ, where the radiative energy loss
can be neglected and the collisional energy loss dominates
[33]. They are produced at a timescale τ � 1

mHQ
before the

hydrodynamization of the QGP at τh � 4πη

T s , and relax at a
much later time τR � mHQ

T τh. Thus, most of the heavy quark
thermalization simulations [34–49] are focusing on the hy-
drodynamic stage when the QGP is nearly thermalized. There
are some efforts to address the heavy quark thermalization
in the prehydrodynamic glasma or QGP [50–52] by taking
care of the anisotropy or chemical effects. The EKT allows
us to calculate the heavy quark diffusion [53] as well as jet
momentum broadening [54] dynamically during the prehydro-
dynamic stage from first principles. Furthermore, the recent
developments of the EKT to a full QCD level will complete
this picture.

In this article, I will show the first-principles calcula-
tions of heavy quark drag and diffusion coefficients in the
QCD plasma, from the state-of-the-art QCD effective ki-
netic theory (QCD EKT) solver [13] including both gluon
and quark dynamics at fixed coupling strengths. Since the
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prehydrodynamic QCD plasma undergoes a rapid drop in
temperature and a transition from weakly coupled to strongly
coupled, the interpolation from the weakly coupled plasma
to the strongly coupled plasma as a realistic medium pro-
file would be favored. Although the EKT breaks down at
strong coupling, the universal attractor can perform such
an interpolation regardless of the coupling strength. It also
avoids running complex EKT simulations at various coupling
strengths by providing the rescaling of key medium profiles
like the time τ and the temperature T , which are essential
ingredients for heavy quark thermalization. Augmented with
a proper rescaling factor for the heavy quark diffusion, one
would arrive at a realistic heavy quark energy loss estimation
in the prehydrodynamic stage. In this paper, I perform the first
step towards this goal by justifying the validity of the rescaling
at weak coupling and demonstrating the breakdown of the
rescaling at strong coupling with leading-order (LO) perturba-
tive QCD (pQCD) calculations and leading-logarithmic (LL)
rescaling factors.

II. PREHYDRODYNAMIC QCD PLASMA
AND ATTRACTOR

The QCD plasma out of equilibrium before the formation
of the hydrodynamic state can be described by the QCD EKT,
with a Bjorken expansion at the early stage of HICs. Within
the EKT, the evolution of gluon and light quark/antiquarks
as constituents of the QCD plasma is formulated as a set of
coupled Boltzmann equations [55] with a = g, q, q̄ and flavor
number Nf = 3:

∂ fa( �p, τ )

∂τ
− p‖∂ fa( �p, τ )

τ∂ p‖
= C1↔2,2↔2

a [ f ]( �p, τ ). (1)

The expansion term with prefactor 1/τ anisotropizes the
plasma at an early time, while the collision terms Ca[ f ] take
over the evolution at a later time and drive the plasma to
reach hydrodynamic equilibrium, in both kinetic and chemical
senses. Details of the QCD EKT and its numerical imple-
mentations can be found previous paper [13]. The early-time
expansion and the later hydrodynamization are independent
of the microscopic interactions in the kinetic theory, resulting
in a universal attractor solution. This solution connects the
energy density of the plasma at any time e(τ ) to its initial
value e0 in a simple and universal way [27,28]:

τ
4
3 e(ω̃) =

(
4π

η

s

) 4
9

(
π2νeff

30

) 1
9

(τ0e0)
8
9 C∞E (ω̃). (2)

The function E (ω̃) is called the energy attractor in terms
of the universal and dimensionless timescale ω̃ = τT s

4πη
. The

effective temperature can be evaluated by Landau matching
T = ( 30e(τ )

π2νeff
)

1
4 . The degeneracy factor νeff = νg + 7

4νqNf =
47.5 and C∞ = 0.87 are both constants. The shear viscosity
over entropy density ratio η/s directly reflects how strong
the interaction is and how quick the equilibration can be.
Indeed, at any ω̃, there is a universal energy attractor E (ω̃)
that characterizes the degree of thermalization, valued from
E (ω̃ → 0) = 0 to E (ω̃ → ∞) = 1. One can evaluate the cor-
responding time τ and temperature T at any universal time ω̃

FIG. 1. Comparison of the rescaled time τ (η/s)−4/3 and temper-
ature T (η/s)1/3 according to Eq. (4) at various ’t Hooft couplings
λ = 5, 8, 10, 20, 40, 60 from the QCD EKT simulations.

as

τ =
(

4π
η

s

) 4
3

prehydro

(
π2νeff

30

) 1
3

(τ0e0)−
1
3 C

− 3
8∞ E− 3

8 (ω̃)ω̃
3
2 ,

T =
(

4π
η

s

)− 1
3

prehydro

(
π2νeff

30

)− 1
3

(τ0e0)
1
3 C

3
8∞E 3

8 (ω̃)ω̃− 1
2 . (3)

This means that a more strongly coupled plasma with a
smaller η/s requires a shorter time to reach a certain degree
of thermalization, while a more weakly coupled plasma with
a larger η/s requires a longer time. With a fixed initial energy
density, the shorter thermalization time in strongly coupled
plasma also results in higher initial temperatures for the fol-
lowing hydrodynamics. As a consequence, the universality of
the attractor gives the approximate relation in the prehydrody-
namic stage for varying coupling strengths:

τprehydro

(η

s

)− 4
3

prehydro
� coupling independent,

Tprehydro

(η

s

) 1
3

prehydro
� coupling independent. (4)

The corresponding η/s can be extracted from fitting to hydro-
dynamic constitutive relation, as was done in [13]. Figure 1
shows comparisons of the rescaled time τ (η/s)−4/3 and tem-
perature T (η/s)1/3 at various ’t Hooft couplings λ = g2Nc

from the QCD EKT simulations. One observes the rescaling
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relation of Eq. (4), even up to large coupling λ = 60 where the
η/s � 0.084, is already close to the lower bound from holog-
raphy η/s = 1/4π [56], although slight deviation is observed
since the kinetic theory should break down at such a large
coupling.

There is only one scale in a conformal theory, and one can
fix it by matching experimental data at the end of the QGP
evolution. In equilibrium, E (ω̃ � 1) = 1 and sT = e + p at
zero net-baryon density. The equation of state e = 3p always
holds in a conformal theory. One has the entropy density in
equilibrium

(τ s)eq = 4

3

(
τ

4
3 e

)
eq(

τ
1
3 T

)
eq

= 4

3

(
τ

4
3 e

) 3
4

eq

(
π2νeff

30

) 1
4

, (5)

which is related to the charged particle multiplicity via
dNch/dη = Nch

S (τ s)eqS⊥ with S/Nch = 8.36 [57] and S⊥ the
transverse area of the collision. As a consequence, one
can constrain the initial condition τ0e0 with the following
relation [27]:

dNch

dη
= 4

3

Nch

S

(
4π

η

s

) 1
3

average

(
π2νeff

30

) 1
3

(τ0e0)
2
3 C

3
4∞S⊥. (6)

The average η/s represents a measure of the thermalization
speed for both the prehydrodynamic stage and the following
hydrodynamic stage until freeze-out. It is, however, dom-
inated by the hydrodynamic stage due to a much shorter
lifetime of the prehydrodynamic period compared to the hy-
drodynamic period. A strongly coupled fluid dynamic features
a small η/s close to a holographic bound η/s = 1/4π [56].
Matching the Large Hadron Collider (LHC) 5.02 TeV Pb +
Pb collision data [58], dNch/dη = 1942 and S⊥ = 138 fm2,
to Eq. (6), one arrives at τ0e0 = 1.961 GeV3 in this specific
collision system. One has further the rescaling formula to
evaluate the initial energy density in other circumstances:

τ0e0 = 1.961 GeV3

( dNch
dη

1942

) 3
2 (

4π
η

s

)− 1
2

average

(
S⊥

138 fm2

)− 3
2

.

(7)
The initial energy is mainly deposited by an over-occupied,

anisotropic, and gluon-saturated state, and is described by the
color glass condensate (CGC) inspired distribution [11,59]

fg( �p, τ0) = 10.5

λ0

1.8Qs√
p2

⊥ + (ξ p‖)2
exp

[
−2

3

p2
⊥ + (ξ p‖)2

(1.8Qs)2

]
,

fq( �p, τ0) = fq̄( �p, τ0) = 0, (8)

with the momentum decomposition in transverse and longi-
tudinal directions �p = ( �p⊥, p‖). The anisotropic parameter is
typically chosen as ξ = 10. A typical value for the ’t Hooft
coupling λ0 = g2

0Nc chosen in simulating the weakly coupled
gauge field in the CGC effective theory is λ0 = 10, which
is reasonable as well at the initial time for my QCD kinetic
simulation when the system has a high temperature. The
general ’t Hooft coupling λ = g2Nc entering into the QCD
kinetic simulation controls the thermalization speed, which
can be further reflected in the macroscopic coefficient η/s.
One keeps the weak coupling λ = 10 for the QCD plasma

FIG. 2. Typical characteristic scales of isotropization pL/e (red)
and chemical equilibration eq/eg (blue) in terms of universal time ω̃,
compared to the hydrodynamic limit (black) and their equilibrium
limits (dashed). These curves and related discussions can also be
found in our previous article on QGP thermalization [13].

as the default throughout the QCD kinetic simulation and
performs rescaling to evaluate the strongly coupled plasma,
where the validity of both the kinetic theory and the pertur-
bation theory breaks down. General rescaling can be achieved
due to the universality of the attractor solutions, from the basic
principles of energy conservation and conformality, regardless
of the coupling or modeling. To extend the rescaling from the
QCD plasma to the heavy quark, I will discuss the validity
of rescaling for the transport coefficients in a standalone sec-
tion later. The initial time for the QCD kinetic evolution is
approximately the inverse of the saturation scale for the gauge
fields τ0 � 1/Qs before the formation of the quasiparticles
in the kinetic theory. Without losing generality, by choosing
τ0 = Q−1

s one can calculate the initial energy density and one
gets τ0e0 = 0.5858Q3

s = 1.961 GeV3. Now one can estimate
that Qs = 1.496 GeV and τ0 = Q−1

s = 0.134 fm, smaller than
the typical hydrodynamization time τh � 0.2–0.6 fm but at
the same order of magnitude.

By solving the QCD EKT, one gets the time evolution
of the distributions fg,q,q̄( �p, τ ). Certain quantities can char-
acterize the equilibration of the QCD plasma, such as the
energy-momentum tensor

T μν =
∫

d3 p

(2π )3

pμ pν

p
{νg fg( �p) + νqNf [ fq( �p) + fq̄( �p)]}. (9)

The longitudinal pressure over energy density ratio pL/e =
T zz/T ττ characterizes the isotropization of the plasma with an
equilibrium limit 1/3. The quark over gluon energy density
ratio eq/eg characterizes the chemical equilibration of the
plasma with an equilibrium limit (7νqNf )/(4νg). These char-
acteristic scales are shown in Fig. 2 in terms of the universal
timescale ω̃ for the QCD plasma at constant coupling λ = 10.
The anisotropy of the plasma approaches the hydrodynamic
limit at around ω̃ � 1–2, while its equilibrium limit has to be
reached after a much longer time. The chemical equilibration
roughly finishes later than ω̃ � 2–3 where the quark over
gluon density ratio tends to be a plateau.

014901-3



XIAOJIAN DU PHYSICAL REVIEW C 109, 014901 (2024)

These nonequilibrium parton distributions will deviate
the heavy quark transport coefficients from thermal cases,
from the initial time τ0 � 1/Qs to the hydrodynamization
time τh(ω̃ � 1–2), before the formation of the hydrodynamic
plasma. This opens an opportunity to extend heavy quark
simulations to the prehydrodynamic stage of HICs.

III. HEAVY QUARK THERMALIZATION

The heavy quark thermalization with soft collisions from
the background QCD plasma can be described by a stochastic
differential equation (Langevin) in phase space (�x, �p),

dxi = pi

E ( �p)
dτ,

d pi = −Ai( �p, τ )dτ + σi j ( �p, τ )dWj, (10)

with a Wiener process dWj ∼ N (0, dτ ) correlated as
〈dWidWj〉 = δi jdτ . Applying Ito’s lemma to Eq. (10) up to
order O(dτ ), the Kolmogorov equation (Fokker-Planck) reads

∂ fQ( �p, τ )

∂τ
= ∂[Ai( �p, τ ) fQ( �p, τ )]

∂ pi
+ ∂2[Bi j ( �p, τ ) fQ( �p, τ )]

∂ pi∂ p j
.

(11)
There are two evolving chemical contributions for the drag
coefficients Ai( �p, τ ) and diffusion coefficients Bi j ( �p, τ ) =
1
2σik ( �p, τ )σ jk ( �p, τ ), from gluon collisions gQ → gQ and from
quark/antiquark collisions qQ → qQ (including the factor
2Nf in the quark sector):

Ai( �p, τ ) = Ag,i( �p, τ ) + Aq,i( �p, τ ),

Bi j ( �p, τ ) = Bg,i j ( �p, τ ) + Bq,i j ( �p, τ ). (12)

The drag and diffusion coefficients for heavy quark Q
collided by a parton a = g, q, q̄ in the QCD plasma can be
calculated as [34]

Aa,i( �p, τ ) = 1

2E ( �p)

∫
d�|MaQ→aQ|2νa fa( �pa, τ )

× [1 ± fa( �p′
a, τ )][1 − fQ( �p′, τ )]( �p − �p′)i,

Ba,i j ( �p, τ ) = 1

4E ( �p)

∫
d�|MaQ→aQ|2νa fa( �pa, τ )

× [1 ± fa( �p′
a, τ )][1 − fQ( �p′, τ )]

× ( �p − �p′)i( �p − �p′) j,

with

d� = d3 pa

(2π )32Ea( �p′
a)

d3 p′
a

(2π )32E ′
a( �p′

a)

d3 p′
Q

(2π )32E ′( �p′)

× (2π )4δ(4)(P + Pa − P′ − P′
a). (13)

Due to the small occupation of heavy quarks fQ( �p′, τ ) � 1,
the Fermi-blocking factor for the heavy quark can be ne-
glected. The amplitude squares |MaQ→aQ|2 of heavy quark
scattering are calculated in LO pQCD, with a dynamical
and isotropic screening mass fitting to the hard thermal loop
(HTL) calculation, as implemented in the QCD EKT sim-
ulation for QCD plasma [9]. For details, see our previous
work [13].

FIG. 3. Drag and diffusion coefficients Ax (ω̃), Bxx (ω̃) (red),
Byy(ω̃) (green), and Bzz(ω̃) (blue) for gluons and quarks (with factor
2Nf ), as a function of universal time ω̃, with heavy quark momentum
p = mHQ and mass mHQ = 1.5 GeV. The default coupling λ = 10 is
in use. Gluons and quarks are plotted as dotted and dashed curves
respectively.

To calculate the drag and diffusion coefficients, a charm
quark mass mHQ = 1.5 GeV is assumed, and the coupling in
the collisional amplitude squares is assumed to be the same as
the background QCD plasma, αs = g2

4π
= λ

4πNc
with λ = 10

unless noted otherwise.

IV. HEAVY QUARK DRAG AND DIFFUSION
COEFFICIENTS

Due to the rotation symmetry in the transverse plane, with-
out loss of generality, one defines the momentum direction of
the heavy quark in the transverse plane as the x axis. That is
�p = (p, cos(θ ), φ) = (p, 0, 0) in cylindrical coordinates. The
symmetry of the integration makes the vector �A simply along
�p in transverse plane, giving trivial values of Ay, Az, as well
as off-diagonal terms in the Bi j matrix, even if the plasma is
anisotropic.

The time evolutions of coefficients Ax, Bxx, Byy, Bzz are
plotted in Fig. 3 including their gluon and quark components.
The time evolution of the coefficients in terms of ω̃ roughly
features a power-law behavior. The lower panel of Fig. 3
shows the isotropization that Byy is deviated from Bzz at an
early time and is approaching Bzz at a late time. The increasing
trends in quark contribution show in both panels that the
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FIG. 4. Drag and diffusion coefficients Ax ( �p), Bxx ( �p) (red),
Byy( �p) (green), and Bzz( �p) (blue) for gluons and quarks (with factor
2Nf ), as a function of rescaled momentum p/mHQ. Coefficients are
normalized by either Ax (p = mHQ) or Bxx (p = mHQ). The default
coupling λ = 10 is in use. The early-time coefficients are in lighter
colors and the late-time coefficients are in darker colors.

drag and diffusion coefficients contributed by quarks become
comparable to gluons at a late time. However, due to the
Bose-enhancement and Fermi-blocking factors from quantum
statistics, the quark contribution in the coefficients is not as
significant as it is in the energy density of the QCD plasma, as
one sees in Fig. 2, where eq � 2eg at the later time.

The momentum dependencies of the coefficients are shown
in Fig. 4 for various times, where everything has been nor-
malized by either Ax(p = mHQ) or Bxx(p = mHQ) so that these
two coefficients are fixed at the point (1,1). One finds a linear
dependence of Ax(p)/Ax(mHQ) for p/mHQ � 2. Isotropization
is shown in the lower panel: Byy gradually approaches Bzz at
a later time. One also finds Byy � Bxx for p � mHQ for all
time. The increasing trend of the quark contribution is also
presented.

Now one may release the constraints for the heavy quark
momentum direction in the transverse plane. Still, look at
the typical momentum p = mHQ, but in the x-z plane so
that �p = (p, cos(θ ), φ) = (p, cos(θ ), 0) in cylindrical coordi-
nates. Therefore the coefficients are presented as functions
of cos(θ ) = pz/p in Fig. 5. Now the breaking symme-
tries in the integrals makes the vector �A not necessarily
along �p, resulting in many more nontrivial coefficients Ax,z,
Bxx,xz,yy,zz, but they have vanishing points at certain angles. For

FIG. 5. Drag and diffusion coefficients Ai( �p, ω̃), Bi j ( �p, ω̃) for
gluons and quarks (with factor 2Nf ), as a function of angle cos(θ ) in
the x − z plane, normalized by values of Ax and Bxx when cos(θ ) = 0.
The default coupling λ = 10 is in use.

example, at cos(θ ) = 0 the heavy quark momentum is in
the transverse plane and Az vanishes, while at cos(θ ) = ±1
the heavy quark momentum is in the longitudinal plane
and Ax vanishes. The isotropization can be clearly seen,
for example, the ratio of Az( cos(θ ) = 1)/Ax( cos(θ ) = 0)
and Bzz( cos(θ ) = 1)/Bxx( cos(θ ) = 0) only goes to 1 when
the time is large and the medium becomes isotropic. The
off-diagonal diffusion coefficient Bxz features a cos(θ ) depen-
dence as 〈〈(px − p′

x )(px − p′
x )〉〉 ∼ 〈〈

√
1 − cos2(θ ) cos(θ )〉〉,

which vanishes at cos(θ ) = 0,±1 for all time and peaks at
cos(θ ) = 1/

√
2 when approaching equilibrium.

V. RESCALING OF TRANSPORT COEFFICIENTS

With the kinetic-theory-simulated weakly coupled plasma
and the universal attractor valid even in the strongly cou-
pled regime, one may estimate certain physical processes
in the prehydrodynamic QCD plasma with different cou-
pling strengths even at strong couplings. Indeed, for any time
convolution of a physical quantity C(τ ),

∫ τh

τ0

C(τ ) dτstrong �
∫ τ ∗

τ0

C(τ ) dτweak

(η/s)
4
3
strong

(η/s)
4
3
weak

, (14)

where one has to fix the same initial time τ0 since the early
time plasma is weakly coupled, until a hydrodynamization
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time τh in a strongly coupled plasma when ω̃ � 1–2. With
attractor theory, one can estimate the hydrodynamization
time in strongly coupled plasma, τh, from the time in
weakly coupled plasma, τ ∗, when ω̃ � 1–2. For the weakly
coupled plasma with λ = 10, one has (η/s)weak = 1 and
τ ∗ � (100–275)Q−1

s , which results in a hydrodynamization
time τh � (3.4–9.4)Q−1

s � 0.45–1.23 fm for strongly cou-
pled plasma (η/s)strong = 1/4π , or τh � (8.6–23.7)Q−1

s �
1.13–3.12 fm for (η/s)strong = 1/2π .

Strongly coupled plasmas featured by different coupling
strengths also result in different values of the transport coef-
ficients for heavy quarks. One may generically consider the
rescaling of coefficients in plasma from the original coupling
strength λo to coupling strength λ, and from the original
temperature To to temperature T as

C(τ, λ) � K(T ; To, λ; λo)C(τ, λo). (15)

Phenomenological studies of heavy flavor energy loss sug-
gest a large overall rescaling factor K � 5 compared to
the pQCD calculation [60] at αs � 0.3 (comparable to
λ = 4παsNc � 10), empirically representing the nonpertur-
bative effect. This empirical value of the rescaling factor is,
however, dominated by the contributions from the hydro-
dynamic period. The pre-hydrodynamic rescaling at higher
temperatures would favor a smaller factor K � 5. Although
the rescaling for the conformal plasma with attractor the-
ory can be safely rescaled to the strongly coupled regime,
the rescalings for the drag and diffusion coefficients are
theoretically nontrivial. For instance, a rescaling from the
LO pQCD calculation would suggest an LL factor KLL �
λ2

λ2
o

T a

T a
o

b ln(1/λ)+c
bo ln(1/λo)+co

, but it can only be safely restricted to the
weakly coupled regime.

More specifically, LL calculations for a heavy quark in a
thermal background would suggest rescaling factors for the
drag and diffusion coefficients as [33]

KA
LL � λ2

λ2
o

T 2

T 2
o

⎡
⎣ ln

(
1
μ

) + ab + Nf

2Nc

(
ln

(
1
μ

) + a f
)

ln
(

1
μo

) + ab + Nf

2Nc

(
ln

(
1
μo

) + a f
)
⎤
⎦,

KBT
LL � λ2

λ2
o

T 3

T 3
o

⎡
⎣ ln

(
1
μ

) + bb + Nf

2Nc

(
ln

(
1
μ

) + b f
)

ln
(

1
μo

) + bb + Nf

2Nc

(
ln

(
1
μo

) + b f
)
⎤
⎦,

KBL
LL � λ2

λ2
o

T 3

T 3
o

⎡
⎣ ln

(
1
μ

) + cb + Nf

2Nc

(
ln

(
1
μ

) + c f
)

ln
(

1
μo

) + cb + Nf

2Nc

(
ln

(
1
μo

) + c f
)
⎤
⎦. (16)

with μ = ξg
mD
T = ξg

√
λ(Nc+ N f

2 )
3Nc

= ξg

√
λ
2 and ξg = e5/6

2
√

2
an

isotropic coefficient fitted to the HTL calculations. The co-
efficients for the boson and the fermion sectors ab, a f , bb,
b f , cb, c f are velocity dependent. The zero-velocity limit for
a static heavy quark (v = 0) gives the coefficients for dif-
fusion bb = cb = ln 2 + ξ and b f = c f = ln 4 + ξ with ξ =
1
2 − γ + ζ ′(2)

ζ (2) � −0.647 [33]. These LL factors break down
at large couplings with a negative coefficient from the log-
arithmic term and deviate quite a bit from numerical results
[61]. The appearance of the negativity when increasing the

coupling strength is, however, delayed by a larger heavy quark
velocity. As a consequence, a positive drag coefficient Ai for
λo = 10 appears when v � 0.60 from the LL factor, and a
monotonically increasing KA

LL factor for λ < λ0 = 10 occurs
when v � 0.85. For a weaker coupling λo = 5, the positivity
appears when v � 0.10 and a monotonically increasing KA

LL
factor requires v � 0.50.

Due to the anisotropy in the pre-hydrodynamic plasma, one
may only discuss KAx

LL = KA
LL � λ2

λ2
o

T 2

T 2
o
KA

� � λ2

λ2
o

(η/s)−2/3

(η/s)−2/3
o

KA
�

and KBxx
LL = KBL

LL � λ2

λ2
o

T 3

T 3
o
KBL

� � λ2

λ2
o

(η/s)−1

(η/s)−1
o
KBL

� , with factors KA
�

and KBL

� the corresponding logarithmic terms in the square
brackets of Eq. (16). Figure 6 presents the time-dependent
rescaled coefficients Ax(T (ω̃), λ)/KAx

LL(T (ω̃); To(ω̃), λ; λo)
and Bxx(T (ω̃), λ)/KBxx

LL (T (ω̃); To(ω̃), λ; λo) calculated at vari-
ous couplings, in comparison to my default coupling λ0 = 10
(and K = 1 for λ = 10) for v = 0.70, 0.80, 0.90. It shows that
the LL factors give close and presumably convergent rescal-
ing results at weaker couplings, while the rescaling results
diverge quickly at stronger couplings. A next-to-leading order
(NLO) correction cannot amend this due to poor convergence
of the perturbative expansion [61] and it clearly presents the
breakdown of perturbation theory at strong couplings. It also
appears that the LL factors rescale better at larger velocities.
For example, at v = 0.90, the diffusion coefficients have al-
most perfect rescalings. It is conceivable that at the limit of
v → 1 the heavy quark becomes a high-energy jet and the
perturbation theory is valid. However, at such a large veloc-
ity, radiational processes dominate over collisional processes.
One may notice that some rescaled curves for large couplings
are missing at low velocity due to negative values of the LL
factors attributed by the ln(1/μ) term.

The negativity from the logarithmic term of the LL factors
in Eq. (16) is due to an infrared cut of the parton momentum
down to mD, which is not a consistent treatment at strong
couplings. If one does not impose the parton momentum to
be much larger than the screening mass k � T � mD � gT
or g � 1, one would expect an effective regulator in the log-
arithmic term. Instead of the LL factors, one can employ a
parametrization of the K factors with regulators ãb, ã f , b̃b, b̃ f ,
c̃b, c̃ f :

KA
LO

� λ2

λ2
o

T 2

T 2
o

⎡
⎣ ln

(
1
μ

+ ãb
) + ab + Nf

2Nc

(
ln

(
1
μ

+ ã f
) + a f

)
ln

(
1
μo

+ ãb
) + ab + Nf

2Nc

(
ln

(
1
μo

+ ã f
) + a f

)
⎤
⎦,

KBT
LO

� λ2

λ2
o

T 3

T 3
o

⎡
⎣ ln

(
1
μ

+ b̃b
) + bb + Nf

2Nc

(
ln

(
1
μ

+ b̃ f
) + b f

)
ln

(
1
μo

+ b̃b
) + bb + Nf

2Nc

(
ln

(
1
μo

+ b̃ f
) + b f

)
⎤
⎦,

KBL
LO

� λ2

λ2
o

T 3

T 3
o

⎡
⎣ ln

(
1
μ

+ c̃b
) + cb + Nf

2Nc

(
ln

(
1
μ

+ c̃ f
) + c f

)
ln

(
1
μo

+ c̃b
) + cb + Nf

2Nc

(
ln

(
1
μo

+ c̃ f
) + c f

)
⎤
⎦.

(17)
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FIG. 6. Comparison of the time-dependent rescaled coefficients Ax (T (ω̃), λ)/KAx
LL(T (ω̃); To(ω̃), λ; λo) and

Bxx (T (ω̃), λ)/KBxx
LL (T (ω̃); To(ω̃), λ; λo) at various couplings λ = 5, 8, 10, 20, 40, 60 with the LL K� factor parametrized as Eq. (16)

from [33]. The values of the parameters for different velocities are taken from [33] as well.

Fitting the numerical LO pQCD calculations with these regu-
larized factors KLO � λ2

λ2
o

T a

T a
o
K�, presented as Fig. 7, one may

have a better handle of the rescaling for larger couplings. The

FIG. 7. Fitting the K� factors (dashed) in the square bracket term
regularized as Eq. (17) with numerical LO pQCD calculations (solid)
in a thermal QCD plasma at fixed T and various velocities. The fitting
restricts itself at weak couplings ranging from λ = 0.01 to λ = 10.
The LL K� factors without regulators are also presented (dotted).

rescaling results with the regularized factor are presented for
p = mHQ, v � 0.71 in Fig. 8. A nice rescaling is shown even
at strong couplings.

Fast thermalization of the QGP requires the plasma to be
strongly coupled when close to the hydrodynamic limit, while
the perturbative calculations fail at large couplings. Although
the regularized LL factors from the LO pQCD suggested by
Eq. (17) converge the large coupling rescalings, it is still an
artificial treatment dropping higher-order corrections. Rescal-
ing of heavy quark drag and diffusion coefficients at large
’t Hooft couplings λ = g2Nc � 1 might be achieved by the
anti–de Sitter and conformal field theory (AdS-CFT) corre-
spondence, which suggests Bi j ∼ √

λT 3 [62,63]. Indeed, the
nonpolynomial rescaling from the AdS-CFT correspondence
clearly indicates a nonperturbative effect.

However, the smooth transition of the rescaling form from
the weakly coupled pQCD polynomial results to the strongly
coupled AdS-CFT nonpolynomial results may not be possi-
ble to construct since their pictures of heavy quark diffusion
are very different. This aspect is out of the scope of the
current study and the following discussions use the generic
factors KA � λα

λα
0

T 2

T 2
0
KA

� � λα

λα
0

(η/s)−2/3

(η/s)−2/3
0

KA
� and KB � λα

λα
0

T 3

T 3
0
KB

� �
λα

λα
0

(η/s)−1

(η/s)−1
0
KB

� with α ∈ R+ representing some undetermined

factors in the exponent.

VI. PHENOMENOLOGICAL CONSEQUENCES

Since one rescales from λ0 = 10 which has (η/s)0 = 1,
one has, accordingly, the energy loss and diffusion of heavy
quarks at different couplings λ:〈

�pi

p0

〉
loss

�
∫ τ ∗

τ0

−Ai( �p, τ )

p0
dτ

(η

s

) 4
3 KA, (18)

〈
�pi�p j

p2
0

〉
diff

�
∫ τ ∗

τ0

Bi j ( �p, τ )

p2
0

δi jdτ
(η

s

) 4
3 KB. (19)
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FIG. 8. Comparison of the time-dependent rescaled
coefficients Ax (T (ω̃), λ)/KAx

LO(T (ω̃); To(ω̃), λ; λo) and
Bxx (T (ω̃), λ)/KBxx

LO (T (ω̃); To(ω̃), λ; λo) at various couplings
λ = 5, 8, 10, 20, 40, 60 with the regularized K� factor parametrized
as Eq. (17) from the LO pQCD.

Focusing on the transverse plane and assuming the heavy
quark initial momentum to be p0 � 2mHQ in the x direction,
one has roughly a linear momentum dependence on the drag
coefficient Ax( �p, τ ) � Ax (mHQ,τ )

mHQ
px. The infinitesimal form of

Eq. (18) is〈
d px

p0

〉
loss

= −Ax( �p, τ )

p0
dτ

(η

s

) 4
3 KA

� −Ax(mHQ, τ )

mHQ

px

p0
dτ

(η

s

) 4
3 KA, (20)

and the time convolution gives

−
∫ τ ∗

τ0

Ax(mHQ, τ )

mHQ
dτ

(η

s

) 4
3 KA

�
∫ p0−�px

p0

〈
d px

px

〉
loss

= ln

(
1 −

〈
�px

p0

〉
loss

)
. (21)

Now one arrives at〈
�px

p0

〉
loss

� 1 − e
− ∫ τ∗

τ0

Ax (mHQ ,τ )

mHQ
dτ ( η

s )
4
3 KA

(22)

� 1 − e
− ∫ τ∗

τ0

Ax (mHQ ,τ )

mHQ
dτ ( η

s )
2
3 ( λ

10 )αKA
� . (23)

Numerical evaluations for τ ∗ give〈
�p

p0

〉
loss

� 1 − e−0.38( η

s )
2
3 ( λ

10 )αKA
� up to ω̃ = 1, (24)

〈
�p

p0

〉
loss

� 1 − e−0.56( η

s )
2
3 ( λ

10 )αKA
� up to ω̃ = 2 (25)

before the plasma reaches the hydrodynamic stage. With a
proper rescaling factor K� presumably from some nonper-
turbative numerical methods, the above formula is useful to
simply estimate the heavy quark energy loss in the prehydro-
dynamic stage in HICs.

VII. CONCLUSIONS AND OUTLOOK

In this article, I calculate the heavy quark drag and diffu-
sion coefficients in a weakly coupled prehydrodynamic QCD
plasma from a first-principles and the state-of-the-art QCD
EKT solver. The time, momentum, and angular dependen-
cies of the coefficients Ai, Bi j with all indices are presented.
With arguments from the attractor theory, I provide a simple
formula to evaluate the heavy quark energy loss in prehydro-
dynamic plasma with different coupling strengths. As a first
step towards this goal, I study the rescaling of transport coef-
ficients with the LL factors. Although a trend of convergence
shows at weak couplings, the rescalings augmented with LL
factors diverge at strong couplings due to the failure of per-
turbation theory. Releasing the restriction of the infrared cut
for parton momentum down to the screening mass, one may
employ a regulator in the logarithmic terms of LL factors and
fit the regulator to the LO pQCD calculations, which avoids
the negativity from native LL factors and leads to convergent
rescalings for large couplings.

One needs to keep in mind that the attractor rescaling of the
QCD plasma is valid at both weak and strong couplings. The
QCD EKT simulations of the time and temperature profiles
of the plasma appear to satisfy this rescaling even up to a
large coupling λ = 60 whose corresponding η/s � 0.084 is
already close to the holographic lower bound, regardless of
the failure of the semiclassical kinetic theory at strong cou-
plings. In a realistic prehydrodynamic stage in HICs, the rapid
drop in temperature and fast thermalization of the plasma
favors a quick transition from weakly coupled to strongly
coupled, which may not be easy to simulate by kinetic the-
ory or other theories. Attractor theory provides a simple way
without any complex simulation to perform a rescaling in the
weakly/strongly coupled transition for the QCD plasma.

However, the difficulty in calculating the heavy quark
transport coefficients may come from the invalidity of dif-
ferent theories at different scales and coupling strengths. A
generic rescaling from a weakly coupled regime to a strongly
coupled regime is theoretically nontrivial. Still, it is conceiv-
able upon incorporating nonperturbative approaches like the
T -matrix calculation [64] or functional renormalization group
(FRG) for calculating the transport coefficients, which I leave
for future studies.
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