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Microscopic calculations of neutrino-nucleus scattering cross sections are critical for the success of the
neutrino-oscillation program. In addition to retaining nuclear correlations in the initial and final state of the
reaction, they are based on consistent nuclear interactions and transition current operators, thereby enabling
robust uncertainty quantification. In this work, we address a significant limitation of these microscopic methods,
which arises from their nonrelativistic nature. By performing the calculations in a reference frame that minimizes
nucleon momenta and utilizing the so-called two-fragment model, we extend the applicability of Green’s function
Monte Carlo calculations of neutrino-nucleus scattering to higher momenta than currently possible. To validate
this approach, we compare our theoretical predictions against inclusive data measured by the MiniBooNE, T2K,
and MINERνA experiments.
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I. INTRODUCTION

Over the past decade, there has been tremendous progress
towards computing lepton-nucleus scattering within the so-
called ab initio nuclear many-body approaches, which provide
a microscopic description of nuclear dynamics starting from
the individual interaction among the constituent neutrons and
protons [1]. By exploiting integral-transform techniques, both
quantum Monte Carlo (QMC) [2–4] and coupled-cluster [5]
methods retain nuclear correlations in both the initial and final
states of the scattering process. Notably, the latter are gen-
erated by realistic nuclear Hamiltonians consistent with the
electroweak-current operators entering the transition matrix
element. Hence, in addition to providing an accurate descrip-
tion of nuclear dynamics, microscopic approaches allow one
to estimate the theoretical uncertainties associated with mod-
eling nuclear dynamics. This aspect is particularly relevant for
the accelerator-neutrino program, as cross-section uncertain-
ties represent a significant component of the error budget of
neutrino-oscillation parameters [6–8].

Among QMC methods, Green’s function Monte Carlo
(GFMC) has been extensively employed to compute the elec-
troweak response functions of nuclei with up to A = 12
nucleons starting from imaginary-time propagators, corre-
sponding to their Laplace transforms. GFMC calculations of
inclusive electron and neutrino cross sections of 4He and 12C
are in excellent agreement with experimental data [9–11].
Coupled-cluster calculations can reach larger systems due to
its favorable polynomial scaling with the number of nucle-
ons. After its initial application to low-energy nuclear dipole
responses [12], the coupled-cluster approach was extended
to compute the Coulomb sum rule of 4He and 16O [13].
Most recently, the authors of Ref. [14] have carried out

coupled-cluster calculations of the longitudinal electromag-
netic response function of 40Ca, finding very good agreement
with experiments in the quasielastic region.

One of the main limitations of both QMC and coupled-
cluster approaches has to be ascribed to the nonrelativistic
formulation of the many-body problem. Although the leading
relativistic corrections are typically included in the transition
operators [15], the kinematics of the reaction is nonrela-
tivistic, thereby limiting the application of these methods to
moderate values of the momentum transfer. This restriction
is particularly relevant when making predictions for inclusive
neutrino-nucleus cross sections since the incoming neutrino
flux is not monochromatic. Its tails extend to energies where
relativistic effects cannot be neglected.

In a number of works [16–21], a method was pro-
posed to extend the applicability of manifestly nonrelativistic
hyperspherical-harmonics and QMC methods to higher mo-
mentum transfer values than typically possible. This method
reduces relativistic effects by performing the calculations in a
reference frame that minimizes nucleon momenta. Additional
relativistic effects in the kinematics are accounted for by em-
ploying the so-called two-fragment model, which allows one
to obtain, in a relativistically correct way, the kinematic inputs
of the nonrelativistic dynamical calculations.

In this work, we quantify the role of relativistic effects in
the GFMC calculations of the electroweak response function
of 12C induced by charged-current transitions by analyzing
their frame dependence with and without the two-fragment
model. Following the strategy discussed in Ref. [21], we com-
pute inclusive neutrino-12C scattering cross sections choosing
a reference frame that minimizes these effects. We compare
our theoretical calculations with experimental data measured
by the MiniBooNE [22], T2K [23], and MINERνA [24]
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experiments. Note that their neutrino fluxes are characterized
by different energy distributions, whose high-energy tails ex-
tend beyond the GeV region.

This paper is organized as follows. In Sec. II, we outline
the connection between inclusive neutrino-nucleus cross sec-
tions and electroweak response functions, review the Lorentz
transformations to different reference frames, and apply them
to the GFMC electroweak response functions. In Sec. III, we
gauge the role of relativistic effects in the charged-changing
response functions, while inclusive cross-section results are
discussed in Sec. IV. Finally, in Sec. V, we draw our conclu-
sions and outline future perspectives of this work.

II. IMPLICATIONS OF RELATIVITY
FOR NUCLEAR RESPONSES

A. Nuclear responses and charged-current cross section

The differential cross section for inclusive charged-current
(CC) scattering of a neutrino with the nucleus can be
written as

dσ

dEl d�l
= G2

4π2
kl El (vCCRCC − vCLRCL + vLLRLL

+ vT RT + vT ′RT
′), (1)

with G = GF cos θc, and El , kl denote the energy and momen-
tum of the final-state lepton, respectively. The decomposition
into factors vX that depend only on the lepton kinematics and
nuclear responses RX follows from considering a single boson
exchange. The expressions for the lepton factors can be found
in Ref. [15]. The inclusive nuclear electroweak response func-
tions correspond to specific elements of the hadron tensor,
defined as

Rμν =
∑

f

〈�0|Jμ†(ω, q)|� f 〉〈� f |Jν (ω, q)|�0〉

× δ(ω + E0 − E f ), (2)

where |�0〉 and |� f 〉 denote the nuclear initial ground-state
and final bound- or scattering-state of energies E0 and E f .
The nuclear electroweak current Jμ(ω, q) depends upon the
energy and momentum transferred to the nuclear system, ω =
Eν − El and q = kν − kl . Without loss of generality, we take
q to be parallel to the z axis, so that the five inclusive nuclear
responses in Eq. (1) can be expressed as

RCC(ω, q) = R00(ω, q),

RCL(ω, q) = 2 Re R0z(ω, q),

RLL(ω, q) = Rzz(ω, q), (3)

RT (ω, q) = Rxx + Ryy

2
(ω, q),

RT ′ (ω, q) = 2 Im Rxy(ω, q),

where q = |q|. The longitudinal contribution to the cross sec-
tion can be written to make the dependence on lepton mass

explicit as

vCCRCC − vCLRCL + vLLRLL

= vCCRL − m2
l

qEl
RCL + m2

l

q2

[
2

Eν

El
− vCC

]
RLL. (4)

Hence, the combination of response functions

RL ≡ RCC − ω

q
RCL +

(
ω

q

)2

RLL (5)

yields the leading longitudinal contribution when the momen-
tum transfer and lepton energy are large compared to the
outgoing lepton mass.

B. Lorentz transformations to different reference frames

The laboratory frame (LAB) is the reference frame in
which the initial nucleus is at rest, Pi = 0. In this work,
we evaluate the electroweak response functions in different
reference frames which move with respect to the LAB frame
along the direction specified by the momentum transfer q.

Since the inclusive electroweak currents transform as four-
vectors under a Lorentz-boost, the hadron tensor elements
transform as

Rμν
LAB(ω, q) = Bμ

α[β]Bν
β[β]Rαβ

fr (ωfr, qfr ). (6)

In the last equation, B indicates a Lorentz boost, and Rfr the
response evaluated in a frame that moves with relative velocity
β with respect to the LAB frame. For boosts along q, one can
write B in matrix notation as

Bμ
ν =

⎛
⎜⎜⎝

γ 0 0 γ β

0 1 0 0
0 0 1 0

γ β 0 0 γ

⎞
⎟⎟⎠, (7)

where β = |β| and γ = 1/
√

1 − β2. Whilst the transverse
responses are unchanged by a boost along q, the longitudinal
responses transform as

RLAB
CC =γ 2

[
Rfr

CC + β2Rfr
LL + βRfr

CL

]
(8)

RLAB
LL =γ 2

[
Rfr

LL + β2Rfr
CC + βRfr

CL

]
(9)

RLAB
CL =γ 2

[
2β

(
Rfr

CC + Rfr
LL

) + (1 + β2)Rfr
CL

]
. (10)

The energy and momentum transfer in the moving frame
are connected to the ones in the LAB frame by the inverse
boost

qfr = γ (q − βω), ωfr = γ (ω − βq), (11)

thus one can write the boost parameter as

γ = ωq + ωfrqfr

ωqfr + ωfrq
, (12)

where qfr = |qfr|.
When the nuclear current is conserved, as in the electro-

magnetic case and the vector contribution to the electroweak

014623-2



RELATIVISTIC EFFECTS IN GREEN’S FUNCTION … PHYSICAL REVIEW C 109, 014623 (2024)

current, one has ωJ0(ω, q) − q · J(ω, q) = 0, which implies

Rfr
CC(ωfr, qfr ) = qfr

2ωfr
Rfr

CL(ωfr, qfr )

=
(

qfr

ωfr

)2

Rfr
LL(ωfr, qfr ). (13)

Substituting the above relation in Eq. (8), and using Eq. (12),
one finds that

RCC(ω, q) =
(

q

qfr

)2

Rfr
CC(ωfr, qfr ). (14)

This is the relation used in Ref. [21] for electromagnetic
interactions. However, in this work, we consider electroweak
transitions in which the axial contribution is not conserved.
Therefore, we use the more general expressions for the
Lorentz-boosts between different frames of Eqs. (8)–(10).
Following Ref. [16], we introduce a phase-space factor to
account for the covariant normalization of the initial target
state; the full result for LAB frame responses reads

Rμν
LAB(ω, q) = E fr

i

MA
Bμ

αBν
β Rαβ

fr (ωfr, qfr ), (15)

with E fr
i =

√
(Pfr

i )2 + M2
A, where MA is mass of the nucleus.

Following Ref. [25], we introduce the active-nucleon ζ

frame as the one in which Pfr
i = −(1 − ζ )Aqfr , where, clearly,

A = 12 for 12C. The Lorentz boost that connects these mo-
menta to the LAB frame energy reads

(1 − ζ )qfr = −Pfr
i

A
= βγ

MA

A
. (16)

Using the inverse boost expression for qfr found in Eq. (11),
the relative velocity reads

β = (1 − ζ )q
MA/A + (1 − ζ )ω

. (17)

For ζ = 1 we recover the LAB frame, while different values
ζ parametrize other reference frames. In particular ζ = 1/2
corresponds to the active nucleon Breit (ANB) frame with
Pi = −AqANB/2. In the vicinity of the quasielastic peak, the
momentum is mostly absorbed by a single “active” nucleon,
with a momentum of approximately pA

i = Pfr
i /A. For the

active-nucleon ζ frames, we thus have

pA
i = (ζ − 1)qfr, pA

f = ζqfr. (18)

Hence, in the ANB frame the magnitude of the active nucleon
momentum in initial and final states is minimal. Moreover, the
energy transfer at the quasielastic peak in the ANB frame is
zero and this holds true for both the relativistic and nonrel-
ativistic cases, implying that the responses peak in the same
position. As a consequence, qfr at the quasielastic peak is also
minimal in the ANB. For these reasons, the ANB frame has
been chosen in Refs. [16,17,21] as the one that minimizes the
effect of relativistic corrections to the kinematics.

In addition to the LAB and ANB frames, in
Refs. [16,17,21], the electromagnetic response functions
of nuclei with A = 3, 4 are also evaluated in the anti-LAB
frame, defined by Pi = −qAL, and in the Breit frame with

Pi = −qB/2. However, in the limit of large A these frames
tend to become indistinguishable from the LAB frame. For
this reason, since we are considering a heavier target than
those studies in Refs. [16,17,21], we will only focus on the
active-nucleon frames in which the momentum of the nucleus
scales with A.

C. Nuclear responses in different reference frames

Within the GFMC the responses are computed in the “in-
trinsic system,” in which the total center of mass motion of the
nuclear system is zero, e.g.,

Rint (ω′, q′) =
∫∑

δ
(
ω′ + ε0 − ε f

)〈�0|Jμ†|� f 〉〈� f |Jν |�0〉,
(19)

where ε0 and ε f are the intrinsic energies of the initial and
final states, respectively, which are assumed to be frame inde-
pendent. The nonrelativistic response in the LAB frame can
be recovered by setting q′ = q and ω′ = w − q2/(2MA). For
a generic reference frame, the response functions can be ob-
tained by identifying q′ with the boosted momentum transfer,

q′ = qfr = γ (q − βω), (20)

and including the center-of-mass energies of the initial and
final states in the energy transfer definition as ω′ = ωfr −
(Pfr

f )2/(2MA) + (Pfr
i )2/(2MA).

Note that the “intrinsic system” cannot be interpreted as
a reference frame. Hence, RCC and RLL can be recovered
from the single response RLL using current conservation as
in Eq. (13) only after the nonrelativistic RLL in a given frame
is computed.

1. Two-fragment model

The kinematics of quasielastic processes can be mod-
ified to account for relativistic corrections by employing
the two-fragment model introduced in Ref. [16]. This ap-
proach assumes that the dominant reaction mechanism in the
quasielastic region is the breakup of the nucleus into two frag-
ments, namely a knocked-out nucleon and a remnant (A − 1)
system. Under this assumption, the energy of the hadronic
final system can be written in a relativistically correct fashion
as

E fr
f =

√
m2 + (

pfr
f + (μ/MA−1)Pfr

f

)2

+
√

M2
A−1 + (

pfr
f − (μ/m)Pfr

f

)2
; (21)

where μ = mMA−1

m+MA−1
is the reduced mass, and Pfr

f and pfr are
the center of mass and relative momentum, respectively. Fol-
lowing the arguments of Refs. [16,21], we assume that both
Pfr

f and pfr are directed along qfr . The value of pfr can be
obtained by solving this equation and it has to be replaced
in the definition of the intrinsic energy

ε f =
(
pfr

f

)2

2μ
+ εA−1

0 (22)
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FIG. 1. Longitudinal and transverse electroweak response functions of 12C at a momentum transfer q = 700 MeV for different active-
nucleon frames, parametrized by different values of ζ = 1, 3/4, 1/2, 1/4. The top panels do not use the two-fragment model while the
bottom panels do. The dashed black line in the bottom panels corresponds to the ANB result, which does not include the fragment model.

where εA−1
0 is the energy of the remnant nucleus. A detailed

discussion on how to rewrite the energy conserving δ as a
function of ε f can be found in Ref. [16].

III. RESULTS FOR TRANSFORMED RESPONSES

Figure 1 shows the CC electroweak response functions of
12C at q = 700 MeV computed in different active nucleon
ζ frames and boosted back to the LAB frame applying the
Lorentz transformation of Eq. (15). The left panels display
the longitudinal responses defined in Eq. (5). For momentum
transfers where relativistic effects become important, the mass
terms in Eq. (4) are negligible even for muon-neutrino inter-
actions, and RL determines the longitudinal cross section.

The results obtained in this work are consistent with those
reported in Ref. [21], which focused on the electromag-
netic response functions of 4He. The two-fragment model
is suitable to mitigate most of the frame dependence in the
nonrelativistic calculations, as the responses computed in dif-
ferent frames collapse onto a single curve. This behavior has
to be confronted with the top panels, in which the the two
fragment model is not applied. There, a significant frame
dependence is visible, in both the longitudinal and transverse
channels. As expected, the longitudinal and transverse CC
responses obtained in the ANB frame (ζ = 1/2) are largely
unaffected by the use of the two-fragment model. To better
appreciate this behavior, the dashed black line in the bottom
panels of Fig. 1 corresponds to the results obtained in the ANB
frame without employing the two-fragment model.

As shown in the rightmost panel of Fig. 1, displaying the
CC transverse response functions, the same behavior persists
even when two-body current contributions are significant.
Similarly to the one-body case, we observe that applying
the two-fragment model to the total transverse response re-
duces the frame dependence of the calculation, with all curves
aligning on the ANB frame one. Hence we can infer that
the dominant reaction mechanism is such that the transferred

momentum is primarily absorbed by a single nucleon. This is
consistent with the idea that the transverse enhancement in the
quasielastic peak in electromagnetic interactions is primarily
due to the interference between one- and two-body currents
[26–31].

It is notable in this respect that the GFMC calculations do
not show a distinctive peak near the delta resonance, which
is a feature observed in several calculations of two-nucleon
knockout [27,32–35]. This can likely be attributed to the static
treatment of the delta in the GFMC, which hence does not
lead to an enhancement near the delta pole. In the region of
the QE peak the static treatment should be appropriate [36],
but further study which explicitly separates the delta in the
GFMC responses and includes a more complete treatment of
the propagator is required for the dip region.

The results obtained in the ANB (with or without the
two fragment model) incorporate relativistic corrections to
the kinematics. This is shown explicitly in Fig. 2, where we

FIG. 2. Energy transfer dependence of the transverse response in
the LAB (solid) and ANB (dashed) frames with the two-fragment
model for different values of q. The left (right) panel shows the
responses as a function of the nonrelativistic (relativistic) scaling
variables.
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compare the energy dependence of the response in the LAB
and ANB frames, for different values of q as a function of the
nonrelativistic (left panel) and relativistic (right panel) scaling
variables [37,38], the former of which is defined as

ψnr (ω, q) = m

|q|kF

(
ω − q2

2m
− εnr

)
, (23)

where the Fermi momentum for 12C is taken to be kF = 225
MeV, and the energy shift εnr ≈ 40 MeV is included to cen-
ter the peaks at ψnr = 0. It is clear that the LAB results,
corresponding to the solid lines, exhibit a universal energy
dependence in terms of ψnr for the three different values of
momentum transfer: q = 500, 700, and 900 MeV. On the
other hand, the peaks of the responses obtained using the
two-fragment model (or the ANB) are shifted to smaller ψnr,
while the high-ψnr tail shrinks more rapidly as q increases.
The same responses are shown in the right-hand panel, as
functions of the relativistic scaling variable [37,39]

ψ (ω, q) = 1

ξF

λ′ − τ

[τ (1 + λ′) + κ
√

τ (τ + 1)]1/2
, (24)

with the dimensionless variables defined as

λ′ = ω − εr

2MN
, κ = |q|

2MN
, τ = Q2

4M2
N

, (25)

ξF =
√

1 +
(

kF

MN

)2

− 1. (26)

In the definition of ψ we set εr ≈ 30 MeV so as to align the
peak of the ANB responses at approximately ψ = 0. Com-
paring the different dashed lines, it emerges that the ANB
results are aligned when plotted as a function of the relativistic
scaling variable, thus confirming that relativistic effects are
properly accounted for in the ANB frame. On the other hand,
the nonrelativistic responses evaluated in the LAB frame man-
ifestly violate relativistic scaling.

For benchmark purposes, we consider alternative schemes
that have been develop to account for relativistic effects in
nonrelativistic calculations. In Ref. [41], relativistic correc-
tions for nucleon knockout in a nonrelativistic shell model are
implemented by shifting the outgoing nucleon energy when
solving the Shrödinger equation as

TN → T ′
N = TN

(
1 + TN

2m

)
. (27)

Since the the nonrelativistic kinetic energy is p2 = 2mT ′
N ,

the above shift corresponds to using the relativistic momen-
tum p2 = TN (2m + TN ), thereby effectively transforming the
nonrelativistic Shrödinger equation into a form similar to a
radial Dirac equation for the upper components of the spinors
[42]. The latter indeed uses as “energy” p2/(2m), p being
the relativistic momentum. The effect of this substitution in a
continuum random phase approximation (CRPA) calculation
of the transverse response [43,44] is shown in Fig. 3. In this
figure, we compare the effect of shifting the kinetic energy of
the nucleon as in Eq. (27) with computing the response in the
ANB frame and then boosting it back to the LAB frame. Both
approaches lead to very similar ω dependence of the corrected

FIG. 3. CC vector transverse response functions at q =
700 MeV. The red and purple curves display the GFMC and CRPA
results. The solid lines show the fully nonrelativistic calculations
while the dashed ones were obtained computing the response in
the ANB frame. The dotted lines implement the shift of outgoing
nucleon energies [see Eq. (27)].

responses. Note that the shift of Eq. (27) cannot be readily
implemented to correct the GFMC responses. However, com-
paring with Eq. (22), the shift of Eq. (27) resembles applying
the two-fragment model in the LAB frame in the limit of large
A, i.e., using the kinetic energy derived from the relativistic
momentum as discussed above. Note that in Ref. [45] the
CRPA results additionally includes the relativistic correction
to the electroweak currents of Refs. [46,47]. We do not ex-
plicitly include these boost factors, as relativistic corrections
to the currents are included in a different expansion [15], and
the procedure of computing the response in a different frame
includes such corrections.

IV. FLUX-AVERAGED CROSS SECTIONS

We compute the CC inclusive cross sections for different
kinematic setups, relevant for the MiniBooNE [22], T2K [23],
and MINERνA [24] experiments. Their incoming neutrino
fluxes are characterized by average energies ranging from
700 MeV for T2K up to 6 GeV of the medium-energy NuMI
beam in MINERνA. Therefore, the cross section receives
contributions from the high momentum region of the phase
space, where a proper treatment of relativistic effects become
relevant. We account for the latter by evaluating the GFMC
electroweak responses in the ANB frame and boosting them
back to the LAB frame. As argued above, since the ANB
frame minimizes relativistic effects, we find that applying the
two-fragment model brings about minimal differences.

A. MiniBooNE

Our theoretical calculations for the flux averaged dou-
ble differential cross section for the MiniBooNE kinematics
are shown in Fig. 4. Both the nonrelativistic and ANB re-
sults include one- and two-body current contributions. The
black squares correspond to the “CCQE-like” data reported
in Ref. [40], whose extraction from experimental measure-
ments entails some model dependence [50]. In particular, an
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FIG. 4. Flux averaged double differential cross section for MiniBooNE. The nonrelativistic GFMC results (nr) are compared to the results
obtained in the ANB. They both include one- and two-body current contributions. The open circles are the cross sections to which the
background reported in Ref. [40] is added.

irreducible “non-CCQE” background, mainly consisting of
the production of a single π+ which is either absorbed or
remains otherwise undetected [8,51,52], is estimated using the
NUANCE generator [53], and subtracted from the data. This
background is partly constrained by their own measurement
[54], but inconsistencies in the description of the MiniBooNE
π+ production data and data from T2K [55] and MINERνA
[56] have been pointed out [50,57–59]. Hence, to better gauge
the uncertainties associated with this procedure, it is best prac-
tice to add this background back to the data points; we show
the resulting distribution in Fig. 4 as empty circles. Finally,
one should keep in mind that the MiniBooNE collaboration
reports an overall 10% normalization error which is not taken
into account in the error bars.

The effect of the relativistic corrections implemented
through the ANB response is a reduction of the peak strength
with a redistribution towards larger values of Tμ. It is inter-
esting to note that the calculations tend to saturate the data
at small Tμ, while leaving space at large Tμ, as previously
pointed out in Refs. [15,43]. The present calculations use a
dipole parametrization of the axial form factor with a cutoff
MA = 1 GeV. However, recent lattice-QCD calculations sug-
gest a significantly larger axial form factor at Q2 = q2 − ω2 ≈
1 GeV2 [61–63]. Including an axial form factors consistent
with these lattice-QCD results in GFMC and spectral-function

calculations [64] increases the inclusive cross sections at high
Tμ, compared to a dipole with MA ≈ 1 GeV. This enhance-
ment is consistent with earlier works [40] based on simplified
models of nuclear dynamics. On the other hand, a number of
neutrino event generators that use a dipole form with MA ≈
1 GeV provide a reasonable description of the MiniBooNE
data, once the model-dependent background is added [50].
Notably, in this latter comparison, the data points seem to be
shifted to smaller Tμ.

The relativistic corrections computed in this work are crit-
ical to perform meaningful comparisons between GFMC cal-
culations and MiniBooNE data [15]. In particular, including
relativistic effects is critical to test different parametrizations
of the axial form factor. However, the uncertainties in the
MiniBooNE analysis hamper a firm conclusions in a theory-
data comparison. In view of the statistical significance of
the MiniBooNE dataset, the unresolved tensions with other
experiments, and the possible importance for informing mod-
eling in the SBN program at Fermilab, a reanalysis of the
MiniBooNE dataset(s) would be immensely beneficial [50].

B. T2K

Figure 5 displays our results for the T2K experiment using
the flux tabulated in Ref. [65]. The GFMC calculations again
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FIG. 5. T2K flux folded GFMC results, nonrelativistic (nr) and in the ANB, both including one- and two-body current contributions. The
black data points are from Ref. [48], while the data from the analysis reported in Ref. [49] are shown by the gray points.

include one and two-body terms in the charged-current oper-
ator. The two sets of data correspond to the original analysis
of Ref. [49] and the more recent one reported in Ref. [48]. As
expected, the difference between the calculations carried out
in the ANB frame and the nonrelativistic ones is much smaller
than for MiniBooNE, owing to the lower average energy in
the T2K flux. Experimental data are well reproduced by the
one- plus two-body current theoretical results, leaving little
room for higher-energy reaction mechanisms. In this regard,
for this kinematics using the lattice-QCD axial form factor
brings about minor differences compared to the dipole one
with MA = 1 GeV [64].

C. MINERνA

In Figs. 6 and 7 we show the MINERνA CC cross sec-
tion results as a function of longitudinal and transverse muon
momentum. These are defined as

p‖ = |pμ| cos θμ (28)

and

p⊥ = |pμ| sin θμ =
√

p2
μ − p2

‖, (29)

respectively, θμ being the scattering angle with respect to the
beam. The differential cross section is then

d2σ

d p⊥d p‖
= p⊥

|pμ|Eμ

d2σ

dEμd cos θμ

. (30)

The data are obtained by exposure to the medium-energy
NuMI beam; we use the flux of Ref. [66] and compare with
the cross section data of Ref. [60]. Both the data and calcula-
tions include kinematics cuts in the scattering angle θμ < 17◦
and the muon momentum 2 < |pμ| < 20 GeV. Additionally
we restrict all calculations to Eν < 20 GeV and momentum
transfer |q| < 2 GeV.

The comparison of the purely nonrelativistic and the ANB
results are shown in Fig. 6. The inclusion of relativistic effects
reduces the cross section by almost a factor of 2 for low p‖,
with the difference in magnitude around the peak decreasing
for larger p‖. We note that the momentum transfer is limited
as q > p⊥, and that bins at small p‖ generally allow for
higher energy, and hence larger q contributions at small p⊥,
which explains this behavior. The appearance of the high-p⊥
(i.e., high-q) tails can be understood by the narrowing of
the response in terms of the energy transfer compared to the
nonrelativistic results—see Fig. 2—that redistributes strength
into the available phase space at large q.

As calculations for MINERνA include large q, and the ef-
fect of the relativistic corrections is significant, a consistency
check is in order. For this reason, in Fig. 7 we compare the
GFMC calculations that only include one-body currents to
other approaches, based on a mean-field approximation of nu-
clear dynamics. Specifically, the CRPA calculations [43–45]
include the relativistic correction in the nucleon energy dis-
cussed above [41]. Results of the superscaling model SuSAv2
are based on the relativistic scaling formalism; for additional
details see Ref. [67]. Finally the “hybrid” CRPA calculations
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FIG. 6. Flux-averaged cross sections for MINERνA in terms of p⊥ in different bins of p‖. Nonrelativistic results are shown by dashed
lines, while the ones that include relativistic corrections are shown by solid lines. The experimental data are from Ref. [60].

introduce a blending of the nuclear responses with SuSAv2
responses in the region 500 � q � 700 MeV. Above this re-
gion, the results are purely SuSAv2, and below they are purely
CRPA. In the region in between, the SuSAv2 and CRPA
results are practically identical [68]. We find the different
theoretical calculations to be in reasonably good agreement.
The strength of the GFMC one-body contribution is quenched
by a ≈10% with respect to the other curves, and the tail of
the CRPA calculations at high pT drops faster. This might be
ascribed to the broadening of the CRPA responses at high-q
compared to the SuSAv2 results” see e.g., the discussion in
Ref. [68].

Finally, we comment on the fact that the nonrelativistic
calculations seems to be in better agreement with experi-
mental data than the ones in which relativistic effects are
accounted for. However, given the energy distribution of the
medium-energy NuMI beam of the MINERνA experiment,
contributions beyond quasielastic scattering are expected
to be significant, even if the experimental analysis rejects
events with mesons visible in the detector. In particular,
there are instances in which pions produced in the interac-
tion vertex are either absorbed or remain undetected. Hence,
theoretical calculations that do not include pion-production
mechanisms should remain below experimental data. This
is indeed the case when relativistic effects are accounted
for, while neglecting them yields unphysically large cross
sections.

V. CONCLUSIONS

One of the main sources of systematic uncertainties in
neutrino-oscillation experiments comes from the limited ac-
curacy in the prediction of neutrino-nucleus cross sections.
Using sophisticated QMC techniques, in particular the GFMC
approach, has proved to be successful in describing elec-
troweak interactions for low to moderate momentum transfer
in the quasielastic region, where the dominant reaction mech-
anisms are single- and multinucleon knockout. The main
shortcomings of the GFMC lie in its nonrelativistic nature
and being limited to inclusive predictions. The evaluation of
the GFMC nuclear electromagnetic responses in a reference
frame that minimizes relativistic effects, namely, the ANB
frame, has been discussed in Ref. [21]. This strategy appeared
to be successful in accounting for relativistic corrections in
the kinematics for nuclei with A = 3, 4 nucleons. In this work,
we extend the approach to 12C and consider charged-current
interactions, in which the axial component violates current
conservation. Differently from Refs. [16,17,21], to properly
transform the axial term, we adopt the general expression
of the Lorentz boost to connect the responses evaluated in
different frames. In addition to working in the ANB frame, we
consider different strategies to incorporate relativistic effects
in the kinematics. Following Refs. [16,17,21], we implement
the two-fragment model in which the kinematic inputs of
the nonrelativistic dynamical calculation are obtained in a
relativistically correct fashion. An alternative approach based
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FIG. 7. Flux-averaged cross sections for MINERνA in terms of p⊥ in different bins of p‖. Theoretical calculations only retain one-body
current contributions and are carried out within microscopic (GFMC) and mean-field (CRPA, SuSAv2, and CRPA hybrid) approaches to
nuclear dynamics.

based on shifting the outgoing nucleon energy when solv-
ing the Shrödinger equation in the CRPA approach is also
considered. We argue that these different methods produce
similar corrections in the GFMC and CRPA calculations of
the electroweak response at q = 700 MeV.

We compute the CC flux-averaged neutrino cross-
section within GFMC including one- and two-body current
operators and compare it with experimental data from the
T2K, MiniBooNE, and MINERνA Collaborations. Since the
average neutrino energy for the T2K beam is around 700 MeV,
we find that relativistic corrections are in general very small,
and only visible for some values of the scattering angle. On
the other hand, while the average neutrino energy of the Mini-
BooNE experiment is also of the order of 700 MeV, the tails
of the flux extend up to 3 GeV. In this case, we observe that
the inclusion of relativistic effects in the kinematics yields a
visible reduction in the strength at the quasielastic peak for
all the scattering angles considered. Hence, accounting for
relativistic effects is critical for testing different parametriza-
tions of the nucleon axial form factor, including those recently
obtained within lattice QCD [61–63].

Finally, we gauge relativistic effects in GFMC calculations
in the extreme case of MINERνA kinematics, where the
medium-energy NUMI beam peaks around 6 GeV. Includ-
ing relativistic corrections has a dramatic effect, yielding a
reduction of the strength up to 50% compared to nonrelativis-
tic calculations. Despite working in the ANB frame proving

effective in accounting for relativistic corrections, we do not
expect the GFMC to be applicable in this high energy regime.
For this reason, we compare the results obtained from the
GFMC calculations in the ANB frame with other approaches
allowing for a fully relativistic treatment of the kinematics,
such as SuSAv2. The good agreement between the relativis-
tically corrected GFMC cross sections and SuSaA2 results
corroborates the validity of the procedure we employ to in-
clude relativistic effects in the GFMC.
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