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Nuclear radii from total reaction cross section measurements at intermediate energies
with complex turning point corrections to the eikonal model
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Root mean square (rms) radii of light-heavy nuclei 6–9,11Li, 9–12Be, 10–15B, 11,12,14–18C, 14,16–19N, and 15,17,19–21O
are studied by analyzing the total reaction cross section data on a natCu target at intermediate energies within the
range of 25–65 MeV/nucleon with the eikonal model. For calculations at such low and intermediate incident
energies, the turning point corrections to the eikonal model, which effectively account for the distortions of
the projectile trajectory caused by the Coulomb and/or nuclear forces, are examined with the elastic scattering
angular distributions and total reaction cross sections of 16O on 12C, 63Cu, and 208Pb targets at incident energies
from 12.5 to 200 MeV/nucleon. Effects of the corrections taking into account the turning points calculated with
the Coulomb potential only, with both Coulomb and the real parts of the optical model potentials (OMPs), and
with both the Coulomb and the complex OMPs, are evaluated by comparing with the exact results of partial wave
Schrödinger equations. Complex turning point corrections are found to be important for light and intermediate-
mass targets. With the complex turning point corrections, the rms radii obtained in this work differ, on average,
from the results obtained from high-energy total interaction cross section measurements at around 650–1020
MeV/nucleon by 1.4%, which is much smaller than the averaged differences of 8% when no corrections to the
eikonal model were made, and smaller than the averaged differences of 7.7% found in literature.

DOI: 10.1103/PhysRevC.109.014621

I. INTRODUCTION

Root mean square radii of nucleon density distributions are
basic bulk properties of atomic nuclei. Experiments with, for
instance, the isotope shift method [1,2] and electron scattering
[3–5] are able to provide precise information about nuclear
charge radii. However, measurements with such electromag-
netic probes are not always available for radioactive nuclei,
which are very short-lived or are produced with very low
intensity. Because of this, measurements of nuclear rms radii
with hadronic probes, originating from the famous Rutherford
experiment [6], are still valuable [7–9]. Unlike electromag-
netic probes, which are only sensitive to the charge density
distributions of atomic nuclei, hadronic probes also probe the
neutron density distributions, which are important for nuclear
structure and nuclear astrophysical studies [10–13].

Determining the rms radii of atomic nuclei using hadronic
probes includes, for instance, elastic scattering angular dis-
tributions and/or total reaction cross sections induced by
pions [14], protons [8,9], and α particles [7,10,15]. Since the
mid 1980s, a lot of efforts have also been made with total
reaction cross section and total interaction cross section mea-
surements [16–18]. Essentially, all of these methods make use
of folding models [19], which construct the projectile-target
optical model potentials (OMPs) with effective pion-nucleon
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or nucleon-nucleon interactions and nucleon density distri-
butions (NDDs) of the projectile and/or the target nuclei.
Assuming those effective interactions are known, the NDDs
are varied so that the resulting OMPs can be used to re-
produce the experimental data of elastic scattering angular
distributions and/or total reaction/interaction cross sections,
which, in turn, determines the rms radii of the nucleon den-
sity distributions of the projectile or the target nuclei. Root
mean square radii obtained with these hadronic probes are
inevitably model dependent [15,20]. In order to reduce the
uncertainties in theoretical analysis, experiments were usually
made at relatively high incident energies around several hun-
dred MeV/nucleon and above. At these energies, the optical
limit approximation of the Glauber model, which calculates
the scattering phase shifts with parametrized free nucleon-
nucleon total cross sections, ratios of the real and imaginary
parts of the nucleon-nucleon scattering amplitudes, and finite-
range parameters, has been found to be very simple yet
successful in describing nuclear reactions induced by various
nuclei [16,18,21].

However, there are also many experiments made at inter-
mediate or low energies [22]. In Ref. [17], Saint-Laurent et al.
reported their measurement of total reaction cross sections of
many light heavy nuclei on a natCu target at incident ener-
gies within the range of 25–65 MeV/nucleon. RMS radii of
these nuclei were studied by Liatard et al. with a Glauber-
type analysis [23]. These rms radii are systematically larger
than those obtained from the analysis of high-energy total
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interaction cross sections measured within the energy range
of 650–1020 MeV/nucleon [18]. On average, the difference
is about 7.7%. The reason for such a systematic difference is
still unknown. It is important to know if it is possible to get
consistent rms radii from total reaction/interaction measure-
ments from high, intermediate, and low incident energies with
the eikonal/Glauber model.

Over the years, low-energy corrections to the
eikonal/Glauber model have been extensively studied
from various aspects, for instance, the medium effects
(density dependence) of the underlying nucleon-nucleon
interaction/cross sections [24], the effects of Pauli blocking
[25], and the effects of the momentum distributions of
nucleon in nuclei [26]. These corrections are about the
interactions used in eikonal/Glauber model calculations. One
would expect that they could be effectively dealt with by (or
simulated by) proper optical model potentials.

Another low-energy correction to the eikonal/Glauber
model is about the straight-line trajectory assumption of the
eikonal approximation. It is well known that such an assump-
tion, which is valid at high energies, should be corrected
due to the distortion of the projectile trajectories induced by
the Coulomb and/or nuclear forces at low and intermediate
incident energies. These are usually dealt with by the turning
point correction (TPC) method [27–32]. These corrections
are important for extending the range of applicability of the
eikonal/Glauber model and for people to get consistent nu-
clear rms radii from nuclear reaction measurements within a
wide range of incident energies. The literature of such correc-
tions is quite long, but their effects on the deduced rms radii
of the nucleon density distributions from total reaction cross
sections measurements are, to our knowledge, not reported
yet.

In this work, we study the rms radii of the 6–9,11Li, 9–12Be,
10–15B, 11,12,14–18C, 14,16–19N, and 15,17,19–21O isotopes by re-
analyzing the low and intermediate energy total reaction cross
section measurements of Ref. [17] using the eikonal model
with turning point corrections. The TPCs can be made by
taking into account (1) the Coulomb potential only, (2) the
Coulomb + real nuclear potentials, and (3) the Coulomb +
complex nuclear potentials, e.g., the nuclear optical model po-
tentials (OMPs). It will be shown that it is the last choice that
allows one to get the best overall consistency between the rms
radii obtained from these low and intermediate energy data
and those from high-energy total interaction cross section data
complied in Ref. [18].

In the following text, we first briefly introduce the turning
point corrections due to Coulomb and nuclear distortions in
Sec. II. In order to determine which of the above-mentioned
corrections best describes the experimental data, we system-
atically study the elastic scattering and total reaction cross
sections of 16O on 12C, 63Cu, and 208Pb, representing light,
intermediate-mass, and heavy targets, respectively, at incident
energies from 12.5 to 200 MeV/nucleon. The results are also
shown in this section. We then study in Sec. III how the
rms radii of the light-heavy isotopes change with and without
making these corrections when they are required to produce
the same total reaction cross section data. Our summary and
conclusions are given in Sec. IV.

II. EIKONAL PHASE SHIFT AND TURNING POINT
CORRECTIONS

A. The turning point

For a two-body projectile-target system, the eikonal model
nuclear phase is [33]

χN (b) = − 1

h̄v

∫ ∞

−∞
dz UN (r), (1)

where b is the impact parameter in the plane perpendicular
to the z axis defined by the moving direction of the incident
particle whose velocity is v, r = b + z is the vector between
the centers of mass of the projectile and the target nuclei, and
UN (r) is the nuclear potential of this system. The Coulomb
eikonal phase, χC , is [34]

χC (b) = 2η ln(kb), (2)

where k = √
2μE/h̄ is the wave number in the center-of-mass

system with μ and E being the reduced mass and the relative
energies of the projectile-target system; η = Z1Z2e2/h̄v is the
Sommerfeld parameter with Z1 and Z2 being the charge num-
bers of the projectile and target nuclei. With χN and χC , the
elastic scattering amplitudes can be calculated:

fel (θ ) = fC (θ ) + ik
∫ ∞

0
db bJ0(qb)eiχC (b)[1 − eiχN (b)], (3)

where θ is the scattering angle in the center-of-mass system,
q = 2k sin(θ/2) is the momentum transfer, J0 is the zeroth-
order Bessel function, and fC (θ ) is the Coulomb scattering
amplitude:

fC (θ ) = − η

2k sin2(θ/2)
e−iη ln[sin2(θ/2)]+2iσ0 (η),

where σ0(η) = arg �(1 + iη). With the eikonal model S-
matrix defined as S(b) = eiχN (b), the total reaction cross
sections, σR, can be obtained by integration over the impact
parameter b:

σR = 2π

∫ ∞

0
(1 − |S(b)|2)b db. (4)

The eikonal approximation assumes that a projectile goes
through the field of a target nucleus alone straight-line trajec-
tories. This approximation is valid for high energy collisions.
At lower incident energies, corrections have to be made to
account for the distortion of the trajectories due to Coulomb
and/or nuclear forces. This is usually done by replacing the
impact parameters, b, with the distance of closest approach,
d , which is a function of b, in the nuclear eikonal phase shift,
χN (b) → χN (d ), in calculating the elastic scattering and total
reaction cross sections. The distance of closest approach d
is called the turning point because at the distance r = d the
radial velocity of the projectile vanishes. For a given impact
parameter b, which corresponds to an angular momentum L =
kb − 1/2, the distance of closest approach d is the solution of
the following equation [35]:

U (d ) + L2(b)

2μd2
− E = 0. (5)

014621-2



NUCLEAR RADII FROM TOTAL REACTION CROSS … PHYSICAL REVIEW C 109, 014621 (2024)

The turning point corrections to Glauber model calculations
was proposed by Fäldt and Pilkuhn for pion-nucleus scattering
[36]. It was applied to heavy-ion collisions by Vitturi and
Zardi in Ref. [37] and later by many other groups [27–32].

B. Method of the turning point corrections

Three types of turning point corrections are usually made
depending on what potentials are included in Eq. (5): (I) the
Coulomb correction, with which only Coulomb potential is
included, (II) Coulomb + real nuclear corrections, with which
both Coulomb and nuclear potentials are included, but only
the real part of the latter is taken into account, and (III)
Coulomb + complex nuclear corrections with both real and
imaginary parts of the nuclear potential taken into account.
The type-I correction is rather commonly adopted in eikonal
model calculations. Literature about the type-II correction is
relatively limited [28–30]. Although it was discussed long ago
in semiclassical scattering theory (see for instance Ref. [38]),
application of the type-III correction in the analysis of heavy-
ion scattering is still rather rare. To our knowledge, it has been
reported only in three previous papers [27,31,32]. It is interest-
ing to make a systematic study of the type-III correction and
its effect on the extracted rms radii of light-heavy projectiles
from total reaction cross section measurements. Following the
notations in Ref. [31], the turning points corresponding to
these three types of corrections are denoted as bc, b′, and b′′,
respectively. Clearly, the turning points bc and b′ are real, and
b′′ is complex.

Corrections with bc and b′ are usually made by substituting
the impact factor b by bc or b′ in the nuclear eikonal phase:
χN (b) → χN (bc) or χN (b′). When the turning points are com-
plex, the corrections can still be made by substituting b with
b′′ in the eikonal phases, as was done by Aguiar, Zardi, and
Vitturi [27], but they can also be made in another way. Consid-

ering r =
√

b2 + z2, the radius r becomes complex when the
impact factor b is complex: r′′ = √

b′′ + z2. As discussed in
Ref. [39], computing the nuclear potential with this complex
distance r′′ induces contributions from the real part of the
OMP to the imaginary part of the eikonal shift χN (and the
imaginary part of the OMP to the real part of χN as well)
calculated with Eq. (1), which changes the ratio of the real
and imaginary parts of χN , Re χN/ Im χN . By choosing the
imaginary part of r′′ to have the same sign as the imagi-
nary part of b′′, the ratio Re χN/ Im χN is enhanced, which
enhances the absorption from the elastic scattering channel.
We demonstrate the effect of the enhanced absorption with
the case of 16O elastic scattering from 12C at an incident
energy of 12.5 MeV/nucleon. As is shown in Fig. 1, the
cross sections calculated without the turning point correction,
represented by the dotted curve, deviate considerably from
the exact result calculated with the partial wave Schrödinger
equations, the solid curve. The eikonal model overestimates
the exact result at large angles, which suggests that the un-
corrected eikonal model lacks absorption from the elastic
channel. Agreement with the exact result is greatly improved
when the complex TPC is made, whose result is shown by the
squares labeled as U (r′′), which corresponds to substituting
r with r′′ in Eq. (1) when calculating the nuclear eikonal
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FIG. 1. Angular distributions of 16O elastic scattering from 12C
at 12.5 MeV/nucleon. Curves are results of calculations with partial
wave Schrödinger equations (the solid curve), with the eikonal model
without corrections (the dotted curve), with the TPCs made on the
optical potential [U (r′′), the squares], and with the TPCs made on
the S matrix [S(b′′), the dash-dotted curve]. See text for the details.

phase. A standard Woods-Saxon type of OMP is used in
these calculations, whose parameters are Vr = −63.7 MeV,
Rr = 5.1 fm, ar = 0.63 fm for the real part, and Wi = −27.2
MeV, Ri = 5.1 fm and ai = 0.69 fm for the imaginary part.
These parameters are from Ref. [27]. Clearly, one sees that
the complex turning points corrections, which correspond to
using complex radial distances r′′ in the calculation of nuclear
eikonal phase in Eq. (1), enhance absorption from the elas-
tic scattering channel, thus improving the eikonal model for
the description of the elastic scattering cross sections at low
incident energies.

It is convenient to make the complex TPCs by substituting
r with the corresponding complex r′′ in Eq. (1) when the
optical model potentials U (r) are given in functional forms.
However, for cases when functional forms of U (r) are not
given, for instance, when U (r) are obtained with folding
model calculations, it is more convenient to make the complex
TPCs to the nuclear phase, χN (b), or to the S matrix, S(b),
directly, i.e., χN (b) → χ (b′′) or S(b) → S(b′′), as is done with
bc and b′ corrections [28–30]. One question is, do results of
the two approaches, namely, (1) by making U (r) → U (r′′)
substitution in Eq. (1), and (2) by making χN (b) → χ (b′′) and
S(b) → S(b′′) in Eqs. (3) and (4), agree with each other? Our
tests suggest that they do agree with each other satisfactorily.
We demonstrate this again with the 16O + 12C case in Fig. 1.
As shown by the dot-dashed curve, which was calculated by
substituting b with b′′ in χN (b) and S(b), designated as S(b′′),
agrees well with the results shown by the square symbols
which were obtained by making the U (r) → U (r′′) replace-
ment, and they both improved the uncorrected eikonal model.

C. Effect of the TPCs to the elastic scattering and total reaction
cross section calculations

In this section, we make a detailed examination of the ef-
fects of bc, b′, and b′′ corrections for heavy-ion collisions from
low to high incident energies (up to 200 MeV/nucleon) and
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FIG. 2. Angular distributions as ratios to the Rutherford cross sections for 16O elastic scattering from a 208Pb target at incident energies of
(a) 12.5 MeV/nucleon, (b) 25 MeV/nucleon, (c) 75 MeV/nucleon, and (d) 150 MeV/nucleon calculated with the partial wave Schrödinger
equations, the eikonal model, and the eikonal model with turning point corrections. See the text for details.

from light to intermediate-mass and heavy targets. The cases
studied are elastic scattering angular distributions and total
reaction cross sections of a 16O projectile on 12C, 63Cu, and
208Pb, which represent light-heavy, intermediate, and heavy
targets, respectively, at incident energies of 12.5, 25, 50, 75,
150, and 200 MeV/nucleon. For this, the systematic single
folding model of the nucleus-nucleus potential (SFP) of Xu
and Pang is used [40]. Although parameters of this potential
were determined from elastic scattering data of 6Li and 7Li,
the systematics of these parameters has been found to be
applicable to many other heavier projectiles. This was demon-
strated in Ref. [40] and by several more recent experiments
with 7Be, 8,10,13B, 9–11C, 9–10Be, and 13O projectiles [41–46].
Here, the largest incident energy is set to be 200 MeV/nucleon
because the systematic nucleon-nucleus potential parameters
by Bauge et al. [47], from which the systematic SFPs are
calculated, were given up to around 200 MeV/nucleon. Also,
limiting the incident energies below 200 MeV/nucleon allows
us to avoid the complication of relativistic corrections, which
should be unnecessary in the present work because the main
subject here is corrections to the eikonal model at low and
intermediate energies.

Results with the 208Pb target are shown in Fig. 2. Also
shown are the exact results of partial wave Schrödinger equa-
tions. One sees that the Coulomb force is dominant in this case
so the bc correction plays the major role. Results of the b′ and
b′′ corrections are very close to that of the bc correction. These
results agree well with those of Aguiar, Zardi, and Vitturi in
Ref. [27]. One may conclude that all three corrections could
produce results rather close to the exact ones for incident
energies larger than around 25 MeV/nucleon on a target as

heavy as 208Pb. One observes that all corrections overcor-
rected the exact results at the lowest examined incident energy,
12.5 MeV/nucleon, for a 208Pb target. It will be interesting
to see what caused such overcorrections and find a way to
correct them back. But it is not the subject of the present
work. We will be content when the corrections are sufficiently
good for incident energies down to around 20 MeV/nucleon,
which is about the lowest incident energies in the experiment
of Ref. [17], whose results will be reanalyzed for the rms radii
of light-heavy nuclei.

When the charge number of the target nucleus gets smaller,
as the one shown in Fig. 3 for a 63Cu target, Coulomb cor-
rection alone becomes insufficient to provide good agreement
with the exact results. Nuclear corrections need to be taken
into account. One important observation in this case is that
both the real and imaginary parts of nuclear potentials have
to be taken into account. This becomes more obvious on
even lighter targets, for which the nuclear potentials become
more important. As depicted in Fig. 4 for a 12C target, taking
only the real part of the nuclear potential (the b′ correction)
overestimated the exact results considerably at large angles.
This suggests that additional absorption is needed to bring
down the cross sections at large angles. As discussed in the
previous section and in Ref. [39], it is effectively achieved
by including the imaginary parts of the OMPs in Eq. (5).
Satisfactory agreement with the exact results was found only
when both the real and imaginary parts of the nuclear po-
tential were taken into account in the Coulomb + nuclear
corrections.

The necessity of taking into account the full com-
plex optical model potential in the TPC on light and
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FIG. 3. The same as Fig. 2 but on a 63Cu target.
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FIG. 4. The same as Fig. 2 but on a 12C target.

intermediate-mass targets is more clearly seen in the total
reaction cross sections (σR). This is demonstrated in Table. I,
where σR calculated with the eikonal model, σeik, with the
three types of turning point corrections, σbc , σb′ , and σb′′ , and
with exact calculations, σexact, are listed. Comparisons of these
cross sections are also depicted in Fig. 5, where the ratios
σeik/σexact, σbc/σexact, σb′/σexact, and σb′′/σexact are shown for
the three targets at different incident energies. Again, one sees
that the b′′ correction provides the best agreement with the
exact results.

III. RMS RADII FROM INTERMEDIATE ENERGY TOTAL
REACTION CROSS SECTIONS

With the b′′ correction proved successful to describe
both the elastic scattering angular distributions and total

TABLE I. Total reaction cross sections of 16O with 12C, 63Cu,
and 208Pb targets at incident energies ELab = 12.5, 25, 50, 75, 150,
and 200 MeV/nucleon calculated with partial wave Schrödinger
equations, σexact, with the eikonal model, σeik, and with the three types
of turning point corrections, σbc , σb′ , and σb′′ . See text for the details.

Elab σexact σeik σbc σb′ σb′′

12C
12.5 1575.0 1701.6 1516.7 1555.0 1582.1
25 1512.2 1559.7 1471.4 1498.2 1522.7
50 1378.6 1391.8 1350.4 1369.0 1386.6
75 1264.6 1268.5 1242.3 1257.1 1271.0
150 1161.7 1162.8 1150.4 1157.5 1165.6
200 1152.5 1152.1 1142.8 1149.1 1155.5

63Cu
12.5 2457.7 3040.1 2395.4 2427.0 2453.3
25 2562.5 2829.2 2518.5 2542.3 2557.3
50 2487.0 2605.6 2456.8 2473.8 2486.7
75 2364.5 2435.8 2340.1 2354.1 2365.0
150 2261.1 2294.4 2248.1 2255.1 2262.6
200 2248.5 2271.2 2236.7 2243.6 2250.2

208Pb
12.5 3066.9 4977.2 2971.2 3008.6 3034.3
25 3782.0 4689.3 3716.0 3745.1 3780.0
50 3962.1 4387.5 3917.1 3938.8 3939.1
75 3883.1 4151.4 3846.7 3865.1 3862.9
150 3816.0 3944.6 3796.4 3805.8 3803.0
200 3818.6 3911.4 3800.7 3810.2 3808.0

reaction cross sections of light-heavy nuclei on the light
and intermediate-mass targets, we reanalyze the intermediate-
energy total reaction cross section data of Ref. [17] and
study the rms radii of the 6–9,11Li, 9–12Be, 10–15B, 11,12,14–18C,
14,16–19N, and 15,17,19–21O isotopes with b′′ corrections. The ex-
periments were made with a natCu target, but we will assume
it is a 63Cu target in our calculations.

The optical model potentials are calculated again with
the systematic SFP of Ref. [40]. These SFP calcula-
tions require the nucleon (proton and neutron) density
distributions of the projectiles and the nuclear matter density
distribution of the target nuclei. So, to study the rms radii of
the projectiles, we have to determine that of the target nucleus
first. The nuclear matter density distribution of the 63Cu tar-
get was determined by stretching the density distribution of
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FIG. 5. Ratios of total reaction cross sections calculated with the
eikonal model and the trajectory corrected eikonal model and the
exact results for (a) 12C, (b) 63Cu, and (c) 208Pb target at different
incident energies. The lines are to guide eyes.
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TABLE II. RMS radii of 6–9,11Li, 9–12Be, 10–15B, 11,12,14–18C, 14,16–19N, and 15,17,19–21O isotopes from optical limit Glauber model (ROL)
analysis of interaction cross section measurements at high energies [18], from the Glauber model type analysis of total reaction cross
sections measured at intermediate energies [17] by Liatard et al. [23] (REL), and from the analysis with the eikonal model and the b′′ corrected
eikonal model, Reik and Rb′′ , respectively. X are the weighted means of Xi = (Ri − Ri,OL)/Ri,OL with weights Wi = 1/[	Ri /Ri + 	Ri,OL /Ri,OL]2

for each nucleus i, and 	X are the standard deviations of the corresponding Xi values. See text for the details.

A ROL REL Reik Rb′′ A ROL REL Reik Rb′′

Li C
6 2.32 ± 0.03 2.46 ± 0.21 1.96 ± 0.08 2.24 ± 0.09 14 2.30 ± 0.07 2.619 ± 0.057 2.11 ± 0.02 2.37 ± 0.02
7 2.33 ± 0.02 2.384 ± 0.023 2.07 ± 0.02 2.22 ± 0.02 15 2.40 ± 0.05 2.783 ± 0.092 2.35 ± 0.04 2.59 ± 0.04
8 2.37 ± 0.02 2.583 ± 0.023 2.33 ± 0.01 2.48 ± 0.01 16 2.70 ± 0.03 2.756 ± 0.058 2.29 ± 0.02 2.56 ± 0.02
9 2.32 ± 0.02 2.534 ± 0.025 2.12 ± 0.01 2.26 ± 0.01 17 2.72 ± 0.03 3.04 ± 0.11 2.79 ± 0.06 3.00 ± 0.06
11 3.12 ± 0.16 2.779 ± 0.071 2.59 ± 0.03 2.74 ± 0.03 18 2.82 ± 0.04 2.9 ± 0.19 2.52 ± 0.09 2.76 ± 0.10

Be N
9 2.38 ± 0.01 2.53 ± 0.072 2.09 ± 0.03 2.30 ± 0.03 14 2.47 ± 0.03 2.61 ± 0.10 1.88 ± 0.05 2.34 ± 0.06
10 2.30 ± 0.02 2.479 ± 0.028 2.15 ± 0.01 2.37 ± 0.01 16 2.50 ± 0.10 2.71 ± 0.28 2.24 ± 0.02 2.50 ± 0.02
11 2.73 ± 0.05 3.039 ± 0.038 2.83 ± 0.24 2.94 ± 0.25 17 2.48 ± 0.05 2.795 ± 0.039 2.42 ± 0.02 2.70 ± 0.03
12 2.59 ± 0.06 2.622 ± 0.073 2.35 ± 0.03 2.63 ± 0.03 18 2.65 ± 0.02 2.803 ± 0.041 2.42 ± 0.02 2.72 ± 0.03

B 19 2.71 ± 0.03 2.786 ± 0.054 2.34 ± 0.03 2.63 ± 0.03

10 2.20 ± 0.06 2.56 ± 0.23 2.05 ± 0.10 2.44 ± 0.12 O
11 2.09 ± 0.12 2.605 ± 0.09 2.28 ± 0.04 2.49 ± 0.04 15 2.44 ± 0.04 2.70 ± 0.38 2.09 ± 0.26 2.51 ± 0.31
12 2.39 ± 0.02 2.723 ± 0.048 2.31 ± 0.02 2.55 ± 0.02 17 2.59 ± 0.05 1.91 ± 0.04 2.50 ± 0.05
13 2.46 ± 0.12 2.746 ± 0.048 2.26 ± 0.02 2.50 ± 0.02 19 2.68 ± 0.03 2.58 ± 0.30 2.30 ± 0.31 2.95 ± 0.39
14 2.44 ± 0.06 3.00 ± 0.10 2.70 ± 0.05 2.89 ± 0.06 20 2.69 ± 0.03 3.00 ± 0.35 2.61 ± 0.02 2.91 ± 0.02
15 2.45 ± 0.27 2.61 ± 0.19 2.46 ± 0.27 2.74 ± 0.30 21 2.71 ± 0.03 2.76 ± 0.19 2.19 ± 0.08 2.54 ± 0.09

C
11 2.12 ± 0.06 2.46 ± 0.3 1.73 ± 0.17 2.13 ± 0.21 X (%) 7.7 −8.0 1.4
12 2.31 ± 0.02 2.481 ± 0.08 1.81 ± 0.04 2.25 ± 0.05 	X (%) 7.1 8.8 7.3

63Cu, ρ(r) → ρ(r/a)/a3, which increases/decreases its rms
radius by a factor of a while keeping its normalization un-
changed, so that σR of the α + 63Cu system calculated with the
single-folding model α-particle potential of Ref. [48] using
the stretched target density is consistent with the experimental
one reported in Ref. [17]. Hartree-Fock (HF) calculation using
the SkX interaction [49] is done for the original ρ(r). The
proton, neutron, and charge density distributions of the HF
calculations are stretched simultaneously. The so obtained rms
charge radius of 63Cu is 3.968 fm, which is very close to the
experimental one of 3.932 ± 0.022 fm of natCu measured with
electron scattering [50]. This corresponds to a 3.896 fm rms
radius of the nuclear matter distribution of 63Cu.

With the nucleon density distributions of the 63Cu target
fixed, we determine the rms radii of the 6–9,11Li, 9–12Be,
10–15B, 11,12,14–18C, 14,16–19N, and 15,17,19–21O isotopes with
the following procedure: (1) calculate the SFP with NDD of
the projectile from HF calculations using the SkX interaction,
ρHF

p,n(r), (2) calculate the σR value with the b′′ correction of the
eikonal model using this SFP, (3) repeat stretching or squeez-
ing ρHF

p,n(r) and calculate the SFP and σR until the calculated σR

agrees with its experimental counterpart. The rms radius of the
projectile, Rp, is then determined from the stretched/squeezed
NDD. The uncertainty of the so determined rms radius, 	Rp , is
calculated using the uncertainty of the experimental data 	σR

reported in Ref. [17]: 	Rp = Rp × 	σR/2σR. For projectiles
which have σR values measured at more than one incident

energy, the rms radii are taken to be the weighted averages
of the Rp values with 1/	2

Rp
being the weights. The final

results are listed in Table II. For comparison purpose, the
rms radii determined using the uncorrected eikonal model and
those obtained by E. Liatard et al. using a Glauber-model-like
analysis in Ref. [23] are also shown.

Each experimental datum has its own uncertainties. So it
should be more meaningful to compare the averaged differ-
ences among results of different measurements/analysis than
to compare the results of any specific nucleus in systematic
studies. The last two lines of Table II are the weighted aver-
ages (X ) and the standard deviations of the differences (	X )
between the rms radii obtained from the intermediate energy
data and their corresponding values from optical limit Glauber
model analysis of total interaction cross sections measured at
higher energies within the range of 650–1020 MeV/nucleon
[18]. One sees that, on average, the uncorrected eikonal model
underestimated the high energy results by X = −8.0%. With
the b′′ correction, X is greatly reduced to 1.4%. On the other
hand, the X value of the results in Ref. [23] is 7.7%. The
standard deviations of these differences in the three cases
are, however, rather close. The above comparisons are more
clearly seen in Figs. 6 and 7. For the sake of clarity, results
of the uncorrected eikonal model listed in Table II are not
plotted. Note that possible detection problems were discussed
in Ref. [23] for the measured σR value of 11Li due to its weakly
bound nature. Similar problems may exist for other weakly
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FIG. 6. RMS radii of (a) 6–9,11Li, (b) 9–12Be, and (c) 10–15B isotopes from interaction cross sections measured at high energies analyzed with
the optical limit Glauber model (OL) [18] and from total reaction cross sections measured at intermediate energies [17] obtained by Liatard
et al. (Liatard) [23] and in this work. See the text for details.

bound nuclei, such as 11Be, 14B, and 17C, whose neutron
separation energies are smaller than 1.0 MeV. The X values
become −8.5%, 1.1%, and 7.4%, respectively, when these
four weakly bound nuclei are excluded in the analysis, which
makes the b′′ correction even more appealing. The systematic
difference between results of Ref. [23] from intermediate-
energy total reaction cross section data and those compiled in
Ref. [18] from high-energy total interaction data has been left
unexplained for more than three decades. Since the theoretical
analyses made in Ref. [23] are rather different from what we
make here, both in the adopted nuclear interactions and in
the manipulation of nucleon density distributions, we do not
endeavor to pin down the origin(s) of the differences between
our results and those of Ref. [23]. The important information
we get here is that, with the b′′ correction, one is able to get,
globally, rather consistent rms radii of light-heavy nuclei from
low- and intermediate-energy nuclear reaction data and from
high-energy total reaction/interaction cross section data.

IV. SUMMARY

Low energy corrections to the eikonal approximation is
important for systematic studies of nuclear reactions with
the eikonal/Glauber model within a wide range of incident
energies. In this work, we study the turning point corrections

to the eikonal model and its effect on the rms radii of some
light-heavy projectile from low- and intermediate-energy total
reaction cross sections measurements. We firstly systemati-
cally examined the effects of TPCs due to the Coulomb force
only and to both Coulomb and nuclear potentials (with real
their parts only or with both real and imaginary parts) with
the elastic scattering angular distributions and total reaction
cross sections of the 16O projectile on 12C, 63Cu, and 208Pb
targets at incident energies from 12.5 to 200 MeV/nucleon.
We demonstrate that the TPC taking into account both the real
and imaginary parts of the optical model potential, namely,
the complex TPC, provides the best agreement with the exact
results. This is especially important on light and intermediate-
mass targets.

By applying the complex TPCs to the eikonal approxima-
tion, total reaction cross sections of 6–9,11Li, 9–12Be, 10–15B,
11,12,14–18C, 14,16–19N, and 15,17,19–21O isotopes on a natCu
target at intermediate incident energies measured by Saint-
Laurent et al. [17] were reanalyzed and the rms radii of
nucleon density distributions of these light-heavy projectiles
were obtained. The averaged differences between our results
and those obtained from high-energy total interaction cross
section measurements compiled by Ozawa et al. in Ref. [18]
is 1.4%, which is much smaller than the averaged difference
of −8.0% from the uncorrected eikonal model calculation

1.8

2.1

2.4

2.7

3.0

3.3

 12  14  16  18

(a)
C

R
 (

fm
)

A

OL
Liatard

this work

 14  15  16  17  18  19

N
(b)
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 16  18  20

O
(c)

A

FIG. 7. The same as Fig. 6 but for (a) 11,12,14–18C, (b) 14,16–19N, and (c) 15,17,19–21O isotopes.
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and of 7.7% from the results of Liatard et al. in Ref. [23].
This suggests that rms radii of light-heavy nuclei obtained
from total reaction cross section measurements at low and
intermediate incident energies can be rather consistent with
those obtained from high-energy total interaction/reaction
cross section measurements when complex TPCs are made
in the eikonal/Glauber model calculations. One could expect
that the complex TPC would also be important for analysis

of other types of reactions, such as single nucleon removal
reactions [51], with the eikonal/Glauber model at low and
intermediate energies on light targets.
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