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Ab initio translationally invariant nucleon-nucleus optical potentials
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We combine the ab initio symmetry-adapted no-core shell model (SA-NCSM) with the single-particle Green’s
function approach to construct optical potentials rooted in first principles. Specifically, we show that total cross
sections and phase shifts for neutron elastic scattering from a 4He target with projectile energies between 0.5
and 10 MeV closely reproduce the experiment. In addition, we discuss an important new development that
resolves a long-standing issue with spurious center-of-mass motion in the Green’s function formalism for many-
body approaches. The new development opens a path for first-principle predictions of cross sections for elastic
scattering of single-nucleon projectiles, nucleon capture, and deuteron breakup reactions, feasible for a broad
range of open-shell spherical and deformed nuclei in the SA-NCSM approach.
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I. INTRODUCTION

Remarkable progress has been made in recent years in the
development of many-body approaches from first principles to
scattering and nuclear reactions (see Refs. [1–3] for reviews),
including, e.g., studies of elastic scattering [4–10], photoab-
sorption [11], transfer [12], neutron capture reactions [13], as
well as resonant states [14], thermonuclear fusion [15], and
alpha capture reactions [16].

A more general approach to reactions, especially suitable
for heavier nuclei, is based on identifying few-body degrees,
typically the reaction fragments (or clusters) involved in the
reaction, and reducing the many-body problem to a few-body
technique [17]. As this reduction results in effective inter-
actions (often referred to as optical potentials) between the
clusters, the critical need for parameter-free interactions has
been recognized as one moves away from stability, where un-
certainties become uncontrolled since elastic-scattering data
does not uniquely constrain the optical potential [18].

To address this, recent studies have utilized realistic
internucleon interactions, typically derived in the chiral
effective-field theory, without the need to fit interaction pa-
rameters in the nuclear medium. These models have built upon
earlier theoretical frameworks, such as the one introduced by
Feshbach, leading to the Green’s function formulation [19]
and to the successful dispersive optical model [20–22], as well
as the one pioneered by Watson [23,24] for elastic scattering
of a single-nucleon projectile, leading to the spectator expan-
sion of the multiple-scattering theory [25]. Successful recent
applications include ab initio nucleon-nucleus potentials for
elastic scattering for closed-shell nuclei at low projectile ener-
gies (�20 MeV per nucleon) based on the Green’s function

technique with the coupled-cluster method [26,27] and the
self-consistent Green’s function method [28], as well as for
light targets in the intermediate-energy regime (�65 MeV
per nucleon) using the spectator expansion of the multiple-
scattering theory and the ab initio no-core shell model [9,29]
(see also Ref. [1]). Similarly, optical potentials have been
derived from two- and three-nucleon chiral forces in nuclear
matter [30]. These potentials provide cross sections for elastic
proton or neutron scattering, and in addition can be used as
input to modeling (d, p) and (d, n) reactions [31].

In this paper, we construct ab initio nucleon-nucleus
(NA) optical potentials that are translationally invariant (t.i.)
and applicable to a broad range of open-shell spherical
and deformed nuclei. We achieve this by combining the
Green’s function (GF) approach with the symmetry-adapted
no-core shell model (SA-NCSM) [32,33], which accommo-
dates from single-particle features to collective and clustering
correlations in nuclei. In addition, an important advantage
of the GF technique is that the NA effective potentials
include the information about all near reaction channels
through the GF calculations in the (A ± 1) systems. In this
SA-NCSM/GF framework, we illustrate the new develop-
ments for the elastic neutron scattering off the 4He ground
state and show that phase shifts and cross sections agree
remarkably well with experimental values. This reaction
has been previously studied at length in many-body cal-
culations without explicitly constructing optical potentials,
including, e.g., the no-core shell model with continuum (NC-
SMC) [8,34], Faddeev-Yakubovsky approach [35], and the
single-state harmonic-oscillator representation of scattering
equations [36], and hence provides a well-informed case for
theoretical benchmarks.
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An important feature of the SA-NCSM/GF optical po-
tentials is that they are translationally invariant. Specifically,
it has been long recognized that the translational invari-
ance is violated in Green’s functions calculated within a
many-body framework that uses laboratory coordinates and
a single-particle mean-field basis, in which the nucleon anti-
symmetrization is fully taken into account using configuration
representation but introduces center-of-mass (CM) spuriosity
(see, e.g., Refs. [37,38]). In earlier studies of heavy target
systems the CM spuriosity has been neglected due to its A
dependence. For ab initio calculations, especially for light
targets or in the case of the target and projectile having similar
masses, ensuring the translational invariance is critical. To
achieve this, in this study, we utilize the Lawson procedure
[39] that has been successfully used in many-body nuclear
structure calculations. We emphasize that in complete no-core
shell-model (NCSM) spaces (truncated by the total number
of harmonic-oscillator excitations) [40] and in selected model
spaces of the SA-NCSM, the center-of-mass wave function
can be factored out exactly [41–44], leading to an exact re-
moval of the CM spuriosity in the Lawson procedure (see
Sec. II A for details). In addition, the SA-NCSM provides a
correct treatment of collective and cluster correlations, includ-
ing coupling to continuum degrees of freedom (dof), which
makes the framework especially suitable to accommodate
these effects in calculations of cross sections and in studies of
absorption, target deformation, and low-lying resonances. The
new developments provide a tool for first-principle predictions
of cross sections for elastic neutron and proton scattering, as
well as for constructing NA optical potentials for neutron and
proton capture and (d, p) and (d, n) reactions.

II. THEORETICAL FRAMEWORK

For completeness, we briefly outline the Green’s function
theory and its relation to nucleon-nucleus optical potentials,
as introduced and reviewed in earlier papers [19,21,22,45,46].
For a many-body system, the single-particle (s.p.) time-
ordered Green’s function is defined as (see Ref. [46])

G(r, r′; E ) = lim
ε→0

〈
�A

0

∣∣[ar + a†
r′ ]

× 1

E − (Ĥ − EA
0 − iε)(N̂ − A)

[ar + a†
r′ ]
∣∣�A

0

〉
,

(1)

where Ĥ is the many-body realistic Hamiltonian, E is the
energy in the center-of-mass frame, |�A

0 〉 is the ground state
(g.s.) of the A-body target nucleus with energy EA

0 and total
angular momentum J0 (or any given target state of interest),
and a(†)

r annihilate (create) a particle at position r relative
to the center of mass of the target (we note that, for sim-
plicity of notations limε→0 will be omitted but implied for
all further Green’s function equations). The operator N̂ =∫

dra†
rar is the particle number operator, which commutes

with the Hamiltonian and yields the eigenvalues N̂ |�A±1〉 =
(A ± 1)|�A±1〉. The operator Ĝ(E , ε) is then defined as

Ĝ(E , ε) = 1

E − (Ĥ − EA
0 − iε)(N̂ − A)

. (2)

The Green’s function is calculated in an orthonormal basis,
|�〉 = [a + a†]|�A

0 〉 with a norm

N (r, r′) = N p(r, r′) + N h(r′, r) = δ(r − r′), (3)

where N p(r, r′) = 〈�A
0 |ara†

r′ |�A
0 〉 is the norm of the particle

states and N h(r′, r) = 〈�A
0 |a†

r′ar|�A
0 〉 ≡ ρ(r′, r) is the norm

of the hole states, equivalent to the one-body density ρ(r′, r)
of the target state.

The equation of motion (EoM) for the s.p. propagator (1)
is [21,46]

[E − Trel(r)]G(r, r′; E ) −
∫

dr′′V (r, r′′; E )G(r′′, r′; E )

= δ(r − r′), (4)

where Trel is the relative kinetic energy in the CM frame of
the two-cluster system. V (r, r′′; E ) describes the interaction
of the propagating particle or hole with all the other particles
or holes in the medium at energy E . For energies above the
single-nucleon threshold, this provides an effective interaction
between the single-nucleon projectile and target, and will be
referred to as nucleon-nucleus optical potential. Using the
EoM (4), V (r, r′) can be calculated as

V (r, r′; E ) = [E − Trel(r)]δ(r − r′) − G−1(r, r′; E ), (5)

which is nonlocal and depends on E .
Equation (1) can be written in configuration repre-

sentation using s.p. wave functions φama (r), for which
G(r, r′; E ) =∑αmαβmβ

φαmα
(r)φ∗

βmβ
(r′)Gαmαβmβ

(E ), where

ar =∑αmα
φαmα

(r)aαmα
and a†

r =∑αmα
φ∗

αmα
(r)a†

αmα
. In this

study we use harmonic-oscillator (HO) single-particle wave
functions with α ≡ {nα (
α

1
2 ) jα} and β being the HO quantum

numbers associated with the projectile (n = 2nr + 
 is the
HO shell number and nr is the radial quantum number).
The aαmα

= (a†
αmα

)† operators are the usual annihilation and
creation operators of a particle in a HO single-particle state
|αmα〉. It is clear that for J0 = 0 (cf. Ref. [26]), Eq. (1)
yields

Gαmαβmβ
(E ) = 〈�A

0

∣∣aαmα

1

E − (H − EA
0

)+ iε
a†

βmβ

∣∣�A
0

〉

+ 〈�A
0

∣∣a†
βmβ

1

E − (EA
0 − H

)− iε
aαmα

∣∣�A
0

〉
,

(6)

where one can define particle and hole states:∣∣�+
αmα ;J0(M0 )

〉 ≡ a†
αmα

∣∣�A
0,J0M0

〉
,∣∣�−

αmα ;J0(M0 )

〉 ≡ aαmα

∣∣�A
0,J0M0

〉
. (7)

Equivalently, the SA-NCSM uses the SU(3) proper tensors
a†

(nα 0)lα jαmα
≡ a†

αmα
and ã(0 nα )lα jα−mα

= (−)nα+ jα−mα aαmα
and

cluster basis states with good total angular momentum:∣∣�J (M )+
J0α

〉 ≡ (−1) jα+J0−J
{
a†

α × ∣∣�A
0,J0

〉}J (M )

=
∑

t

(−1)

�J
|tJ (M )〉〈tJ‖a†

α‖�A
0,J0

〉,
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∣∣�J (M )−
J0α

〉 ≡ (−1)nα (−1) jα+J0−J
{
ãα × ∣∣�A

0,J0

〉}J (M )

=
∑

t

(−1)1+nα

�J
|tJ (M )〉〈tJ‖ãα

∥∥�A
0,J0

〉
, (8)

where t is the complete many-body A ± 1 basis and �J =√
2J + 1. The eigenfunctions |�A

0,J0
〉 are calculated in the

SA-NCSM (or any many-body approach), whereas the basis
vectors for each α and J , |�J±

J0α
〉, are calculated through the

single-particle overlaps (since results do not depend on the M
projection, it is omitted from the notations). In general, for a
given J0 = 0:

GJ
J0;αβ (E ) = 〈�J+

J0α

∣∣ 1

E − (H − EA
0

)+ iε

∣∣�J+
J0β

〉

+ 〈�J−
J0β

∣∣ 1

E − (EA
0 − H

)− iε

∣∣�J−
J0α

〉
≡ GJ+

J0;αβ (E ) + GJ−
J0;βα (E ), (9)

which for J0 = 0 coincides with Eq. (6).
For the s.p. HO wave functions φα (r) =

Rnα
α
(r)Y(
α

1
2 ) jα (r̂) =∑mασα

C jαm

αmα

1
2 σα

Rnα
α
(r)Y
αmα

(r̂)χ 1
2 σα

,

with radial wave functions Rnl (r) that are defined positive at
infinity and spin functions χ 1

2 σ , we obtain for G (or G−1)

GJ
J0;
 j
′ j′ (r, r′; E ) =

∑
M0mM ′

0m′

∫
dr̂dr̂′CJM

J0M0 jmY†
(
 1

2 ) jm
(r̂)

× GJ0M0M ′
0
(r, r′; E )Y(
′ 1

2 ) j′m′ (r̂′)CJM
J0M ′

0 j′m′

=
∑
nαnβ

Rnα
(r)Rnβ
′ (r′)GJ
J0;nα
 j,nβ
′ j′ (E ). (10)

The effective potential for the channels ν ≡ {J0; 
 j} and ν ′ ≡
{J0; 
′ j′} (or ν = ν ′ = {0+; 
} for a 0+ target state) is then
given by Eq. (5) as

V J
νν ′ (r, r′) = V J

J0;
 j
′ j′ (r, r′) = [E − Trel(r)]δ

′δ j j′
δ(r − r′)

rr′

− (GJ
J0;
 j
′ j′

)−1
(r, r′, E ). (11)

Using that Trel(r) δ(r−r′ )
rr′ =∑∞

nn′ Rn
(r)Rn′
(r′)〈n
|Trel|n′
〉, we
calculate V for a finite nmax (similarly to the work of Ref. [8]):

V J
J0;
 j
′ j′ (r, r′)

= δ

′δ j j′

nmax∑
nn′

(Eδnn′ − 〈n
|T̂rel|n′
〉)Rn
(r)Rn′
(r′)

−
nmax∑
nn′

(
GJ

J0;n
 j,n′
′ j′
)−1

Rn
(r)Rn′
′ (r′), (12)

where nmax is the highest HO shell available to the A and
A ± 1 systems, and is determined from Nmax used in the SA-
NCSM calculations (Nmax is the total HO excitations above
the nuclear configuration of the lowest HO energy). For the
HO single-particle basis with radial wave functions that are

positive at infinity,

〈n′
|Trel|n
〉 = h̄�

2
×
[(

n + 3

2

)
δn′n

−
√

n − 


2

n + 
 + 1

2
δn′n−2

−
√

n − 
 + 2

2

n + 
 + 3

2
δn′n+2

]
.

This ensures that at long distances the potential becomes zero.
Calculations of the effective potential require an inversion
of the Green’s function, which we perform in configura-
tion representation. Specifically, for given channels ν and ν ′,
Eq. (12) can be written as V = G−1

0 − G−1, where G−1
0 ≡

(E1 − Trel ) is the free propagator for the two-cluster system,
1 is the identity matrix, and V is a finite matrix with rows
and columns enumerated by the radial quantum number nr =
0, 1, . . . , nmax

r with the corresponding shell number n � nmax.
The optical potential is nonlocal and can enter as input

to various reaction few-body approaches. In this study, we
provide phase shifts evaluated in the R-matrix method [47]
with the SA-NCSM/GF V (r, r′) potential (12). The R-matrix
method uses exact Coulomb eigenfunctions in the exterior
region, whereas the Schrödinger equation holds in the interior
region (with no Coulomb potential for neutron projectiles):

[−E + Trel(r)]
uJ

ν (r)

r
+
∑
ν ′

∫
dr′r′2V J

νν ′ (r, r′)
uJ

ν ′ (r′)
r′ = 0,

(13)
where uJ

ν (r) are the wave functions of the relative motion of
the projectile-target system up to a norm and can describe
bound, resonance, and scattering states (see Appendix A for
further discussions of the single-nucleon equation of motion).

A. Calculations of a translationally
invariant Green’s function using

laboratory coordinates

In this paper, we develop a method to calculate the
translationally invariant (t.i.) Green’s function derived in a
many-body approach that uses laboratory coordinates. There
has long been a problem with resolving the spurious center-
of-mass (CM) contamination of Green’s function calculations
when using laboratory coordinates and configuration rep-
resentations (or second quantization) [37,38]. Due to the
decrease of the CM spurious effects with larger masses A,
these effects have been neglected for heavy target systems
and valence-shell calculations. The problem is that, even if
one works in a laboratory frame with the origin in the CM
of the A + 1 projectile-target system, the target and, most
importantly, the second term in Eq. (9), which describes the
hole states (or the A − 1 system), necessarily have CM mo-
tion. Using a transformation to Jacobi coordinates, we provide
a mathematical construction that addresses the target CM
motion. However, the particle and hole states in the Green’s
function, the first and second terms of Eq. (9), respectively,
need to be treated separately and with special care. To achieve
this, in this study, we utilize the Lawson procedure [39], the
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same one used in many-body nuclear structure calculations,
as outlined below.

In this study, calculations are carried through the SA-
NCSM, where the single-particle Green’s function is cal-
culated in the laboratory frame. The nuclear Hamiltonian
utilized in the SA-NCSM is nonrelativistic and uses t.i. in-
ternucleon interactions. The use of laboratory coordinates
results in spurious center-of-mass excitation states, which are
eliminated from the low-lying energy spectrum in structure
calculations by using a Lawson term [39].

The Lawson procedure utilizes a Lagrange multiplier term
that is added to the intrinsic Hamiltonian expressed in labo-
ratory coordinates, H + λCMN̂CM, where N̂CM is the operator
that counts the number of CM excitations and NCM is its
eigenvalue that labels the CM component of the wave func-
tions. For a typical value of λCM ≈ 50 MeV, the nuclear
states of interest (with energy �30 MeV) have wave functions
that are free of center-of-mass excitations (NCM = 0), while
CM-spurious states (NCM > 0) lie much higher in energy. It
is important that in the conventional NCSM with complete
model spaces truncated by Nmax (see the review [40]) and in
selected model spaces of the SA-NCSM (see the review [44]),
the center-of-mass wave function can be factored out exactly.
The reason is that the CM operator (N̂CM) does not mix CM
states with different HO excitations, and in addition, being an
SU(3) scalar (0 0), it does not mix SU(3) subspaces of the
SA-NCSM [41–43]. Hence, each A-body wave function can
be exactly factorized to an intrinsic wave function that can be
equivalently expressed through Jacobi coordinates and an HO
wave function of the CM with � = {NCM, LCM, MCM}, such
that �A

intr (ξ1, . . . , ξA−1)φ� (RA
CM) (see Sec. II A 1; cf. [48]),

where the states with NCM = 0 are the physical states of
interest. Finally, since the Hamiltonian is translationally in-
variant, there is no contribution from the CM component to
the matrix elements of the Hamiltonian or any function of the
Hamiltonian, as in the case of the Green’s function.

We derive the Green’s function by using the completeness
of the many-body Hamiltonian eigenfunctions for the A ± 1
systems in Eq. (9), the so-called Lehmann representation,
which for the laboratory frame (denoted “L”) and for J0 = 0
is:1

GJ+
ab(L)(E ) =

∑
k�k

〈
�J+

a

∣∣�A+1
k�k

〉
L

〈
�A+1

k�k

∣∣�J+
b

〉
L

E − (ε+
k + λCMNCM

k

)+ iε
,

GJ−
ba(L)(E ) =

∑
k�k

〈
�J−

b

∣∣�A−1
k�k

〉
L

〈
�A−1

k�k

∣∣�J−
a

〉
L

E − (ε−
k − λCMNCM

k

)− iε
, (14)

where ε+
k ≡ EA+1

k − EA
0 , ε−

k ≡ EA
0 − EA−1

k , the overlaps
〈�J±|�A±1

k�k
〉L are calculated in the laboratory frame using

Eq. (8), and the A ± 1 eigenstates |�k�k 〉L are enumerated by
the index k and the corresponding CM quantum numbers �k

(we note that since we work in the laboratory frame, the com-
pleteness relation includes all excited states, including those

1Since J0 is fixed from the reaction entrance channel and is the same
for all calculations, we omit J0 from the notation henceforth.

FIG. 1. A vector diagram of the Jacobi and laboratory coordi-
nates used for the A + 1 system (all particles), A system (dashed
circle), and A − 1 system (dotted circle). Vectors are proportional to
those in Eq. (15).

with NCM > 0). We introduce the Lawson term with λCM

being an arbitrary (reasonably large) positive constant to help
derive the t.i. Green’s function, as discussed in Sec. II A 2. We
note that, for heavy targets, Eq. (14) in laboratory coordinates
can be readily used for evaluations of the Green’s function,
since the CM effects become negligible.

In what follows, we first express the overlaps in Jacobi
coordinates and then provide the expression for the t.i. Green’s
function.

1. Overlaps in laboratory and Jacobi coordinates
for spatial degrees of freedom

We utilize Jacobi coordinates (cf. Refs. [48,49]), as shown
in Fig. 1, where ξ1,...,A−1 are the coordinates of the nucleons
in the target, ξA is the relative distance between the CM of
the two clusters (target and projectile), and ξ0 is the CM
coordinate of the (A + 1) system, with:

ξA−1 =
√

1

A
RA−1

CM −
√

A − 1

A
rA,

ξA =
√

1

A + 1
RA

CM −
√

A

A + 1
rA+1,

ξ0 =
√

A

A + 1
RA

CM +
√

1

A + 1
rA+1, (15)

where r1,2,...,A+1 are laboratory coordinates of the A + 1
nucleons, RA−1

CM = √
1/A − 1(r1 + · · · + rA−1) and RA

CM =√
1/A(r1 + · · · + rA) are the laboratory coordinate of the CM

of the A − 1 and A systems, respectively.
For simplicity, in this section we consider spatial dof only,

with b ≡ {nb
bmb}, which we augment with the spin dof
in Sec. II A 3. Using δ(r − rA+1) =∑b φb(r)φ∗

b (rA+1) =∑
n
m Rn
(r)Y
m(r̂)Rn
(rA+1)Y ∗


m(r̂A+1), the overlaps of
Eq. (14) in the laboratory frame for general eigenfunctions of
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the A and A + 1 nuclei are given as

uA+1
ik(L)(r) ≡ 〈�A

i�i

∣∣ar
∣∣�A+1

k�k

〉
L

= √
A + 1

∫
dr1 · · · drA+1�

A
i�i

(r1, . . . , rA)∗

�A+1
k�k

(r1, . . . , rA+1)δ(r − rA+1) =
∑

b

φb(r)uA+1
ik,b(L),

with

uA+1
ik,b(L) = 〈(A�A

i�i
φb
)|�A+1

k

〉
L

= √
A + 1

∫
dr1 · · · drA+1�

A
i�i

(r1, . . . , rA)∗φ∗
b (rA+1)

× 1√
A + 1

∑
c

φc(rA+1)
〈
r1, . . . , rA|ac|�A+1

k�k

〉
= 〈�A

i�i
|ab|�A+1

k�k

〉
L ≡ 〈�A+1

k�k
|�+

i�ib

〉∗
L (16)

(note that the last row defines the cluster basis states for the
spatial dof). Here, A is the antisymmetrizer operator that
ensures the antisymmetrization between the two clusters
of target and projectile, which enforces the Pauli exclusion
principle, and we use A|�A+1

k�k
〉L = √

A + 1|�A+1
k�k

〉L. This can
be expressed through Jacobi coordinates (15) (see Ref. [48]),
using �A

i�i
(r1, . . . , rA) = �A

i (ξ1, . . . , ξA−1)φ�i (R
A
CM) and

φ�i (R
A
CM)φb(rA+1) =∑�kβ

Mβ+
b;�i�k

φβ (ξA)φ�k (ξ0) (see
Appendix B):

uA+1∗
ik,b(L) = 〈�A+1

k�k
|�+

i�ib

〉
L =

∑
β

Mβ+
b;�i�k

〈
�A+1

k |�+
iβ

〉
, (17)

where M is related to the Talmi-Moshinsky bracket
〈nβ
βNkLk ; L|NiLinb
b; L〉d [50–52]:

Mβ+
b;�i�k

=
∑
LM

〈nβ
βNkLk; L|NiLinb
b; L〉d+CLM

β mβ ,LkMk

CLM
LiMi,
bmb

,

Mβ−
b;�i�k

=
∑
LM

〈nβ
βNiLi; L|NkLknb
b; L〉d−CLM

β mβ ,LiMi

CLM
LkMk ,lbmb

,

(18)

with d+ = 1/A for the particle states and d− = 1/(A − 1) for
the hole states. Similarly, for the A − 1 system,

uA
ki(L)(r) ≡ 〈�A−1

k�k

∣∣ar
∣∣�A

i�i

〉
L

=
∑

β

φβ (r)uA
ki,β(L),

with uA
ki,b(L) = 〈�A−1

k�k
|ab|�A

i�i
〉L ≡ 〈�A−1

k�k
|�−

i�ib
〉L. The over-

lap can be then expressed in Jacobi coordinates as (see
Appendix B):

uA∗
ki,b(L) = 〈�A−1

k�k

∣∣�−
i�ib

〉∗
L = 〈�A

i�i

∣∣(A�A−1
k�k

φb
)〉

L

=
∑

β

Mβ−
b;�i�k

〈
�A−1

k

∣∣�−
iβ

〉∗
. (19)

2. Green’s function for spatial degrees of freedom:
Lawson procedure

Using Eqs. (17) and (19) for the “particle” and “hole”
overlaps, respectively, the Green’s function terms of Eq. (14)

for a given intrinsic state of the target i, where i = 0 for the
ground state, are expressed in Jacobi coordinates as

∑
k�k

〈�±
i�ia

|�k�k 〉L〈�k�k |�±
i�ib

〉L

E − (ε±
k ± λCMNCM

k

)± iε

=
∑
kαβ

⎡
⎣∑

�k

Mα±
a;�i�k

Mβ±
b;�i�k

E − (ε±
k ± λCMNCM

k

)± iε

⎤
⎦

×〈�±
iα|�k〉〈�k|�±

iβ〉,
(20)

where �i and �k denote the center-of-mass labels for the
target and A ± 1 states, respectively, and i and k denote the
corresponding intrinsic-state labels. Taking the limit of large
(but finite) λCM on both sides of Eq. (20):

∑
k

〈�±
i�ia

|�k,�k=0〉L〈�k,�k=0|�±
i�ib

〉L

E − ε±
k ± iε

=
∑
kαβ

[
Mα±

a;�i0
Mβ±

b;�i0

E − ε±
k ± iε

]
〈�±

iα|�k〉〈�k|�±
iβ〉

(large λCM, |E | < λCM), (21)

where the only terms that are nonzero are those with
�k = 0 (that is, NCM

k = 0, LCM
k = 0, and MCM

k = 0). The con-
dition |E | < λCM ensures that we exclude the poles of the
CM spurious states that affect the imaginary part, as dis-
cussed below. This condition on E is always valid for the
low-energy regime of applicability of this approach (usually,
λCM ≈ 50–100 MeV).

Equation (21) is true for any �i of the target, and we can
choose, without loss of generality (w.l.g.), �i = 0 implying
a = α and b = β:

∑
k

〈�±
i,�i=0,a|�k,�k=0〉L〈�k,�k=0|�±

i,�i=0,b〉L

E − ε±
k ± iε

= Ma±
a;00Mb±

b;00

[∑
k

〈�±
ia|�k〉〈�k|�±

ib〉
E − ε±

k ± iε

]

(large λCM, |E | < λCM). (22)

The quantity in the brackets is exactly the t.i. particle or hole
term of the Green’s function. We emphasize that Eq. (22) does
not restrict the target state to no CM motion in the reaction
dynamics but rather is a mathematical equality that uses only
wave functions free of CM excitations to exactly connect the
SA-NCSM calculations to the t.i. counterparts that can be,
in general, calculated in Jacobi coordinates. This is possible
because the entire information for the intrinsic function is
contained in the case of � = 0.

To use the completeness relationship in Eq. (22) and ex-
press the Green’s function in an operator form, we use the
projection of the cluster basis state |�±

i�ib
〉L to its component

that is free of CM excitations, |�0±
i�ib

〉L, which we denote
by the “0” superscript [see Eq. (34)]. We can now use that
〈�k,�k=0|�±

i�ib
〉L = 〈�k�k |�0±

i�ib
〉L. This is important since the

completeness relation includes all intrinsic states k in the
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intrinsic frame but requires both k and �k in the laboratory
frame. Starting from the right-hand side (r.h.s.) of Eq. (22), the
transitionally invariant Green’s function terms are thus given
as (with i = 0 for the ground state):

〈�±
iα| 1

E − (Ĥ − EA
i − iε

)
(N̂ − A)

|�±
iβ〉

=
∑

k

〈�±
iα|�k〉〈�k|�±

iβ〉
E − ε±

k ± iε

= 1

Mα±
α;00Mβ±

β;00

∑
k�k

〈
�0±

i0α

∣∣�k�k

〉
L

〈
�k�k

∣∣�0±
i0β

〉
L

E − ε±
k ± iε

= 1

Mα±
α;00Mβ±

β;00〈
�0±

i0α

∣∣ 1

E − (Ĥ + λCMN̂CM − EA
i − iε

)
(N̂ − A)

∣∣�0±
i0β

〉
L

(large λCM, |E | < λCM). (23)

Hence, in general, the t.i. Green’s function is calculated using
the last part of Eq. (23) that can employ any many-body
method with laboratory coordinates2 and the Lawson proce-
dure. Most importantly, for these calculations we use cluster
basis states |�0±

i�iα
〉L that have no CM excitations (see Sec. II B

for details on removing the CM excitations from these states).
Furthermore, this implies that we need simple Talmi-

Moshinsky brackets, since �i = �k = 0 (see, e.g., Ref. [48]):

Mα±
α;00 = 〈nα
α00; 
α|00nα
α; 
α〉d±

= (−1)
α

(
1

1 + d±

)nα/2

, (24)

with Mα+
α;00 = (−1)
α ( A

A+1 )nα/2 for the particle case and
Mα−

α;00 = (−1)
α ( A−1
A )nα/2 for the hole case.

3. Translationally invariant Green’s function
for spatial-spin degrees of freedom

Importantly, for �i = �k = 0, the generalization to spatial-
spin degrees of freedom with α = nα (
α

1
2 ) jα is straightfor-

ward for Eq. (23), since the coupling to the CM wave function
is trivial (omitting i and �i = 0 from the notations):

〈
�J±

α

∣∣Ĝ(E , ε)
∣∣�J±

β

〉 =
〈
�J0±

α

∣∣Ĝ(E , ε)
∣∣�J0±

β

〉
L

Mα±
α;00Mβ±

β;00

(large λCM, |E | < λCM), (25)

2We note that, in general, the many-body method employed needs
to ensure that the center-of-mass wave function is factored out ex-
actly, as in the case of NCSM and SA-NCSM, or near exactly but
with an error estimate for the CM contamination.

where the operator Ĝ(E , ε) is defined in Eq. (2).3 We em-
phasize the use of |�J0±

β 〉L cluster basis states that have no
CM excitations. While this provides the most general way to
calculate the t.i. Green’s function, some of the conditions can
be relaxed depending on the choice of the frame, as discussed
next.

In what follows, we distinguish between the E > ε+
F

regime from the E < ε−
F regime, where the εF energies define

the single-nucleon thresholds, ε+
F ≡ EA+1

0 − EA
0 and ε−

F ≡
EA

0 − EA−1
0 . The reason is that the calculations are performed

in the CM reference frame of the A + 1 system for E > ε+
F

and of the A − 1 system for E < ε−
F .

E � ε+
F regime. For these energies (relevant to particle-

target reactions processes), the problem is solved in the A + 1
CM system with reduced mass μp = AmN/(A + 1) (and HO
characteristic length bp = √h̄/μp�), where mN is the nucleon
mass. Hence, by construction, �k = 0 for |�A+1

k�k
〉L, and one

can use Eq. (25) for the “particle” term without the need for
the Lawson technique or restriction on the energy, simply
based on the transformation of the overlaps to Jacobi coor-
dinates [see Eq. (B4)]:

∑
k

〈
�J+

α

∣∣�k〉
〈
�k

∣∣�J+
β

〉
E − ε+

k + iε

= (−)
α−
β

(
A + 1

A

) nα+nβ

2 ∑
k

〈�J0+
α |�k0〉L〈�k0|�J0+

β 〉L

E − ε+
k + iε

=
(

A + 1

A

) nα+nβ

2 〈
�J0+

α

∣∣Ĝ(E , ε)
∣∣�J0+

β

〉
L
, (26)

where we use the parity conservation πJ0 (−1)
α = πJ =
πJ0 (−1)
β and use again that 〈�k0|�J0+

β 〉L = 〈�k�k |�J0+
β 〉L to

ensure the completeness relation in the laboratory frame. We
note that |�J0+

β 〉L is an (A + 1)-body state and, by construc-
tion, has no CM excitations with respect to the CM of the
A + 1 system, which in this case coincides with the frame of
choice.

Using Eq. (26) and the practical identity limε→0
1

E±iε =
p.v. 1

E ∓ iπδ(E ), where p.v. denotes the principal value (and
now we explicitly include lim for clarity), we obtain the
t.i. Green’s function used in the present calculations for
projectile-target reaction processes:

GJ+
αβ;E�ε+

F
≡ lim

ε→0

∑
k

〈
�J+

α

∣∣�k
〉〈
�k

∣∣�J+
β

〉
E − ε+

k + iε

= lim
ε→0

(
A + 1

A

) nα+nβ

2 〈
�J0+

α

∣∣Ĝ(E , ε)
∣∣�J0+

β

〉
L

(27)

3Similarly to Eq. (23), the Lawson term is included on the r.h.s.
of Eq. (25) and is used for all present calculations in the laboratory
frame, although it is omitted from the notations given the trivial
contribution, with λCMN̂CM|�J0±

β 〉 = 0.
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=
(

A + 1

A

) nα+nβ

2

⎡
⎣p.v.

∑
k�k

〈
�J0+

α

∣∣�k�k

〉
L

〈
�k�k

∣∣�J0+
β

〉
L

E − ε+
k

−iπ
∑
k�k

〈
�J0+

α

∣∣�k�k

〉
L

〈
�k�k

∣∣�J0+
β

〉
Lδ(E − ε+

k )

⎤
⎦, (28)

where the principal value, p.v.〈�J0+
α |Ĝ(E , ε = 0)|�J0+

β 〉L,
can be straightforwardly calculated for E outside [ε+

k −
�ε, ε+

k + �ε] for small (and finite) �ε energy interval. The
last term in (28) when integrated yields the t.i. “particle” norm
[22],

N p
αβ = − 1

π

∫ ∞

ε+
F

Im
(

GJ+
αβ;E>ε+

F

)
dE

=
(

A + 1

A

) nα+nβ

2

〈�J0+
α |�J0+

β 〉L. (29)

This coincides with the t.i. norm of the resonating group
method (RGM) approach [8], but here it is calculated in a
different way through the CM-excitations-free cluster basis
states (Appendix C).

However, for this regime, the A − 1 system is not in the
lowest CM state. Fortunately, for the “hole” part one can
use Eq. (25) [based on Eq. (23)], since the Lawson technique
enables exact solutions, that, importantly, require only the
calculation of |�J0−

β 〉L. We note that these cluster basis states
are free from CM spurious motion with respect to the CM of
the A − 1 system, which do not coincide with the frame of
choice, but become useful in the Lawson procedure (23):

GJ−
βα;E�ε+

F
≡ lim

ε→0

∑
k

〈
�J−

β

∣∣�k
〉〈
�k

∣∣�J−
α

〉
E − ε−

k + iε

= lim
ε→0

(
A

A − 1

) nα+nβ

2 〈
�J0−

β

∣∣Ĝ(E , ε)
∣∣�J0−

α

〉
L

=
(

A

A − 1

) nα+nβ

2

[
p.v.
〈
�J0−

β

∣∣Ĝ(E , ε = 0)
∣∣�J0−

α

〉
L

+ iπ
∑
k�k

〈
�J0−

β

∣∣�k�k

〉
L

〈
�k�k

∣∣�J0−
α

〉
Lδ(E − ε−

k )

]

(large λCM), (30)

which holds for any E since ε+
F > −λCM is always the

case.4As discussed in Sec. II A 2, the intrinsic operator

4In general, for any J0 and for E � ε+
F :

GJ
αβ = GJ+

αβ + (−1)2J0+1
∑

J ′
�2

J ′

{
jα J0 J ′

jβ J0 J

}
GJ ′−

βα ,

which for J0 = 0 coincides with Eqs. (6) and (9). This relation holds
for the norm when the identity operator is used, with δαβ on the left-
hand side (l.h.s.) (cf. Ref. [53]).

Ĝ(E , ε) acts here only on the intrinsic structure of the A − 1
system, and hence its t.i. matrix elements can be obtained
by pushing the states with CM excitations to high energies
that no longer contribute to the matrix elements (we empha-
size that the Lawson procedure is suitable to the Green’s
function operator due to the inverse dependence on the t.i.
A − 1 Hamiltonian, but cannot be applied to any operator in
general).

In this energy regime, the t.i. “hole” norm cannot be
calculated through the imaginary part since E � ε+

F , but is
readily derived through the particle norm, N h

βα = δαβ − N p
αβ

[cf. Eq. (3)].
E � ε−

F regime. For these energies (relevant to knock-out
reactions), the problem is solved in the A − 1 CM system
with reduced mass μh = (A − 1)mN/A (and HO characteristic
length bh = √

h̄/μh�). Hence, by construction, �k = 0 for
|�A−1

k�k
〉L, which is now considered with respect to the A − 1

CM system. In this case, the “hole” part can be straightfor-
wardly calculated, while the CM motion of the A + 1 system
requires the use of the Lawson procedure. That is, one can use
Eqs. (27) and (28), but for the “hole” term in the Green’s func-
tion without the need for the Lawson technique or restriction
on the energy:

GJ−
βα;E�ε−

F
≡ lim

ε→0

∑
k

〈
�J−

β

∣∣�k
〉〈
�k

∣∣�J−
α

〉
E − ε−

k − iε

= lim
ε→0

(
A

A − 1

) nα+nβ

2 〈
�J0−

β

∣∣Ĝ(E , ε)
∣∣�J0−

α

〉
L. (31)

The imaginary part of this when integrated yields the t.i.
“hole” norm (with respect to the CM of the A − 1 system, the
frame of choice in this case):

N h
βα = 1

π

∫ ε−
F

−∞
Im
(
GJ−

βα;E<ε−
F

)
dE

=
(

A

A − 1

) nα+nβ

2 〈
�J0−

β

∣∣�J0−
α

〉
L. (32)

Similarly, the Lawson technique is used for the particle side
by employing Eq. (25),

GJ+
αβ;E�ε−

F
≡ lim

ε→0

∑
k

〈
�J+

α

∣∣�k
〉〈
�k

∣∣�J+
β

〉
E − ε+

k − iε

= lim
ε→0

(
A + 1

A

) nα+nβ

2 〈
�J0+

α

∣∣Ĝ(E , ε)
∣∣�J0+

β

〉
L

(large λCM), (33)

which holds for any E since ε−
F < λCM is always the case.

Similarly to above, in this energy regime, the t.i. “particle”
norm cannot be calculated through the imaginary part since
E � ε−

F , but is readily derived through the hole norm, N p
αβ =

δαβ − N h
βα [cf. Eq. (3)].

Clearly, in the case of heavy targets (A 
 1), the A-
dependent CM factors become unity (equivalent to a target
with no recoil, for which the laboratory and CM frames
coincide) and G± for E � ε+

F coincide with those for
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E � ε−
F , reproducing earlier formulas that neglect the CM

effects [22,26].

B. Orthonormalization and removing center-of-mass
spuriosity in cluster basis states

As emphasized in the preceding section, the translationally
invariant Green’s function is calculated for cluster basis states
|�J0±

a 〉L defined in Eq. (8) that, in addition, have no spurious
CM excitations with respect to the CM of the A ± 1 system.

To achieve this, we perform the following steps: (1) We
solve the Schrödinger equation for the J0 ground-state of
the target (omitting the J0 notation), (Ĥ + λCMN̂CM)|�A

0 〉L =
EA

0 |�A
0 〉L, which yields |�A

0 〉L with no spurious CM exci-
tations (ensuring �0 = 0 discussed above). (2) We generate
the cluster basis states according to Eq. (8). (3) We ensure
an orthonormal basis for which N p

ab(L) + N h
ba(L) = δab ac-

cording to Eq. (3), which for J0 = 0 implies 〈�J+
a |�J+

b 〉L +
〈�J−

b |�J−
a 〉L = δab or equally aaa†

b + a†
baa = δab. For each


a = 
b and ja = jb, this equality holds approximately, es-
pecially for higher na (nb) shells, due to the use of Nmax

in the no-core shell-model-type calculations. To address
this, we orthonormalize the basis by calculating the total
norm for each J , Nab(L) = N p

ab(L) + N h
ba(L) and |�̄J±

a 〉L =∑
nb
N−1/2

ab(L) |�J±
b 〉L, with N−1/2

(L) calculated through the N(L)

eigenvalues and eigenvectors. Therefore, calculations are per-
formed in the |�̄J〉 orthonormal basis in the laboratory frame
and, hence, in the intrinsic frame (this further implies that
the inverse of the Green’s function can be calculated through
G−1G = 1). Cluster basis states used henceforth are or-
thonormalized and we will omit the bar symbol from their
notations. (4) We remove CM excitations in the orthonormal-
ized basis |�J0±

a 〉L through a projection method utilized in an
earlier study [54]. This is achieved by applying a projection
operator P̂0, such that |�J0±

a 〉L = P̂0|�J±
a 〉L, where

P̂0 =
Nmax∏

NCM=1

(
1 − N̂CM

NCM

)
. (34)

The |�J0±
a 〉L cluster basis states are then used to calculate

〈�J0±
a |Ĝ(E , ε)|�J0±

b 〉L matrix elements for the t.i. Green’s
function (Sec. II A 3) through the Lanczos method, discussed
next).

C. Lanczos method for Green’s function

In the Lehmann representation, one can calculate |�A±1
�kk 〉L

from (Ĥ + λCMN̂CM)|�A±1
�kk 〉L = EA±1

k |�A±1
�kk 〉L and use these

to compute the overlaps in Eq. (14). However, as noted in
Ref. [26], what one finds in practice is that this method is slow
at converging with respect to the number of Lanczos iterations
due to the number of eigenvectors needed.

Instead, the Green’s function matrix elements are cal-
culated through a Lanczos method based on a continued
fraction evaluation similar to that performed in Lorentz-
integral-transformation (LIT) calculations [55]. Specifically,
GJ+

αβ(L)(z) ≡ 〈�J0+
α |Ĝ(E , ε)|�J0+

β 〉L in Eqs. (27) and (33) is

computed as

GJ+
αβ(L)(z) =

Niter∑
k=0

〈
�J0+

α

∣∣qk
〉〈qk| 1

z − Ĥ

∣∣�J0+
β

〉
, (35)

where z = E + EA
0 + iε, |qk〉 are the Lanczos vectors, where

k goes from zero to the number of Lanczos iterations, Niter,
and the completeness of the Lanczos vectors

∑
k |qk〉〈qk| �

1 is inserted (all calculations in this section are performed
for wave functions in the laboratory frame, thereby omitting
L from the notations; also, the use of a Lawson term that
augments Ĥ should be understood). The approximation in
the completeness relation depends on the number of Lanczos
iterations and is practically negligible for a sufficiently large
number, as discussed at the end of this section. Specifically, in
this study, we use Niter = 2000 or the complete basis size for
a given Nmax, if smaller.

The Lanczos algorithm starts with a so-called pivot vector
|q0〉, which for the Green’s function calculations corresponds
to |�+〉 for G+ (or |�−〉 for G−). Specifically, the algorithm
uses normalized pivots as input; that is,

∣∣qβ

0

〉 ≡
∣∣�J0+

β

〉
√〈

�J0+
β |�J0+

β

〉 . (36)

Hence, Eq. (35) can be equivalently written as

GJ+
αβ(L)(z) =

√〈
�J0+

β

∣∣�J0+
β

〉
×
∑

k

〈
�J0+

α

∣∣qk
〉〈

qk

∣∣∣∣ 1

z − Ĥ

∣∣∣∣qβ

0

〉
. (37)

To calculate the matrix elements,

xβ

k0 ≡
〈
qk

∣∣∣∣ 1

z − Ĥ

∣∣∣∣qβ

0

〉
= xβ

0k, (38)

the continued fraction evaluation, based on Cramer’s rule [55],
is used:

x0k = 1

(z − ak )λ0k−1 − bkλ0k−2 + λ0k−1gk+1
,

λ0k = (z − ak )λ0k−1 − bkλ0k−2

bk+1
,

gk = −b2
k

(z − ak ) − b2
k+1

(z−ak+1 )− b2
k+2
···

, (39)

where ak and bk , k = 0, 1, . . . , Niter, are the diagonal and
off-diagonal matrix elements of the tridiagonal Lanczos
matrix, respectively, commonly referred to as Lanczos
coefficients. At a given Lanczos iteration k, the contin-
ued fraction in gk depends on the Lanczos coefficients
ak, bk, ak+1, bk+1, . . . , aNiter , and bNiter ; x0k is calculated recur-
sively, with a base case λ−1 = 1 and λ−2 = 0. Fortunately,
one does not need to calculate all Niter matrix elements of
x0k but much fewer (typically, about 200 or less) until the
sum

∑
k〈�J0+

α |qk〉xβ

k0 in GJ+
αβ(L)(z) becomes converged within

a precision level (10−16 used in the present calculations).
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Furthermore, for the case where α = β, GJ+
αα(L)(z), only x00

is needed,

x00 = 1

(z − a0) − b2
1

(z−a1 )− b2
2

(z−a2 )−
b2

3···

, (40)

since the Lanczos vectors are orthonormal 〈qα|qβ〉 = δαβ .
The Green’s function GJ−

βα(L)(z) ≡ 〈�J0−
β |Ĝ(E , ε)|�J0−

α 〉L

in Eqs. (30) and (31) can be evaluated in exactly the same
manner, using the recursion relation

x−
0k = (−1)k 1

(z + ak )λ−
0k−1 − bkλ

−
0k−2 + λ−

0k−1g−
k+1

,

λ−
0i = (z + ak )λ−

0k−1 − bkλ
−
0k−2

bk+1
,

g−
k = −b2

i

(z + ak ) − b2
k+1

(z+ak+1 )− b2
k+2
···

, (41)

where z = E − EA
0 − iε. Alternatively, one can use Eqs. (37)

and (39) but with z = −E + EA
0 + iε to compute −GJ−

βα(L)(z).
Finally, the Lanczos vector completeness relation can be

tested using δm0 =∑k〈qm|z − Ĥ |qk〉xk0, where the complete-
ness of the Lanczos vectors

∑
k |qk〉〈qk| � 1 is inserted into

1 = (z1 − H) 1
(z1−H) , 〈qm|z − Ĥ |qk〉 is calculated using the

Lanczos matrix, and xk0 uses the continued fraction (39).
Indeed, we reproduce this equality to approximately machine
precision, confirming the completeness of the Lanczos vectors
in our calculations.

III. RESULTS AND DISCUSSIONS

In this paper, we illustrate the SA-NCSM/GF method for
the 4He(n, n) 4He elastic scattering, which allows for compar-
isons to experiment and other ab initio theoretical studies. The
4He target ground state, as well as the Lanczos algorithm for
evaluating the Green’s function in the A + 1 and A − 1 sys-
tems through Eqs. (27) and (30), respectively, are computed
in the ab initio SA-NCSM approach with the NNLOopt NN
chiral potential. This interaction minimizes the effect of the
three-body forces and has been shown to give an excellent
description of nuclear structure and reaction observables; in
addition, observables calculated with the NNLOopt are found
in a good agreement with those calculated with other chiral
potentials that require the use of the corresponding three-
nucleon forces (see, e.g., Refs. [54,56–60]).

We utilize SA-NCSM calculations for h̄� = 12–20 MeV
in complete model spaces up to Nmax = 13 for 3,4,5He to
accommodate both natural and unnatural parity, which in the
case of the largest calculation implies total of 15 HO shells.
The calculations become independent of h̄� for sufficiently
large Nmax model spaces, providing a parameter-free ab ini-
tio prediction. For the Lawson procedure we use λCM = 100
MeV. Unless explicitly mentioned, all calculations utilize
infinite-space ground-state energies E∞

0 that are extrapolated
from the Nmax = 9, 11, 13 calculations using the Shanks ex-
trapolation method [61], with uncertainties estimated based

FIG. 2. Calculated n- 4He 2S1/2, 2P1/2, 2P3/2, and 2D3/2 phase
shifts as a function of the energy in the CM frame using the ab
initio SA-NCSM/GF for Nmax = 13 across h̄� = 12 (red dashed), 16
(red solid), and 20 MeV (red dotted), with NNLOopt NN interaction.
These are compared with the NCSMC using multiple channels with
h̄� = 20 MeV and the NNLOopt NN interaction with Nmax = 17
[62] (purple squares), as well as a chiral N 4LO interaction including
3N forces with Nmax = 11 [34] (purple dotted dashed), the Faddeev-
Yakubovsky (FY) approach [35] using the N 3LO-EM NN interaction
[63] (green circles), and the experimentally deduced values (black
crosses) obtained using an R-matrix analysis (see text for details).
The gray bands show the h̄� = 12–20 MeV spread to guide the
eye. Two of the h̄� results are practically indistinguishable for the
P partial waves, and all h̄� results coincide for the S and D partial
waves.

on variations in h̄� (while no experimental energies are used
in the present evaluations, they can be straightforwardly used
in the Green’s function evaluation, if beneficial). More details
on the energy extrapolation method are given in Sec. III B.

For the phase shift results, we use the R-matrix code of
Ref. [64] with the SA-NCSM/GF nonlocal optical potential
V J

J0
 j (r, r′) of Eq. (12) as input (see also Appendix A). We
note that for J0 = 0 of the target state, the potentials in
the [J0(
 j)]J coupling scheme coincide with those used in
the (s
)J coupling scheme, V 2s+1


J (r, r′) = V J
(J0=0)
( j=J )(r, r′),

where s = 1
2 is the channel spin; that is, the total spin of the α

and neutron.5

The phase shift comparisons for n + 4He perform re-
markably well when compared with both experimentally
deduced values and earlier theoretical calculations (Fig. 2).
The experimentally deduced phase shifts are calculated from
experimental total cross sections using an R-matrix evalua-
tion (see private communication G. M. Hale, Ref. [41] from

5We use the (s
)J scheme when we report phase shifts for 2s+1
J

partial waves to directly compare with earlier studies. All other
quantities for α + n are reported from the [J0(
 j)]J coupling scheme
for 
J partial waves.
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FIG. 3. Calculated n − 4He total cross sections vs the laboratory-
frame projectile kinetic energy obtained using the ab initio SA-
NCSM/GF across h̄� = 12 (red dashed), 16 (red solid), and 20
MeV (red dotted), and compared with three sets of experimental data
[65–67] (labeled “Expt.”). The gray band shows the h̄� = 12–20
MeV spread to guide the eye. There are energy ranges where curves
are indistinguishable from each other.

Ref. [34]). We find that the 2P3
2

phase shifts from the SA-
NCSM/GF, e.g., for h̄� = 16 MeV, yield a threshold energy
that agrees with the experimental one within 230 keV. This
is important since reaction observables are very sensitive to
the threshold energy. In addition, we find a close agreement
with the ab initio many-body framework based on the RGM
theory, the NCSMC [68], where the microscopic structure of
the clusters informs norm and Hamiltonian kernels, without
an explicit construction of optical potentials. The NCSMC
calculations use excitations of the target and two interactions:
Refs. [62] uses the NNLOopt NN interaction and Ref. [34] uses
a N 4LO chiral NN interaction with three-body force. Interest-
ingly, the two interactions yield very similar NCSMC results,
whereas the SA-NCSM/GF with the NNLOopt likely benefits
from the use of infinite-space energies. Our results also agree
with the Faddeev-Yakubovsky evaluation of the neutron phase
shifts [35], which are close to the edge of the SA-NCSM/GF
h̄� spread. This approach uses the N 3LO-EM NN interaction,
and since it is practically exact, we expect that the differences
in Fig. 2 stem from the different interaction used. Similarly,
the SA-NCSM/GF phase shifts agree with those derived in
the single-state harmonic-oscillator representation of scatter-
ing equations [36] for different NN interactions. It will be
interesting to compare all these methods for the NNLOopt NN
interaction and in the infinite-space limit.

From the phase shifts δJ
J0
 j (E ), we evaluate the total cross

section for elastic scattering (Fig. 3) using

σtot (E ) = 4π

k(E )2

∑

 jJ

(2J + 1) sin2 δJ
J0
 j (E )(

2 1
2 + 1

)
(2J0 + 1)

, (42)

where 1
2 and J0 in the denominator are the projectile and target

total spins, respectively (and as mentioned above J0 is fixed
by the reaction entrance channel), k = √2μpE/h̄ is the wave
number corresponding to the reaction energy E in the CM
frame [17]. When comparing the total cross sections to exper-
iment, we use the laboratory kinetic energy of the projectile,
Elab = E

μp/mN
= E (A + 1)/A.

Most importantly, the total cross sections for the SA-
NCSM/GF calculations agree remarkably well with exper-
iment, as shown in Fig. 3 for projectile laboratory kinetic
energies Elab � 12 MeV. As expected from the good descrip-
tion of the 2P3/2 phase shifts, the cross-section peak energy
is well reproduced in the SA-NCSM/GF approach. Notably,
the spread of the calculated cross section arising from the h̄�

variation is very small even though a significant h̄� range
is considered, whereas it further decreases across h̄� = 12–
16 MeV while remaining in agreement with the data.

The ab initio SA-NCSM/GF optical potentials V
J (r, r′)
(12) that correspond to the n + 4He phase shifts discussed
above are highly nonlocal (Fig. 4 for E = 5 MeV). In general,
they depend on the scattering energy E , however, for this
system, we find almost no dependence for E � 12 MeV for all
S 1

2
, P1

2
, P3

2
, and D 3

2
partial waves, except when E is very close

to a pole of the Green’s function for ε = 0. Although optical
potentials are not observables and cannot be compared exactly
between methods and internucleon interactions used, simi-
larities may exist in some features. Interestingly, the neutron
S 1

2
-wave potential [Fig. 4(a)] exhibits nonlocal peaks around

2.5 fm, attractive well at smaller distances, and an increase
in strength at very small distances, which is similar to the
neutron S 1

2
partial wave for another closed-shell target of 16O

when calculated with the NNLOopt and h̄� = 20 MeV (see
Fig. 7 in Ref. [26]). In addition, the potentials in Fig. 4 should
not be directly compared with the orthogonalized nonlocal
potentials of Ref. [8] for the n-α (g.s.), since the latter are
calculated for each channel and several channels beyond the
α ground state are used to obtain the NCSMC phase shift in
Fig. 2. Nevertheless, there is similarity in the shape of the P1

2

partial wave from the RGM with N 3LO-EM NN interaction
and h̄� = 19 MeV (Fig. 8 of Ref. [8]) and the one shown
in Fig. 4(b), albeit smaller in magnitude, whereas the optical
potentials for the S 1

2
partial wave is very different from the

RGM n-α (g.s.) effective interaction and allows for a bound
state (see Appendix A).

A. Spectral functions and imaginary contributions

Spectral functions are often used to study correlations and
single-particle properties of the target nucleus, as they probe
the probability density of removing a particle from a single-
particle state α in the target J0 = 0 state at a given energy E
(with E � ε−

F ):

Sh(α, E ) =
∑

k

∣∣〈�A−1
k |aα|�A

0

〉∣∣2δ((E − (EA
0 − EA−1

k

))

= 1

π
Im
(
GJ−

(J0=0)αα;E<ε−
F

)
. (43)
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(a) (b) (c)

FIG. 4. The translationally invariant nonlocal n + 4He optical potential for the (a) S 1
2
, (b) P1

2
, and (c) P3

2
partial waves, calculated in the

ab initio SA-NCSM/GF for E = 5.0 MeV with ε = 0 MeV, h̄� = 16 MeV, and Nmax = 13.

This means that spectral functions are readily available
through the diagonal imaginary components of the Green’s
function [see Eq. (31)]. This, in turn, defines the spectroscopic
factor across all single-particle states that are occupied within
the target state:

S− =
∑

α

∫ ε−
F

−∞
dESh(α, E ) =

∑
α

N h
αα

=
∑

α

(
A

A − 1

) na+nb
2 〈

�J0−
α

∣∣�J0−
α

〉
L, (44)

where we use Eq. (32). Similarly, using Eq. (29), one can
calculate the particle spectral function that describes the prob-
ability density for adding a particle at a single-particle state
α, Sp(α, E ) =∑k |〈�A+1

k |a†
α|�A

0 〉|2δ(E − (EA+1
k − EA

0 )) =
− 1

π
Im(GJ+

(J0=0)αα;E>ε+
F

) for a given energy E (�ε+
F ), with

S+ =∑α N p
αα .

Figure 5 shows the π
∑

nα
Sh(α, E ) spectral function for

the 
α = 0 and jα = 1/2 single-particle states across ε values
of 1, 2, and 5 MeV, along with the real part of the Green’s
function. One can clearly recognize the 3He energies corre-
sponding to the peaks in the spectral functions (the lower the
energy, the higher the excited states in 3He that contribute).
In addition, these spectral functions show a clear dependence
upon ε in widening the peaks but the location of each peak
remains unchanged. Clearly, the integral from −∞ to ε−

F is
independent of ε and equivalent to the spectroscopic factor S−
of Eq. (44) (practically, ε+

F is used for the upper limit of the
integration for nonzero ε to accommodate the peak tail at ε−

F ,
as discussed in Ref. [22]). In this particular case we find for
the s1/2 single-particle levels S−


=0, j= 1
2

= 0.897 when using the

trace of the norm of the hole states, or equivalently the overlap
contribution, both of which can be calculated directly from
the SA-NCSM wave functions, and S−


=0, j= 1
2

= 0.885 (0.879)

when using the integrals for ε = 1.0 (2.0) MeV.
In addition, we study the dependence on ε and the imagi-

nary contribution of the optical potential for the 2S 1
2
, 2P1

2
, and

2P3
2

phase shifts in n + 4He (Fig. 6). It is very clear that ε

has practically no effect on the (real) phase shifts calculated
in the SA-NCSM/GF method. This is expected, since in this
energy regime only the neutron channel is open and there are
two resonances only. Calculations can readily proceed for the
Green’s function parameter ε = 0 as far as the energy E is
slightly different from the A + 1 SA-NCSM energies; that is,
the poles in the Green’s function. Analysis of the effects of ε

on the absorption and its zero-limit impact, as discussed, e.g.,
in Refs. [69,70], is left for a future study of the more intricate
p + 6He system.

B. Dependence on model-space parameters
and infinite-space energies

To ensure ab initio descriptions in no-core shell-model
calculations, it is imperative to study convergence of results
with respect to the Nmax and h̄� model-space parameters. We
start with the structure calculations and examine energies of
3He, 4He, and 5He (see Fig. 7 for the 3He and 4He ground

FIG. 5. Translationally invariant spectral functions Sh for 4He
(×π ), ImG(E , ε), along with ReG(E , ε) summed over nα for the s1/2

single-particle levels plotted against the energy in the CM frame, for
ε = 1.0 MeV (solid curves), 2.0 MeV (dashed curves), and 5.0 MeV
(dotted dashed curves). Both the real (black) and imaginary (red)
components of the Green’s function are shown for each ε value.
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FIG. 6. A comparison of n- 4He 2S1/2, 2P1/2, 2P3/2, and 2D3/2

phase shifts with differing ε values (in units of MeV), for Nmax = 13
and h̄� = 16 MeV (curves are indistinguishable).

states and the lowest-lying resonances in 5He). The g.s. and
excitation energies of 3He and 5He are important for the
description of n + α, as they enter as poles in the Green’s
function. We emphasize that 3He lies energetically far from
4He, namely, ε−

F = −20.6 MeV, and while the 3He g.s. energy
does not impact directly the n + α dynamics, it is critical for
obtaining a bound state at this energy in the S 1

2
-wave optical

potential. Since the SA-NCSM energies are on a converging
trend with respect to Nmax, it is possible to extrapolate those to
infinite-space energies in all 3,4,5He. Using Shank’s extrapola-
tion [61], applied and detailed in Refs. [32,54], we determine
the ground-state energy for 3He ( 1

2
+

state), 4He (0+ state), and
5He ( 3

2
−

resonance), as well as the first-excited 1
2

−
resonance

in 5He, from Nmax = 8, 10, and 12 calculations, where un-
certainties are estimated across an h̄� = 12–24 MeV range
(the lowest SA-NCSM 5H 1

2
+

and 3
2

+
states are scattering

states and their infinite-space energy is by default given by
the threshold energy; see Ref. [36] for convergence in the
no-core shell model spaces). In Fig. 7, the centroid energies
are shown as the midpoint within the h̄� region to guide
the eye. In the SA-NCSM/GF evaluations we use the g.s.
extrapolated energy for each h̄� (for consistency with the
wave function calculations). It is important to note that it is
straightforward to use the infinite-space energies in the Lanc-
zos algorithm, by simply substituting z by z∞ = E + EA,∞

0 −
(EA+1,∞

0 − EA+1
0 ) + iε for G+ in the continued fraction (39)

(and similarly for G−).
Furthermore, we study the dependence on Nmax of the

2S1/2, 2P1/2, 2P3/2, and 2D3/2 phase shifts for n + 4He elastic
scattering for a constant h̄� = 16 MeV using the SA-NCSM
g.s. energies calculated in the Nmax = 9–13 model spaces
(Fig. 8). This shows a clear convergence for all the partial
waves, and especially a quick convergence for the S-wave
or D-wave phase shifts, such that Nmax = 9 or 11 is already

FIG. 7. Energy of (a) 1
2

+
g.s. of 3He, (b) 0+ g.s. of 4He,

(c) 5He 3
2

−
g.s., and (d) the 5He 1

2

−
resonance with respect to Nmax

across several h̄� values (in units of MeV). The extrapolated values
across all h̄� are given as a band with a centroid in the middle of the
band, while the experimental energies are shown as a dashed line.

sufficient at capturing the correlations in the wave functions
accessible at higher Nmax values. In addition, the correspond-
ing total cross sections reflect the same converging trend
(Fig. 8, inset). These outcomes corroborate the convergence of
the resonance energies for 2P1/2 and 2P3/2 that are calculated
as relative energies with respect to the threshold. Namely,
it is interesting that—different from the convergence of the
absolute energies shown in Fig. 7—the resonance energies are
relatively stable in these Nmax model spaces, with a very slow
rate of decrease. Ultimately, their infinite-space extrapolation
is needed to fully reproduce the resonant phase shifts and the
peak of the cross section.

Figure 9 shows a comparison of diagonal potentials
V
J (r, r′ = r) across different Nmax values. As we mentioned
above, potentials are not observable, however, ab initio
deduced optical potentials may be used to inform phenomeno-
logical nonlocal optical potentials, as well as features related
to short- and long-range correlations. As evident from Fig. 9,
for each partial wave, the shapes of all the potentials are
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FIG. 8. A comparison of n- 4He 2S1/2, 2P1/2, 2P3/2, and 2D3/2

phase shifts with differing Nmax values for h̄� = 16 MeV and us-
ing the SA-NCSM g.s. energies. Inset shows the corresponding
total cross sections (σtot) divided by the maximum total cross sec-
tion (σmax) vs laboratory energy Elab (in units of MeV). There are no
deviations for 2D3/2 underneath the inset.

consistent, and importantly, they all agree near the surface
region (about r � 1.5 fm) relevant to the energies in con-
sideration. The potentials differ significantly in magnitude in
the interior region, which is only accessible at intermediate
energies beyond the low-energy regime of the Green’s func-
tion method considered. This is clearly seen in the S-wave
potentials that coincide beyond 1.5 fm, leading to the agree-
ment in phase shifts shown in Fig. 8, whereas the higher
resolution at larger Nmax allows for the development of a
“repulsive core.” Moreover, this feature becomes clearly en-
hanced and a repulsive core is observed at a higher h̄� value,
which further improves the resolution of high-momentum
phenomena [Fig. 9(a), inset]. The strong dependence on h̄�

in the interior region, from a Woods-Saxon-type potential
at low h̄� to a soft-core potential at high h̄�, implies that
these potentials should not be used at intermediate energies
and beyond. For such energies, calculations in higher Nmax

are necessary to ensure that high-momentum components are
properly treated and to achieve h̄� independence. In addition,
the good agreement between Nmax = 11 and Nmax = 13 for the
P1/2 potential does not reflect in the phase shifts. This suggests
a sensitivity to the nonlocal features that also affect the phase
shifts.

IV. CONCLUSIONS

In this paper, we have provided the first ab initio trans-
lationally invariant optical potentials for the n + 4He S1/2,
P1/2, P3/2, and D3/2 partial waves at low energies and show
that they yield a remarkable reproduction of the experimental
cross section for 4He(n, n) 4He elastic scattering. To construct
these potentials, we have developed a novel SA-NCSM/GF
approach to evaluate the single-particle time-ordered Green’s
function that starts from realistic internucleon interactions
and ensures a translational invariance by using the Lawson
procedure, which is critical for light targets. This provides

effective nucleon-nucleus potentials that contain the infor-
mation about all near reaction channels, including d and α

partitioning. This is achieved through the calculated A ± 1
systems, which, however, makes the problem computationally
intensive—fortunately, solutions become feasible with the ef-
ficacious Lanczos algorithm and, in future studies, the use of
selected model spaces for heavier nuclei.

For n + 4He, the 4He target ground state, as well as the
Lanczos algorithm for evaluating the Green’s function in 3He
and 5He are computed in the ab initio SA-NCSM approach
with the NNLOopt chiral potential in complete model spaces
up to 15 HO shells. We have shown that the n + 4He phase
shifts calculated with infinite-space 3,4,5He ground-state ener-
gies agree with other ab initio theoretical studies that provide
(A + 1)-body solutions without the explicit construction of
optical potentials. The results suggest that both resonance
energies and correlations play an important role in reproduc-
ing the n + α dynamics. The SA-NCSM/GF yields a total
cross section for the n + 4He elastic scattering that reproduces
almost all of the data points within 1σ and is reasonably in-
dependent of h̄�, thereby providing a reliable parameter-free
NA optical potential for energies up to E ≈ 12 MeV.

In addition, we have discussed the n + 4He ab initio optical
potentials for the S1/2, P1/2, P3/2, and D3/2 partial waves that
are nonlocal and, interestingly, exhibit features that have been
observed for heavier closed-shell nuclei. Remarkably, the GF
approach that properly treats both the particle and hole sector
is key to getting a deeply bound 1

2
+

state in the S1/2 poten-

tial in addition to the 1
2

+
scattering state. Furthermore, the

approach can readily provide spectral functions to probe cor-
relations and single-particle properties of the target nucleus,
as illustrated here for the s1/2 single-particle levels.

The new developments provide a tool to construct ab initio
NA optical potentials for a broad range of nuclei accessible
to the SA-NCSM, currently up through the calcium region.
These potentials can be used with any reaction model that can
accommodate nonlocal potentials (the GF method is suitable
to provide local approximations, as discussed in Ref. [46]).
Future work using this method will include proton elastic
scattering, and elastic scattering of heavier nuclei, includ-
ing 6He, 12C, 16O, and 40Ca. In addition, generalizations to
deuteron elastic scattering by invoking two-nucleon overlaps
for dA potentials and inelastic scattering are possible within
this framework. Descriptions of deuteron breakup reactions
in standard distorted-wave Born approximation methods can
also use the parameter-free NA potentials produced in the SA-
NCSM/GF approach, by utilizing first ab initio proton-nucleus
and neutron-nucleus potentials, along with the NN potential
for the proton-neutron system, and ultimately including the
ab initio dA deuteron-nucleus potentials when they become
available.
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APPENDIX A: PROPERTIES OF THE GREEN’S
FUNCTION AND NUMERICAL PRECISION

The SA-NCSM/GF effective potential V (r, r′; E ) provides
the single-nucleon overlaps of the A ± 1 wave functions and
their energies, including the correct asymptotics, without
the need for calculating those explicitly in the many-body
approach of interest. In this section, we examine the poten-
tial and single-nucleon overlaps before using the R-matrix
method, and validate the results against explicit many-body
wave function computations in the SA-NCSM framework.
Indeed, for sufficiently large Nmax model spaces, the interior
part of the wave functions is accurately described by the SA-
NCSM calculations.

For a given channel for J0 = 0, the equation of motion
for the single-nucleon overlap with β = {nβ
β jβ} is given as
[21,46]:∑

nβ

[
ε±

k δαβ − (Trel )αβ − V J
αβ (E )

]〈
�J±

β

∣∣�A±1
k

〉 = 0, (A1)

where V J
αβ (E ) is calculated at E close but not equal to

ε±
k . Equation (A1) is derived from the EoM of the s.p.

propagator given in Eq. (4), or (E1 − Trel )G − VG = 1 in
configuration space, by using the Lehmann representation
of the Green’s function [see Eq. (22) but for Jacobi coordi-
nates], together with the completeness relation for the J0 = 0
particle and hole states 1 =∑k〈�J+

α |�A+1
k 〉〈�A+1

k |�J+
β 〉 +

〈�J−
β |�A−1

k 〉〈�A−1
k |�J−

α 〉 = N p
αβ + N h

βα [cf. Eq. (3)], and

making use of the properties that ε±
k are nondegen-

erate and that the corresponding overlap functions are
unique [21].

Equation (A1) is a Schrödinger equation with H = Trel +
V, which yields eigenvectors that correspond to the normal-
ized translationally invariant overlaps (S±


 jJ;k )−1/2〈�J±

 j |�A±1

k 〉
and eigenvalues that correspond to the associated ε±

k ener-
gies; here, the spectroscopic factors for the specific channel
and A ± 1 state are defined as S±


 jJ;k =∑n |〈�J±
n
 j |�A±1

k 〉|2
and can be calculated through the energy derivative of the
potential itself [21].6 Indeed, with V = (E1 − Trel ) − G−1,
and hence H = E1 − G−1, the eigenvectors of H using
the SA-NCSM/GF evaluation of G−1 coincide exactly with
the normalized translationally invariant overlaps calculated
within the SA-NCSM framework, as shown in Fig. 10 for
the P1/2 and P3/2 partial waves (similarly for the eigenvalues

εJπ = EA=5
Jπ − EA=4

0 for Jπ = 1
2

−
and 3

2
−

). We emphasize the
importance of using an orthonormal basis in the particle-hole
space (see the detailed discussion in Ref. [46]). In con-
trast, some approaches, such as the cluster model (e.g., see
Ref. [71–73]), consider functions that are nearly complete
in the space of particle (or hole) states only [46], which
here corresponds to using (N p)−1/2G+(N p)−1/2. However,
these overlap functions become modified by the norm of
the nonorthonormal particle stats (see blue dashed curve in
Fig. 10). In addition, the particle-hole space is important for
the S 1

2
optical potential, e.g., when calculated at E = 0 MeV

(Nmax = 12 and h̄� = 16 MeV) it yields a bound state at
−20.8 MeV that is occupied by the two protons and two
neutrons of 4He in the n + 4He system. This is informed by
the 3He 1

2
+

g.s. (at −20.6 MeV relative to the 4He g.s.), which
enters as a pole in the hole-term of the Green’s function.

An important property of the effective potential derived in
the SA-NCSM/GF framework is the finite-interaction range.
Indeed, beyond its effective range R0, the neutron-target po-
tential V = G−1

0 − G−1 = 0, and hence G−1
0 = G−1, as seen

6The effective potential can be used to solve an inhomogeneous
equation with a source term, in which case the solutions are the
overlaps functions and their norm provides the spectroscopic factor.
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FIG. 10. Eigenfunctions using the translationally invariant SA-
NCSM/GF optical potential V (r, r′) for (a) P1/2 at CM energy E =
4.0 MeV and (b) P3/2 at CM energy E = 1.8 MeV, compared with
the corresponding CM-free normalized overlap functions calculated
in the SA-NCSM with spectroscopic factors S = 1.09 (1.15) for P1/2

(P3/2) (red long dashed), which are in addition modified within the
particle-projected space, with spectroscopic factors 0.98 (0.98) for
P1/2 (P3/2) (blue dashed). SA-NCSM calculations are for Nmax = 12
and h̄� = 16 MeV.

in Fig. 11. This makes calculations performed in a finite
model space very suitable, as far as sufficiently high Nmax

values are used to accommodate the entire range up to R0

and h̄� independence is ensured for the observables at hand.
This guarantees that the effective potentials are accurately
described within the region of interest (for low-energy projec-
tiles, this is typically 1.5 fm � r, r′ � R0). However, because
we perform the inversion of the Green’s function in config-
uration space, one needs to take a special care of the matrix
elements calculated for nr or n′

r = nmax
r . For sufficiently large

Nmax model spaces, these matrix elements will contribute
to long distances, where G ∼ G0 = (E1 − Trel )−1. One can

FIG. 11. Translationally invariant G−1(r, r, E ) and G−1
0 (r, r, E )

as a function of r for the n + 4He P3/2 partial wave for Nmax = 12,
h̄� = 16 MeV, and CM energy E = 5.0 MeV. The inset shows the
corresponding diagonal optical potential.

clearly see that inverting the tridiagonal matrix of the kinetic
energy affects the nmax

r row and column of the inverted matrix
due to the finite matrix sizes. To resolve this the sum in
Eq. (20) is taken to nmax

r − 1 (corresponding to nmax − 2).
In addition, beyond R0 the nodes of both G−1(r, r′; E ) and
G−1

0 (r, r′; E ) coincide for r > r′ or r < r′, which helps ad-
dress a numerical precision at the subpercent level in the
calculations. Specifically, we slightly adjust, within 1% or
less, the HO characteristic length b used in G−1(r, r′; E ) to
ensure the node locations coincide with those of G−1

0 (r, r′; E ).
For example, for the P1

2
partial wave and r = 0.1 fm, this

means that a node at r′ = 4.53 fm appears now at r′ = 4.49
fm. Once the effective range of the interaction R0 is identified
through a region where G−1(r, r′; E ) and G−1

0 (r, r′; E ) coin-
cide, we set the potential at larger distances exactly to zero
(this is important since negligible numerical errors are en-
hanced at long distances in the R-matrix method). To achieve
a smooth transition to zero beyond R0, we multiply V (r, r′; E )
by a radial Gaussian function in the r and r′ space with width
σ ≈ 0.1 fm. Varying the details of this procedure yields prac-
tically the same results with variation that is inconsequential
compared with the h̄� variation.

APPENDIX B: OVERLAPS IN LABORATORY
AND JACOBI COORDINATES

For spatial coordinates, the transformation to Jacobi coor-
dinates is (see, e.g., Ref. [48])

uA+1∗
ik,a(L) = √

A + 1
∫

dξ1 · · · dξA−1dRA
CMdrA+1�

A+1
k�k

(
ξ1, . . . , ξA−1, RA

CM, rA+1
)∗

×�A
i

(
ξ1, . . . , ξA−1

)
φ�i

(
RA

CM

)
φa(rA+1)

= √
A + 1

∫
dξ1 · · · dξAdξ0�

A+1
k (ξ1, . . . , ξA)∗φ�k (ξ0)∗�A

i

(
ξ1, . . . , ξA−1

)∑
�α

Mα+
a;�i�

φα (ξA)φ� (ξ0)

=
∑

α

Mα+
a;�i�k

〈�A+1
k |(A�A

i φα

)〉 =
∑

α

Mα+
a;�i�k

〈�A+1
k |�+

iα〉, (B1)

014616-15



M. BURROWS et al. PHYSICAL REVIEW C 109, 014616 (2024)

where M is defined in Eq. (18) and we use
∫

φ∗
�k

(ξ0)φ� (ξ0)dξ0 = δ��k for the CM of the (A + 1)-body wave functions. Similarly,
for the A wave functions:

uA∗
ki,a(L) =

√
A
∫

dξ1 · · · dξA−1dξA
0 �A

i

(
ξ1, . . . , ξA−1

)∗
φ�i

(
ξA

0

)∗
�A−1

k

(
ξ1, . . . , ξA−2

)∑
�α

Mα−
a;��k

φ�

(
ξA

0

)
φα

(
ξA−1

)

=
∑

α

Mα−
a;�i�k

〈
�A

i

∣∣(A�A−1
k φα

)〉 =∑
α

Mα−
a;�i�k

〈
�A−1

k

∣∣�−
iα

〉∗
. (B2)

In this study, we use cluster basis that is free from CM ex-
citations. In the A + 1 CM reference frame, for the particle
states (similarly for the hole states in the A − 1 CM fame), one
can relate the states projected onto the CM reference frame
through the P̂0 operator of Eq. (34) to their t.i. counterparts
(true for any �i, so w.l.g., we set �i = 0):

P̂0
[A�A

i

(
ξ1, . . . , ξA−1

)
φ�i=0

(
RA

CM

)
φα (rA+1)

]
=
∑
�β

Mβ+
α;0�

(A�A
i

(
ξ1, . . . , ξA−1

)
φβ (ξA)

)P̂0φ� (ξ0)

=
∑

β

Mβ+
α;00

(A�A
i

(
ξ1, . . . , ξA−1

)
φβ (ξA)

)
φ0(ξ0)

= Mα+
α;00A�A

i

(
ξ1, . . . , ξA−1

)
φα (ξA)φ0(ξ0). (B3)

Hence,

〈
�A+1

k

∣∣�+
iα

〉 = 1

Mα+
α;00

〈
�A+1

k(�k=0)

∣∣�0+
i�i=0α

〉
L. (B4)

APPENDIX C: RELATIONS TO RESONATING GROUP
METHOD FOR THE J0 = 0 CASE

The connection to the RGM method and the RGM cluster
basis states (see Refs. [74] and its ab initio realization in
Ref. [8]) becomes clear when one examines the norm of the
orthonormal basis used in the time-ordered Green’s function
in the particle-hole space for spatial dof and J0 = 0. Accord-
ing to Eq. (B1), the norm of the particle states in Jacobi
coordinates is given as 〈�+

α |�+
β 〉 = 〈�A

0 φα|AA|�A
0 φβ〉, and

hence

〈�+
α |�+

β 〉 = 〈�A
0 φα

∣∣1∣∣�A
0 φβ

〉− 〈�A
0 φα

∣∣ A∑
i

P̂i,A+1

∣∣�A
0 φβ

〉
,

(C1)

where P̂ is a particle exchange operator. Noting that
〈�A

0 φα|1|�A
0 φβ〉 = δαβ , the norm of the particle and hole

cluster basis states in the SA-NCSM/GF are related to the
RGM norm N RGM

αβ [and associated norm kernel N RGM
αβ (r, r′)]

and the RGM exchange norm N RGM,ex
αβ as

N p
αβ = 〈�+

α |�+
β 〉 = 〈�A

0 φα

∣∣AA∣∣�A
0 φβ

〉 = N RGM
αβ ,

N h
βα = 〈�−

β |�−
α 〉 = 〈�A

0 φα

∣∣ A∑
i

P̂i,A+1

∣∣�A
0 φβ

〉
= −N RGM,ex

αβ . (C2)
These relations have been validated for the E � ε+

F regime,
where the RGM is applicable. This further confirms the differ-
ent technique used here based on CM-excitations-free cluster
basis states that ensures translationally invariant results. Im-
portantly, for particle-target reaction processes, Eqs. (C2)
imply that while the antisymmetrization of the particle-target
system is properly taken into account, first, the hole states
take into account the exchange of the projectile with a
nucleon in the target, and second, the orthonormal cluster
basis states |�α〉 used to evaluate the time-ordered Green’s
function describes nonantisymmetrized states |�A

0 φα〉. In-
deed, using laboratory coordinates one can derive the J0 =
0 norm of the hole states N h

ba [that is, the density-matrix
elements for the target ρba(L)] starting from −N RGM,ex

ab in
Eq. (C2):

〈
�A

0 φa

∣∣ A∑
i

P̂i,A+1

∣∣�A
0 φb
〉
L = A

∫
dr1 · · · drA+1〈�0|r1, . . . , rA〉φ∗

a (rA+1)P̂A,A+1φb(rA+1)〈r1, . . . , rA|�0〉

= A
∫

dr1 · · · drA+1〈�0|r1, . . . , rA〉φ∗
a (rA+1)P̂A,A+1

1√
A

∑
c

φb(rA+1)φc(rA)〈r1, . . . , rA−1|ac|�0〉

= A
∫

dr1 · · · drA+1〈�0|r1, . . . , rA〉φ∗
a (rA+1)

1√
A

∑
c

φb(rA)φc(rA+1)〈r1, . . . , rA−1|ac|�0〉

=
∑
cd

∫
dr1 · · · drAdrA+1〈�0|a†

d |r1, . . . , rA−1〉φ∗
d (rA)φ∗

a (rA+1)φb(rA)φc(rA+1)〈r1, . . . , rA−1|ac|�0〉

= 〈�0|a†
baa|�0〉L = ρba(L) = 〈�−

b |�−
a 〉L. (C3)
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