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Model for compound nucleus formation in various heavy-ion systems
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The statistical model for the calculation of the compound nucleus formation cross section and the probability
of compound nucleus formation in heavy-ion collisions is discussed in detail. Light, heavy, and superheavy
nucleus-nucleus systems are considered in this model in the framework of one approach. It is shown that the
compound nucleus is formed in competition between passing through the compound-nucleus formation barrier
and the quasielastic barrier. The compound-nucleus formation barrier is the barrier separating the system of
contacting incident nuclei and the spherical or nearly spherical compound nucleus. The quasielastic barrier is
the barrier between the contacting and well-separated deformed ions, which are the same as the incident ions.
It is shown that the compound nucleus formation cross section is suppressed when the quasielastic barrier is
lower than the compound nucleus formation barrier. The critical value of angular momentum, which limits
the compound nucleus formation cross-section values for light and medium-mass ion-ion systems at above-
barrier collision energies, is discussed in the model. The suppression of the compound nucleus formation cross
section even at small partial waves for very heavy ion-ion systems is obtained in the model. The values of
the capture and compound nucleus formation cross sections calculated for various light, heavy, and superheavy
nucleus-nucleus systems as well as the probability of the compound nucleus formation for superheavy nuclei
agree well with the available experimental data.
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I. INTRODUCTION

The collision of light and medium-mass nuclei at energies
slightly higher than the nucleus-nucleus interaction barrier for
low partial waves leads to the formation of the compound nu-
cleus as a rule. In contrast to this, the formation of compound
nuclei in high-energy collisions of light nuclei or in collisions
of heavy nuclei at energies slightly higher than the barrier is
suppressed [1–24]. The suppression of the compound nucleus
formation leads to very low values of the production cross
sections of superheavy nuclei [20–51].

Many varied models have been proposed for the descrip-
tion of the compound nucleus formation suppression in heavy
ion collisions at energies around the barrier and well above
the barrier [1,2,30–63]. In the beginning, the approximation
of the critical radius or critical angular momentum [52,53]
was proposed for the description of this suppression. Later, the
classical friction model was applied for consideration of the
compound nucleus formation cross sections [1,2,54,55]. The
probability of compound nucleus formation in the collision
of very heavy nuclei was also connected to the penetration
process through barriers of different nature [31–33,56,57].
The description of the compound nucleus formation is con-
sidered in the competition between the direct decay of the
stuck-together nuclei into scattered nuclei and the penetration
through the barrier related to the sequential nucleon transfer
in the direction toward a more asymmetric system of the
stuck-together nuclei [34–36,39,40,58,59]. The formation of
the compound nucleus is considered as the diffusion process
[37,38,41] or as motion with random forces in the complex

potential energy landscape, which includes the compound nu-
cleus and separated nuclei [30,42–48]. Often the probability
of compound nucleus formation is described by different phe-
nomenological or semiphenomenological expressions with
the parameters obtained by fitting the available experimental
data [49–51,60–62]. The evaporation residue cross-section is
restricted by the fission probability [5,53,63].

A new model for the description of the compound-nucleus
formation cross section and probability in collisions of heavy
ions is presented. Light, heavy, and superheavy nucleus-
nucleus systems are considered in this model in the framework
of a single approach. In this model, the compound nucleus is
formed in heavy-ion collisions during two consecutive steps.

The first step of the model is related to overcoming the
capture barrier, which is formed by the nuclear, Coulomb, and
centrifugal interactions of two separated incident nuclei. The
capture barrier is associated with colliding nuclei that are in
the ground state or have a shape slightly different from that of
the ground state due to the fast passing of the capture barrier
at high collision energies. The timescale of the barrier passing
time at above-barrier heavy-ion collisions is close to 10−22 s.

After the barrier passes, the incident nuclei are going to the
capture well [64]. The collision energy is quickly transferred
into the intrinsic energy of the stuck-together nuclei due to the
strong dissipative forces, which take place at the overlap of the
densities of interacting nuclei [53–55,65–67]. The relaxation
time of the dissipation of radial kinetic energy is smaller than
or similar to 10−21 s [65–67]. Therefore, the kinetic energy is
quickly transferred to the intrinsic energy of both nuclei, and
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the temperatures of the nuclear matter in the contacting nuclei
are quickly uniform and equal at the end of the first step. So,
the system of stuck-together nuclei with zero radial velocity
is formed in the capture well. The zero or close to zero radial
velocity leads to the dissipation of various memory effects on
the future dynamics of the system.

The capture well is limited by a compound nucleus for-
mation barrier Bcnf in the case of smaller distances between
nuclei. The compound nucleus formation barrier Bcnf appears
during the smooth shape evolution from the stuck-together
incident nuclei to the spherical or near-spherical compound
nucleus. The compound nucleus is formed when the system
has passed Bcnf . If the distance between contacting nuclei
in the capture well starts to decrease, but the system cannot
overcome Bcnf , then quasifission takes place. The final stage
of the quasifission process is scattered nuclei. The compound
nucleus can be also formed during the multinucleon transfer
from a lighter nucleus to a heavier one [58]. However, the
barrier height of this process is higher than Bcnf , therefore this
way of compound nucleus formation is not leading as a rule
[39].

The capture well is confined by other barriers in the case
of larger distances between nuclei, i.e., on the way from the
stuck-together nuclei to the well-separated deformed nuclei.
These barriers are formed by the nuclear, Coulomb, and cen-
trifugal interactions of two separated nuclei as well as the
contributions of the surface deformation energies of both nu-
clei. The quasielastic barrier Bqe is related to the evolution of
the stuck-together nuclei into the same nuclei as incident ones,
but deformed, after separation. If the stuck-together nuclei
exchange nucleons, the deep-inelastic barrier Bdi separates the
system of the stuck-together and scattered deformed nuclei
with new nucleon composition. Note that the quasielastic bar-
rier Bqe is, as a rule, the lowest barrier among the barriers on
the path of the stuck-together nuclear system to well-separated
nuclei.

The second step of the model is linked to the evolution of
the system of stuck-together nuclei in the capture well. The
nuclear matter of the system in the capture well has a uniform
temperature and zero velocity. The stuck-together system in
the capture well may be considered as a quasistationary state
located in the well between barriers of different nature. There-
fore, the further evolution of the system is related to the
competition induced by the penetration through the different
barriers. The penetration through the different barriers can
be considered statistically using the Bohr-Wheeler transition
state approximation, which was proposed for the calculation
of the width of passing through the fission barrier [68]. As
a result, the evolution of the system in the model is linked
to the ratio of the widths related to the penetration of the
corresponding barriers.

The present model is based on the approximations of the
uniform temperature of the nuclear matter and the zero ve-
locity of the stuck-together nuclei at the capture well. The
timescale of the shape evolution of the stuck-together nu-
clei is the main part of the contact time of the heavy-ion
fusion-fission reaction [66,69,70]. The contact time is the time
interval between the time of touching of incident nuclei and
the time of neck breaking between the final nuclei. According

to the microscopic calculations, the contact time of the heavy
ion reaction is close to ≈2–4 × 10−20 s [66,69,70]. Therefore,
the process of shape evolution occurring during contact time
is much slower than both the capture barrier passing ≈10−22 s
and the dissipation time of the kinetic energy ≈10−21 s. The
contact time and the time spent by the system in the capture
well are of the same order. That is why the system has, as
a rule, enough time to settle in the uniform temperature of
the nuclear matter and zero velocity in the capture well. As a
result, the further evolution of the system of the stuck-together
nuclei may be considered statistically using the Bohr-Wheeler
transition state approximation.

Note that the uniform temperature of nuclear matter and the
zero velocity of the stuck-together nuclei at the capture well
cannot be quickly reached for some reactions. For example, a
reaction may occur at very high collision energies. Therefore,
memory effects may affect the further dynamics of the system
in such cases and the present model should be modified.

Due to the very different timescales, the decomposition of
the reaction into two steps is natural. The first and fast step is
penetration through the capture barrier. The next and relatively
slow step is the formation and decay of the stuck-together
nuclei. The compound nucleus formation occurs during the
decay of the stuck-together nuclei.

For collision of identical or near-identical incident nu-
clei, the compound nucleus formation barrier Bcnf is close
to the fission barrier, while for very asymmetric collision
systems the height of this barrier is close to the barrier height
of the corresponding cluster emission. The cluster emission
barrier is related to the strongly asymmetric fission forms
and is much higher than the ordinary fission barrier as a
rule [71].

The compound nucleus is formed after passing this one-
body shape barrier Bcnf . The quasielastic barrier Bqe is, as a
rule, the lowest barrier among the barriers on the way from
the stuck-together nuclear system to well-separated nuclei.
Therefore, the competition when the nuclear system passes
through the barriers Bcnf and Bqe determines the probability of
the compound nucleus formation. As a result, the compound
nucleus formation cross section is connected to the probability
of its formation as well as the penetration through the capture
barrier between the incident nuclei.

The next section of the paper is related to the description of
the model. The discussion of the model application to various
heavy ion systems is presented in Sec. III. The conclusions are
given in Sec. IV.

II. THE MODEL

The total interaction potential of two spherical nuclei at
the distance between their mass centers r larger the contact
distance consists of the Coulomb V 0

C (r) = Z1Z2e2/r, nuclear
V 0

N (r), and centrifugal potential energies, i.e.,

V t
� (r) = V 0

C (r) + V 0
N (r) + h̄2�(� + 1)/(2μr2). (1)

Here Zi is the number of protons in the incident nucleus i,
i = 1, 2, e is the charge of the proton, and μ is the reduced
mass.
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The potential V t
� (r) has, as a rule, the capture barrier and

the capture well at low values of the angular momentum �

[64]. The distance between the closest points of the surfaces
of colliding nuclei belongs to the range 1–2.5 fm at the
capture barrier point. The stuck-together nuclei are formed
after penetration through this barrier. Therefore, the formation
cross section of the stuck-together nuclei or the capture cross
section is

σ c(E ) =
∞∑

�=0

σ c
� (E ) = π h̄2

2μE

∞∑
�=0

(2� + 1)T�(E ). (2)

Here σ c
� (E ) is the partial wave cross section and E is the

energy of collision in the center-of-mass system. The trans-
mission coefficient through the capture barrier T�(E ) can be
calculated using the Ahmed formula [72]

T�(E ) = 1 − exp (−4πα�)

1 + exp [2π (β� − α�)]
, (3)

where α� = 2(Bsph
� E )1/2

h̄ω�
and β� = 2Bsph

�

h̄ω�
. Here Bsph

� = V t
� (rb) is

the capture barrier height, rb is the radius of the barrier, and

h̄ω� = (− h̄2

μ

d2V t
� (r)

dr2 )1/2|r=rb is the barrier curvature. Ahmed
obtained the exact expression for the transmission coefficient
through the Morse potential barrier [73]. The shape of the
realistic total nucleus-nucleus potential is closer to the shape
of the Morse potential than the parabolic one; see for de-
tails Ref. [74] and papers cited therein. Therefore, Ahmed’s
expression for the transmission coefficient is more suitable
than the corresponding expression for the parabolic barrier
[75,76]. The difference between the Ahmed and parabolic
transmission coefficients is important for sub-barrier energies
[74].

The stuck-together nuclei are populated states at the cap-
ture well of the total potential as a rule [64]. The kinetic
energy of relative motion is, as a rule, completely dissipated
into inner degrees of freedom due to the strong dissipation
caused by the overlap of some parts of approaching nuclei
during the collision [53–55,65–67]. The uniform temperature
of nuclear matter is quickly set in the system of the stuck-
together nuclei. Therefore, all subsequent evolution stages of
the stuck-together nuclei can be considered using the Bohr-
Wheeler transition state approximation.

The compound nucleus formation cross section is con-
nected to both the penetration through the capture barrier and
the probability of the compound nucleus formation. There-
fore, the cross section of the compound nucleus formation is

σ cn(E ) =
∞∑

�=0

σ cn
� (E ) = π h̄2

2μE

∞∑
�=0

(2� + 1)T�(E )P�(E ), (4)

where

P�(E ) = �cn
� (E )

�s
�(E )

= 1

1 + G�(E )
(5)

is the compound nucleus formation probability in the
partial wave �. Here �cn

� (E ) is the decay width of
the stuck-together nuclei to the compound nucleus

states,

�s
�(E ) = �cn

� (E ) + �d
� (E ) (6)

is the total decay width of the state of the stuck-together
nuclei, and

G�(E ) = �d
� (E )

�cn
� (E )

. (7)

�d
� (E ) is the decay width of the stuck-together nuclei into all

channels leading to the two separated nuclei.
The width �d

� (E ) includes the contributions of the elastic
�e

� (E ), quasielastic �
qe
� (E ), and single- and many-particle

transfers �t
�(E ), and of the deep-inelastic �di

� (E ) and quasi-
fission �

qf
� (E ) decays of the stuck-together nuclei [39].

As a result, �d
� (E ) = �e

� (E ) + �
qe
� (E ) + �t

�(E ) + �di
� (E ) +

�
qf
� (E ). The quasielastic barrier Bqe has the lowest barrier

height among these processes [39]. Therefore, the width of the
quasielastic decay of the stuck-together nuclei is the leading
contribution to �d

� (E ), i.e., �d
� (E ) ≈ �

qe
� (E ).

Besides this, the experimental mass distributions of bi-
nary products formed in the reactions leading to the
heavy and superheavy nuclei at energies around and higher
the Coulomb barrier have the strongest yields for the
quasielastic events, while the yields of other processes
are much smaller [4,7,14,15,17,22–24]. The quasielas-
tic contribution to the cross section is the leading one
for high-energy collisions of various heavy ions [77,78].
These experimental observations support the approximation
�d

� (E ) ≈ �
qe
� (E ).

The compound nucleus can be formed by passing through
the compound nucleus formation barrier Bcnf . As pointed
out in the Introduction, multinucleon transfer can also lead
to the compound nucleus formation [58]. However, the
one-body barrier Bcnf is lower than the two-body bar-
rier related to the compound nucleus formation during
multinucleon transfer [39]. Therefore, the compound nu-
cleus is mainly formed when passing through the barrier
Bcnf , and the contribution of the compound nucleus for-
mation through multinucleon transfer to �cn

� (E ) may be
neglected.

So, the widths describing the passage through the barriers
Bcnf and Bqe, i.e., �cn

� (E ) and �
qe
� (E ), are the most important

for calculations of G�(E ) and P�(E ). Consequently, using the
discussed approximations for the widths �d

� (E ) and �cn
� (E ),

one can write

G�(E ) ≈ �
qe
� (E )

�cn
� (E )

. (8)

The total probability of compound nucleus formation in
heavy-ion collision is

P(E ) = σ cn(E )

σ c(E )
=

∑∞
�=0(2� + 1)T�(E )P�(E )∑∞

�=0(2� + 1)T�(E )
. (9)

This probability is sometimes studied experimentally; see
Refs. [4,8,15,20,24] and Figs. 4 and 5.

As follows from Eqs. (4), (5), and (8), to calculate the
cross section for the formation of a compound nucleus, it
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is necessary to know the widths �cn
� (E ) and �

qe
� (E ). These

widths are discussed in the next subsections in detail.

A. The width �cn
� (E )

The width �cn
� (E ) can be linked to the compound nucleus

formation barrier Bcnf , which exists during the smooth shape
evolution from the stuck-together nuclei to the spherical or
nearly spherical compound nucleus. This barrier Bcnf is re-
lated to the one-body shape evolution as the ordinary fission
barrier. The minimal value of Bcnf may be estimated as the
height of the fission barrier because the probability of fission
is related to the trajectory of minimal action [79], which
connects the compound nucleus and the two separated nuclei.
Note that during heavy-ion fusion and fission, the collective
coordinates describing these processes are changed in op-
posite directions. Therefore, the width �cn

� (E ) can be found
similarly to the fission width, applying the Bohr-Wheeler ap-
proximation of the transition state [68].

The width for passing the fission barrier was introduced by
Bohr and Wheeler in 1939 [68]. Note that the Bohr-Wheeler
fission width is obtained for the fission barrier height indepen-
dently of the thermal energy of the fissioning system.

As was shown by Strutinsky in 1966, the fission barrier
height consists of the liquid-drop and shell-correction contri-
butions [79–82]. It was found in 1972 that the shell correction
energy decreases strongly with an increase of the inner energy
ε of the system [83]. Due to this, the height of the fission
barrier depends very strongly on the inner energy ε of the
system [83–91].

A simple expression for the fission width of excited nuclei
with the fission barrier dependent on excitation energy is
derived in Ref. [90]. At the zero-excitation energy the fission
width derived in Ref. [90] coincides with the Bohr-Wheeler
width. The expression obtained in Ref. [90] leads to a good de-
scription of the experimental values of the ratio �f (E )/�n(E )
and the fission barrier heights in various nuclei [89,91]. Here
�n(E ) is the neutron evaporation width.

Taking into account that the fusion and fission are some-
how mutually inverse processes and modifying the expression
for the fission width derived in Ref. [90], the width for passing
the compound nucleus formation barrier in heavy-ion colli-
sions can be written as

�cn
� (E ) = 2

2πρsn(E )

∫ εm

0
dε

ρA(ε)

Ntot
Ns(ε). (10)

Here ρsn(E ) is the level density of the stuck-together nuclei
(the level density of the initial state), ρA(ε) is the level density
of the compound nucleus with A nucleons formed in the
heavy-ion collision, the ratio ρA(ε)/Ntot is the probability of
finding the nuclear system passing through the barrier with
the intrinsic (thermal) excitation energy ε in the above-barrier
transition states,

Ntot =
∫ εm

0
dερA(ε) (11)

is the total number of states available for barrier passing in
the case of the energy-dependent barrier of compound nucleus

formation Bcnf (ε),

Ns(ε) =
∫ E+Q−Bcnf

� (ε)−ε

0
dK ρA(E + Q − Bcnf (ε) − K )

=
∫ E+Q−Bcnf

� (ε)

ε

deρA(e) (12)

is the number of states available for the nuclear system passing
through the barrier at the thermal excitation energy ε, and Q
is the fusion reaction Q value. Note that Bcnf

� (ε) and E + Q
are, respectively, the barrier height and the excitation energy
of the compound nucleus evaluated relative the ground state
of the compound nucleus formed in the fusion reaction. εm

is the maximum value of the thermal excitation energy of the
compound nucleus at the saddle point, which is determined as
the solution of the equation

εm + Bcnf
� (εm ) = E + Q. (13)

This equation is related to the energy conservation law; i.e.,
the sum of thermal εm and potential Bcnf (εm ) energies at the
saddle point equals the total excitation energy E + Q.

The back-shifted Fermi gas model [92,93] is used for a
description of the level density ρA(ε) of the nucleus with A
nucleons. The level density in this model is given by

ρA(ε) = π1/2 exp [2
√

aA(ε − �)(ε − �)]

12[aA(ε − �)]1/4(ε − �)5/4
, (14)

where

aA(ε) = a0
A

{
1 + E emp

shell

ε
[1 − exp (−γ ε)]

}
(15)

is the level density parameter [93,94]. Here

a0
A = 0.0722396A + 0.195267A2/3 MeV−1 (16)

is the asymptotic level density parameter obtained at high
excitation energies, when all shell effects are damped [93,94],
E emp

shell is the empirical shell correction value [93,95], γ =
0.410289/A1/3 MeV−1 is the damping parameter [93,94], and
A is the number of nucleons in the nucleus. According to
the prescription of Ref. [93], the value of empirical shell
correction E emp

shell is calculated as the difference between the
experimental value of nuclear mass and the liquid-drop com-
ponent of the mass formula [93,95]. The back-shift energy is
described by the expression � = 12n/A1/2 + 0.173015 MeV
[93], where n = −1, 0, and 1 for odd-odd, odd-A, and even-
even nuclei, respectively.

According to the Strutinsky shell correction prescription
[79–86,89–91] the barrier height of compound nucleus for-
mation is written as

Bcnf
� (ε) = Bld

� (ε) + Bsh
� (ε) + h̄2�(� + 1)

2Jcnf
. (17)

Here

Bld
� (ε) = E saddle ld

� (ε) − Egs ld
� (ε) (18)

is the liquid-drop contribution to the barrier and

Bsh
� (ε) = E saddle sh

� (ε) − Egs sh
� (ε) (19)

014607-4



MODEL FOR COMPOUND NUCLEUS FORMATION IN … PHYSICAL REVIEW C 109, 014607 (2024)

is the shell contribution to the compound nucleus formation
barrier related to the nonuniform distribution of the single-
particle energies around the Fermi level. Here E saddle ld/sh

� and
Egs ld/sh

� are the liquid-drop/shell-correction energies of the
nucleus at the saddle and ground-state points, respectively.
The last term in Eq. (17) is the rotational contribution. Jcnf =
2
5 MR2

0A(1 +
√

5
16π

βcnf + 135
84π

β2
cnf ) is the moment of inertia

of the nucleus at the compound nucleus formation barrier,
where R0 = r0A1/3 is the radius of a spherical compound
nucleus, βcnf is the quadrupole deformation of the nucleus at
the barrier, and M is the nucleon mass. The axial symmetry
axis of the nucleus is perpendicular to the rotation axis. The
contribution of octupole deformation to the moment of inertia
may be neglected because the octupole deformation value is
smaller than the quadrupole one. The contributions of higher
multipole deformations to the moment of inertia are small as a
rule due to small values of higher multipole deformations. The
pairing force contribution to the compound nucleus formation
barrier is ignored here because this contribution is strongly
attenuated or zero at high excitation energies of the nucleus
formed in heavy-ion collisions. Recall that the pairing force
is reduced with the temperature and disappears at the critical
temperature T ≈ 0.5 MeV [90]. The temperature of the com-
pound nucleus system formed in heavy-ion fusion reactions is
sufficiently high as a rule.

The temperature dependence of the constants of the liquid-
drop model is negligible at T � 2 MeV and small for higher
temperatures [96,97]. Due to this, the liquid-drop contri-
bution to the compound nucleus formation barrier height
Bld

� (ε) depends weakly on the thermal excitation energy ε

[89,90,96,97]. Therefore, the temperature dependence of the
liquid-drop contribution to the compound nucleus formation
barrier is ignored.

The exponential damping of the single-particle shell-
correction contribution into the fission barrier with an increase
of ε is widely discussed; see Refs. [31,39,86–88,90] and pa-
pers cited therein. The exponential damping of the fission
barriers of various superheavy nuclei with an increase ε has
been confirmed in the framework of the finite-temperature
self-consistent Hartree-Fock+BCS approach with the Skyrme
force [87,88]. The results of the shell correction calculations
[86] show similar behavior. Therefore, this approximation can
be also applied to the compound nucleus formation barrier
because the fission and compound nucleus formation barriers
are related to the variation of the nuclear system energy with
deformation. Then, the compound nucleus formation barrier
can be approximated as

Bcnf
� (ε) ≈ Bld + Bsh exp (−γDε) + h̄2�(� + 1)

2Jcnf
. (20)

Here Bld = Bld
�=0(0) and Bsh = Bsh

�=0(0) are, respectively, the
liquid-drop and shell correction contributions to the com-
pound nucleus formation barrier at ε = 0 and � = 0, and γD

is the damping coefficient. The dependencies of Bld, Bsh, and
Jcnf on � are neglected for the sake of simplicity.

The values of Bsh ≈ −Egs sh
�=0 (0) = −Egs sh because

|Egs sh
� (0)| � |E saddle sh

� (0)| as a rule; see Refs. [31,91]

and papers cited therein. As a result, Eq. (20) can be written
as

Bcnf
� (ε) ≈ Bld − Egs sh exp (−γDε) + h̄2�(� + 1)

2Jcnf
. (21)

Note that the values of Egs sh obtained in the framework of the
macroscopic-microscopic model are tabulated in Refs. [98,99]
for many nuclei. The values of the ground-state shell correc-
tion energy given in Ref. [98] are used in the calculations of
the fission barrier. Besides this, the values of Egs sh can be also
found empirically; see for details the next subsection.

In the case of collision of identical or near identical nuclei
the values of Bld can be found using the code BARFIT [100]
with the original values of parameters because the compound
nucleus formation barrier is close to the fission barrier. The
values of the fission barrier calculated in the macroscopic-
microscopic finite-range liquid-drop model [101] can be
used for fixing the barrier values too. So, there are various
possibilities to define the liquid-drop and shell-correction con-
tributions of the compound nucleus formation barrier for a
nearly symmetric collision system.

For collisions involving very different nuclei the values
of Bld should be larger than the one calculated for the
symmetric fission using the code BARFIT. The compound nu-
cleus formation barrier for symmetric [32,33] and asymmetric
[31,39] heavy ion systems leading to the superheavy nuclei
are discussed in the framework of simplified calculations. The
approximation used to describe the cluster decay [71] can also
be applied to evaluate the compound nucleus formation barrier
for asymmetric systems. Note that the asymmetric fission
shapes are important for the heavy and superheavy nuclei
[102,103]. The Bld value may also be used as the model’s
fitting parameter.

It is well known that the shell-correction energy disappears
in various nuclei at a compound-nucleus temperature of TD ≈
2 MeV [83–85]. Due to this, the compound nucleus formation
barrier height is only determined by the liquid-drop contribu-
tion at T � 2 MeV. The compound-nucleus excitation energy
ε at high T is ε = a0

AT 2, where a0
A is defined in Eq. (16).

Applying E sh(εD) = E sh(0) exp (−γDεD), where εD = a0
AT 2

D ,
it is easy find γD = ln [E sh(0)/E sh(εD)]/a0

AT 2
D . Substituting

E sh(0)/E sh(εD) ≈ 100 and using (16) one obtains a simple
formula for calculation of the damping coefficient, γD ≈
1.15/(0.0722396A + 0.195267A2/3) MeV−1. The values of
γD calculated by this formula for the range 180 � A � 300
are close to values used in other works [31,39,49,50,87,91].

It may seem that the parameters γD in Eqs. (20) and
(21) and γ in Eq. (15) should be the same because these
parameters relate to the damping of the shell structure with
rising excitation energy of the compound nucleus. However,
this is not correct. The parameter γ is obtained by fitting
the experimental data for the energy level densities in dif-
ferent nuclei for various excitation energies using Eq. (14)
with the phenomenological dependence of the level density
parameter described by Eq. (15) [93,94]. The experimental
data for the energy level densities include the single-particle
levels, multiparticle-multihole levels, and other levels of vari-
ous natures. The value of γD is only related to the structure of
the single-particle levels around the Fermi energy, which are
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taken into account in the shell-correction method [79–88]. The
value of γ smoothly decreases with the number of nucleons in
nuclei, because γ ∝ A−1/3. In contrast to this, the parameter
γD is obtained using the disappearance of the shell-correction
energy at TD ≈ 2 MeV and γD ∝ A−1.

B. The width �
qe
� (E )

The energy dependence of the quasielastic barrier can be
neglected. Therefore, the Bohr-Wheeler approximation of the
transition state [68] can be used for the calculation of the
width �

qe
� (E ). The width �

qe
� (E ) is related to the combination

of level densities in two nuclei, so

�
qe
� (E ) = 1

2πρsn(E )

∫ E−Bqe
�

0
dε

∫ ε

0
dε ρA1 (ε)

× ρA2 (ε − ε). (22)

Here Bqe
� is the value of the quasielastic barrier calculated

relative to the interaction potential energy of two nuclei at infi-
nite distance between them. The energy level densities ρsn(E )
and ρAi (ε) are determined in Eqs. (10) and (14), respectively.
Ai is the number of nucleons in incident nucleus i, i = 1, 2,
and A = A1 + A2 is the number of nucleons in the compound
nucleus.

The value of barrier height Bqe
� is calculated as the lowest

barrier of the total potential energy of two nuclei, which sep-
arates the stuck-together and well-separated deformed nuclei.
The total potential energy of deformed nuclei is

V t
� (r, {β1}, {β2}) =VC(r, {β1}, {β2})

+ VN(r, {β1}, {β2}) + V�(r, {β1}, {β2})

+ E1
def ({β1}) + E2

def ({β2}), (23)

where {βi} = βi2, βi3 are the surface deformation parame-
ters of nucleus i with the surface radius Ri(θ ) = R0i[1 +∑

L=2,3 βiLYL0(θ )], i = 1, 2, R0i is the radius of the spherical
nucleus, and YL0(θ ) is the spherical harmonic function [104].
VC(r, {β1}, {β2}), VN(r, {β1}, {β2}), and V�(r, {β1}, {β2}) are
the Coulomb, nuclear, and centrifugal potentials of deformed
nuclei, respectively. Edef ({βi}) is the deformation energy of
nucleus i.

The lowest barrier is related to axial-symmetric nuclei
both elongated along the axis connecting their mass centers
[64,105]. The Coulomb interaction of two axial-symmetric
deformed nuclei at such mutual orientation is

VC(r, {β1}, {β2})

= V 0
C (r)

[
1 + f1(r, R01)β12

+ f1(r, R02)β22 + f2(r, R01)β2
12 + f2(r, R02)β2

22

+ f3(r, R01, R02)β12β22 + f4(r, R01)β13 + f4(r, R02)β23

+ f5(r, R01)β2
13 + f5(r, R02)β2

23 + f6(r, R01, R02)β13β23

+ f7(r, R01)β12β13 + f7(r, R02)β22β23

+ f8(r, R01, R02)β12β23 + f8(r, R02, R01)β22β13
]
, (24)

where V 0
C (r) is the Coulomb interactions of spherical nuclei

[see Eq. (1)] and r is the distance between their mass centers

[106]. Here

f1(r, R0i ) = 3R2
0i

2
√

5πr2
, (25)

f2(r, R0i ) = 3R2
0i

7πr2
+ 9R4

0i

14πr4
, (26)

f3(r, R01, R02) = 27R2
01R2

02

10πr4
, (27)

f4(r, R0i ) = 3R3
0i

2
√

7πr3
, (28)

f5(r, R0i ) = 2R2
0i

5πr2
+ 9R4

0i

22πr4
+ 100R6

0i

143πr6
, (29)

f6(r, R01, R02) = 45R3
01R3

02

7πr6
, (30)

f7(r, R0i ) =
√

5R3
0i√

7πr3
+ 5

√
35R5

0i

22πr5
, (31)

f8(r, R01, R02) = 9
√

5R2
01R3

02

2
√

7πr5
. (32)

This expression for VC(r, {β1}, {β2}) takes into account all
linear and quadratic terms of both the quadrupole and octupole
deformation parameters. The octupole deformation parame-
ters are chosen in such a way that the shapes of two identical
nuclei are mirror symmetric with respect to the plane pass-
ing through half of the distance between the surfaces of the
nuclei and perpendicular to the axial-symmetry axis of the
system. The volume correction, which appears in the second
order of the deformation parameter and is important for heavy
systems, is taken into account in this expression. The volume
correction is connected to the conservation of the particle
number in the nucleus. Note that the position of the mass
center of a nucleus with nonzero quadrupole and octupole
deformations is slightly shifted from the position of the mass
center of a spherical nucleus. This shift is proportional to
βi2βi3 [107–109]. The additional dipole deformations, which
are proportional to βi1 ∝ −βi2βi3, are introduced for the com-
pensation of this shift of the mass center position; see for
details Refs. [108,109]. As a result, deformed and spherical
nuclei have the same positions as the mass centers. Therefore,
the distances between the mass centers of the deformed and
spherical nuclei are the same in the present approach.

According to the proximity theorem [110,111], the nu-
clear part of nucleus-nucleus interaction is determined by
the closest distance between surfaces of these nuclei, d (r).
A function dependent on d (r) parameterizes the dependence
of the nucleus-nucleus interaction potential on d (r) [111].
This function is different for various parametrizations of the
proximity-type potentials [111–114]. According to the prox-
imity theorem, the nuclear interaction of deformed nuclei at
the closest distance between surfaces, d (r, β1, β2), links to
the nuclear interaction of these spherical nuclei located at the
same closest distance between surfaces of the spherical nuclei,
dsph(rsph ), i.e., when

d (r, β1, β2) = dsph(rsph ). (33)
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Here

d (r, {β1}, {β2}) = r − R1(0) − R2(0), (34)

dsph(rsph ) = rsph − R0t, (35)

and R0t = R01 + R02. Note that the distances between mass
centers of the spherical rsph and deformed r nuclei are
different.

The nuclear part of the interaction potential between de-
formed nuclei in the proximity approach [39,106,115,116] is

VN(r, {β1}, {β2}) = S({β1}, {β2})

×V 0
N (d (r, {β1}, {β2}) + R0t ). (36)

Here

S({β1}, {β2}) =
R1(π/2)2R2(π/2)2

R1(π/2)2R2(0)+R2(π/2)2R1(0)
R01R02

R0t

(37)

is the factor related to the modification of the strength of
nuclear interaction induced by the surface deformations of
the interacting nuclei, which is derived in Ref. [115]. Recall
that the octupole deformation parameters are chosen in such a
way that the shape of two identical nuclei is mirror symmetric
with respect to the plane passing through half of the distance
between the surfaces of the nuclei and perpendicular to the
axial-symmetry axis of the system.

The potential V 0
N determines the nuclear part of the in-

teraction between spherical nuclei, which consists of the
macroscopic and the shell-correction contributions to the in-
teracting energy of nuclei [39,106,112,117–119],

V 0
N (r) = Vmacro(r) + Vsh(r). (38)

Here r is the distance between the mass centers of spherical
nuclei.

The macroscopic part Vmacro(r) of the nuclear interaction of
nuclei is related to the macroscopic density distribution and
the nucleon-nucleon interactions of colliding nuclei. At r >

R0t, it has the Woods-Saxon form [39,106,112]

Vmacro(r) = v1C + v2C1/2

1 + exp[(r − R0t )/(d1 + d2/C)]
. (39)

Here v1 = −27.190 MeV fm−1, v2 = −0.93009 MeV
fm−1/2, d1 = 0.78122 fm, d2 = −0.20535 fm2, C =
R01R02/R0t is in fm, R0i = 1.2536A1/3

i − 0.80012A−1/3
i −

0.0021444/Ai is the radius of ith nucleus in fm, and Ai is the
nucleon number in the nucleus i.

The shell-correction contribution Vsh(r) to the nucleus-
nucleus potential is related to the shell structure of nuclei,
which is disturbed by the nucleon-nucleon interactions of
colliding nuclei. When the nuclei approach each other, the en-
ergies of the single-particle nucleon levels of each nucleus are
shifted and split due to the interaction of nucleons belonging
to different nuclei [118,119]. Therefore, the energy level spec-
tra near the Fermi energy become more uniform. This leads to
the reduction of the amplitude of the shell correction energy
at small distances between interacting nuclei. Due to this, the
shell-correction contribution to the nuclear part of the inter-
action between nuclei is introduced in Refs. [106,112,117].
The representation of the nucleus-nucleus potential energy in

Eq. (38) is similar to the Strutinsky shell-correction prescrip-
tion [79–82,118,119], which is widely used for the calculation
of the nuclear binding energies, the deformation energies, the
fission barriers, the cluster emission barrier, and other quanti-
ties. The shell-correction part of the nucleus-nucleus potential
at r > Rt is given as [39,106,112]

Vsh(r) = [
Egs sh

1 + Egs sh
2

][ 1

1 + exp
(Rsh−R

dsh

) − 1

]
, (40)

where Rsh = R0t − 0.26 fm, dsh = 0.233 fm, and

Egs sh
i = Bm

i − Bexp
i (A, Z ) (41)

is the phenomenological shell correction for nucleus i. Here

Bm
i = 15.86864Ai − 21.18164A2/3

i + 6.49923A1/3
i

−
[

Ni − Zi

Ai

]2[
26.37269Ai − 23.80118A2/3

i

− 8.62322A1/3
i

]
− Z2

i

A1/3
i

[
0.78068 − 0.63678A−1/3

i

] − Pp − Pn (42)

is the macroscopical value of the binding energy in MeV
established in the phenomenological approach, and Bexp(A, Z )
is the binding energy of the nucleus in MeV obtained
using the evaluated atomic masses [120]. Pp(n) are the pro-
ton (neutron) pairing terms, which are equal to Pp(n) =
5.62922 (4.99342) A−1/3

i in the case of odd Z (N) and Pp(n) =
0 in the case of even Zi (Ni), and Ni is the neutron number
in the nucleus i. Equations (41) and (42) may be used for
calculation of Egs sh in Eq. (21) too.

The values of Vsh(r) are close to zero at large distances

between nuclei. The values of Vsh(r) ≈ [Egs sh
1 + Egs sh

2 ]/2 at
small distances between nuclei. The shell-correction contri-
bution to the total nuclear interaction of nuclei takes into
account the individual peculiarities of the nuclei involved in
the collision. It is related to the deviation of the total nuclear
interaction from the global macroscopic interaction.

The centrifugal potential energy of two deformed nuclei is
presented in the form traditional for heavy ions,

V�(r, {β1L}, {β2L}) = h̄2�(� + 1)

2Jqe
. (43)

Here Jqe = μr2 is the moment of inertia of the quasielastic
system and μ is the reduced mass; see also Eq. (1).

The deformation energy of the nucleus induced by the
surface multipole deformations is

Ei
def ({βiL}) =

3∑
L=2

[
Cld

LAiZi
+ Csh

LAiZi

]β2
iL

2
. (44)

Here

Cld
LAiZi

= (L − 1)(L + 2)bsurf A
2/3
i

4π
− 3(L − 1)e2Z2

i

2π (2L + 1)R0i
(45)

is the surface stiffness coefficient obtained in the liquid-drop
approximation [107,121], and bsurf is the surface coefficient
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of the mass formula [98]. Csc is the shell-correction contribu-
tion to the stiffness coefficient. It is possible to approximate
Csc ≈ −0.05 δE Cld [39,122], where δE is the phenomeno-
logical shell-correction value in MeV; see Eq. (41). Note that
experimental values of the surface stiffness coefficient for
different nuclei are distributed around the value Cld [107,121].
The approximation for the surface stiffness coefficient used in
Eq. (45) is crude, but it is taken into account by the shell effect.
This approximation corresponds to the experimental tendency
of the values of the surface stiffness coefficient and simplifies
further calculations significantly.

So, the integrals in the widths �cn
� (E ) and �

qe
� (E ) [see

Eqs. (10) and (22)] have been defined. Note that both widths
�d

� (E ) and �
qe
� (E ) are inversely proportional to the level den-

sity of the stuck-together nuclei, ρsn(E ). Therefore, the ratio
of the widths G�(E ) does not depend on ρsn(E ). As a result,
the partial probability of the compound nucleus formation
P�(E ) and the compound nucleus cross section (4) do not
link to ρsn(E ). Due to these, the properties of ρsn(E ) are not
discussed and it is possible to discuss results obtained in the
model.

III. DISCUSSION

To start, it is useful to consider the probability of the
compound nucleus formation qualitatively.

A. Qualitative consideration

Taking into account that the level density exponentially
depends on the excitation energy and neglecting other energy
dependencies of the level density, the width �

qe
� (E ) can be

approximated as

�
qe
� (E ) ∝ ρA1 (ε1)ρA2 (ε2)

2πρsn(E )
. (46)

Here the energies εi are calculated by solving the system of
equations

T 2 = ε1/aA1 (ε1) = ε2/aA2 (ε2), (47)

ε1 + ε2 = E − Bqe
� , (48)

which leads to the same value of temperature T of both nuclei.
Applying the proposal used for getting Eq. (46) and in the

case Bld � Bsh, the width �cn
� (E ) can be approximated as

�cn
� (E ) ∝ ρA(εm )

2πρsn(E )
. (49)

Here the energy εm is coupled to the compound nucleus for-
mation barrier value; see Eq. (13).

Substituting Eqs. (46) and (49) in (8), the expression for
the ratio of the widths can be written in the simple form

G�(E ) ∝ ρA1 (ε1)ρA2 (ε2)

ρA(εm )
. (50)

The energy level densities in Eq. (50) depend on the com-
pound nucleus formation barrier Bcnf − Q [see Eq. (21)] and

the quasielastic barrier Bqe
� , which can be approximated as

Bqe
� = Bqe + h̄2�(� + 1)

2Jqe
. (51)

Here Bqe is the quasielastic barrier height for � = 0 and Jqe =
μr2

qe is the moment of inertia of the two deformed nuclei at the
quasielastic barrier. The barrier heights Bcnf − Q and Bqe

� are
defined relatively as the interaction energies of incident nuclei
at infinite distance between them.

Any shell effects are negligible in the case of large collision
energies. Taking into account that the level density exponen-
tially depends on the excitation energy and neglecting other
energy dependencies, the energy level densities in Eq. (50)
can be approximated as

ρA1 (ε1)ρA2 (ε2) ∝ e2
√

(a0
A1

+a0
A2

)[E−Bqe− h̄2�(�+1)
2Jqe ]

, (52)

ρA(εm ) ∝ e
2

√
a0

A

[
E+Q−Bld− h̄2�(�+1)

2Jcnf

]
. (53)

Here Eqs. (21), (47), (48), and (51) have been used.
Substituting the asymptotic level density parameters with

a0
A ≈ A/10 MeV−1 and a0

A1
+ a0

A2
≈ A/10 MeV−1, and using

Eqs. (52) and (53), the ratio of densities is given in the simple
form

G�(E ) ∝ exp (2
√

A/10 g�). (54)

Here

g�(E ) =
√

E − Bqe − h̄2�(� + 1)

2Jqe

−
√

E − (Bld − Q) − h̄2�(� + 1)

2Jcnf
. (55)

The values of the moments of inertia in this expression obey
the inequality Jqe > Jcnf . Therefore, h̄2�(�+1)

2Jcnf > h̄2�(�+1)
2Jqe .

For the collision of heavy nuclei
√

A/10 � 1. The values of
g�(E ) depend on the values Bld − Q and Bqe. Thus, it is useful
to consider two different cases, Bld − Q < Bqe and Bld − Q >

Bqe, separately.

1. The case Bld − Q < Bqe

This case takes place for a light nucleus-nucleus system,
for example 28Si + 28Si → 56Ni; see Table I. In the case Bld −
Q < Bqe the values of E − Bqe − h̄2�(�+1)

2Jqe < E − (Bld − Q) −
h̄2�(�+1)

2Jcnf and g�(E ) � −1 for small values of �. At g�(E ) �
−1 the values of G�(E ) � 1 and P�(E ) = 1/[1 + G�(E )] ≈
1. As a result, the partial wave cross section of the compound-
nucleus formation linearly increases with � according to the
law σ cn

� (E ) ≈ π h̄2

2μE (2l + 1)T�(E ) for small values of � because
T�(E ) ≈ 1 at high collision energies E ; see Fig. 1. The values
of the cross sections σ cn

� (E ) and σ c
� (E ) are very close in this

case; see Fig. 1.
However, even in the case Bld − Q < Bqe at very high

values of �, it may be that E − Bqe − h̄2�(�+1)
2Jqe > E − (Bld −

Q) − h̄2�(�+1)
2Jcnf because of h̄2�(�+1)

2Jcnf > h̄2�(�+1)
2Jqe . In this case

the values of g�(E ) � 1, therefore, G�(E ) � 1, P�(E ) � 1,
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TABLE I. The model values of the total compound nucleus
formation barrier Bcnf − Q, the liquid-drop part of the compound
nucleus formation barrier Bld, the quasielastic barrier Bqe, and the
capture barrier for spherical incident nuclei Bsph. The values of the
liquid-drop fission barrier were obtained for symmetric fission Bld

sym

applying the code BARFIT [100], the Q value of the compound nu-
cleus formation reaction was obtained using [120], as was as the
quadrupole deformation parameter at the compound nucleus for-
mation barrier βcnf used in the model. The values of barriers are
presented for � = 0. All values of the barriers and Q value are given
in MeV.

Comp. nucleus 56Ni 149Tba 149Tbb 161Tm 162Er 258Rf

Bcnf − Q 24.2 106.1 90.5 96.8 80.9 175.8
Bld − Q 20.2 105.6 90.0 95.9 79.3 169.5
Bld 31.1 27.4 37.7 33.2 31.9 0.0
Bld

sym 31.1 27.4 27.4 24.2 26.4 0.6
Bqe 27.3 105.5 90.3 93.9 80.5 165.3
Bsph 27.9 112.2 95.9 99.7 84.2 177.8
−Q −10.9 78.2 52.3 62.7 47.4 169.5
βcnf 1.28 1.95 1.59 1.50 0.54 0.45

aFor reaction 84Kr + 65Cu → 149Tb.
bFor reaction 40Ar + 109Ag → 149Tb.

and σ cn
� (E ) � π h̄2

2μE (2l + 1) at high collision energy when
T�(E ) ≈ 1. As a result, σ cn

� (E ) and P�(E ) exponentially
decrease with increase of � due to dependence of G�(E )
on �. This leads to σ cn

� (E ) � σ c
� (E ). These conclusions

agree with the numerical calculation results for the reac-
tion 28Si + 28Si → 56Ni presented in Fig. 1, where see that
σ cn

� (E ) � σ c
� (E ) for large values of �.

Consequently, in the case Bld − Q < Bqe there is the
critical value of the angular momentum �cr (E ), where the
probabilities of the compound nucleus formation obey to the
conditions

P�cr (E )−1(E ) � 1
2 , P�cr (E )(E ) � 1

2 . (56)

The values of g�(E ) is around zero at � around �cr (E ).
If � � �cr (E ) then σ cn

� (E ) ∝ π h̄2

2μE (2l + 1)T�(E ) ≈ σ c
� (E )

and the compound nucleus is formed at such values of � in
nucleus-nucleus collision without suppression because P�(E )
is very close to 1; see Fig. 1. In comparison to this, at
� � �cr (E ) the values of σ cn

� (E ) exponentially decrease with
the increase of � and the compound nucleus formation is
suppressed, i.e., σ cn

� (E ) � σ c
� (E ); see Fig. 1. The partial

quasielastic cross sections σ
qe
� (E ) reach the maximal values

σ
qe
� (E ) = π h̄2

2μE (2� + 1)T�(E ) ≈ σ c
� (E ) at � � �cr (E ). Here

σ qe(E ) = σ c(E ) − σ cn(E ) =
∞∑

�=0

σ
qe
� (E )

= π h̄2

2μE

∞∑
�=0

(2� + 1)T�(E )[1 − P�(E )] (57)

is the quasielastic cross section, which is related to the decay
of the stuck-together nuclei to the quasi-elastic channel and
other scattered channels; see the discussion after Eq. (7).

FIG. 1. (a) The dependencies of the capture σ c
� (E ) and com-

pound nucleus formation σ cn
� (E ) partial cross sections on � for the

reaction 28Si + 28Si → 56Ni at collision energy E = 70 MeV. (b) The
dependence of the probability of the compound-nucleus formation P�

on � for the same reaction and collision energy as in (a).

Therefore, the compound-nucleus formation is defined by
the competition between the decay branches of stuck-together
nuclei related to the passage through the compound-nucleus
formation barrier and the quasielastic barrier in the present
model. The competition between the decay branches depends
on the value of � and changes significantly at � = �cr in the
case Bld − Q < Bqe.

The dependence of �cr (E ) for the reaction 28Si + 28Si →
56Ni is presented in Fig. 2. The value of �cr (E ) is calculated
according to the conditions (56). The increase of �cr (E ) with
rising E at E � 100 MeV is related to the increasing value
of E − Bqe − h̄2�(�+1)

2Jqe with E . The asymptotic level density
parameters linked to the quasielastic barrier and compound
nucleus formation barrier satisfy the condition a0

A1
+ a0

A2
> a0

A

due to the term A2/3; see Eq. (16). As a result, the values
�cr (E ) decrease with rising E at E � 130 MeV and �cr (E ) =
0 for very high energies E � 340 MeV; see Fig. 2. Note that
�cr (E ) = 0 for P�=0(E ) � 1

2 .
The maximal value of the critical value of the angular

momentum �cr (E ) obtained in the present model for the re-
action 28Si + 28Si → 56Ni is slightly higher than the values
of the critical angular momentum related to the instability
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FIG. 2. (a) The dependencies of the capture σ c(E ) and com-
pound nucleus formation σ cn(E ) cross sections on E for the reaction
28Si + 28Si → 56Ni. The experimental data for the compound-
nucleus formation cross-section are taken from Refs. [123–129].
(b) The dependence of the total probability of the compound nu-
cleus formation P(E ) on E for the same reaction as in (a). (c) The
dependence of the critical angular momentum �cr (E ) on E for the
same reaction as in (a). Lfiss max is the value of the critical angular
momentum related to the instability of the nucleus against prompt
fission evaluated with the code BARFIT [100].

of the nucleus 56Ni against prompt fission, Lfiss max, which is
calculated using the code BARFIT [100]; see Fig. 2. How-
ever, the values Lfiss max and the liquid-drop fission barrier are

evaluated in the code BARFIT using interpolation formulas,
which lead to errors [100]. Besides this, the values of the
fission barrier and Lfiss max depend on the parameter values
of the liquid-drop model, which change with time (com-
pare the parameter values of the liquid-drop model used in
Refs. [98,100]). For example, the small changes in the value
of the surface tension coefficient lead to noticeable changes in
the values of the liquid-drop barrier and Lfiss max. Therefore,
it is possible to conclude that the maximal value of �cr (E )
obtained in the model agrees excellently with the value of
Lfiss max; see Fig. 2. This confirms that the value of βcnf ,
which is obtained by fitting the experimental data for the
compound nucleus cross section (see Table I), is reliable.
(Here and below the fitting of the experimental data is made
by eye.) At larger value of βcnf , the value of Jcnf approaches
the value of Jqe. Due to this, the strong competition between
the compound nucleus formation and quasielastic processes
starts from higher values of �, and �cr (E ) rises with an increase
of βcnf .

Note that the critical value of the angular momentum, �cr,
is widely applied in the various models of the compound
nucleus formation in heavy-ion reactions; see, for example,
Refs. [1,2,52,53] and papers cited therein. In contrast to the
proposed model, the physical interpretation of the nature of
the critical angular momentum in Ref. [53] was related to the
instability of the nucleus against prompt fission, i.e., it was
linked to the value Lfiss max. Besides this, the critical value of
the angular momentum and Lfiss max are independent of E in
Refs. [52,53].

2. The case Bld − Q > Bqe

This case may take place for the collisions of heavy nuclei;
see Table I. The values of Bld − Q are significantly larger
than Bqe for reactions used in the synthesis of the superheavy
elements.

In the case Bld − Q > Bqe, the value of g�(E ) < 0. As a
result, G0(E ) � 1 and the value G�(E ) rises with increasing�.
If G� > 1 then G�(E ) � 1 and P�(E ) � 1, i.e., the formation
of a compound nucleus is strongly suppressed. The values
P�(E ) � 1 for any value of � for the reaction 40Ar + 121Sb →
161Tm; see Fig. 3. Therefore, the values of the partial com-
pound nucleus formation cross section σ cn

� (E ) for this reaction
are much smaller than the partial capture cross sections σ c

� (E )
in this case too; see Fig. 3. The values of quasielastic cross
section σ qe(E ) are high in this case and close to σ c(E ).

B. Cross sections for a light nucleus-nucleus system

The dependencies of the cross sections of the capture,
σ c(E ), and compound nucleus formation, σ cn(E ), on E for
the reaction 28Si + 28Si → 56Ni are presented in Fig. 2. The
values of the compound-nucleus formation cross section cal-
culated in the model agree well with available experimental
data [123–129]. The values of σ c(E ) are much higher than
the values of σ cn(E ). σ c(E ) always rises with an increase in
collision energy E . In comparison to this, σ cn(E ) increases
at sub-barrier collision energies; however, it decreases at
high collision energy due to the competition between the
compound-nucleus formation and quasielastic processes.

014607-10



MODEL FOR COMPOUND NUCLEUS FORMATION IN … PHYSICAL REVIEW C 109, 014607 (2024)

FIG. 3. (a) The dependencies of the capture σ c
� (E ) and com-

pound nucleus formation σ cn
� (E ) partial cross sections on � for the

reaction 40Ar + 121Sb → 161Tm at E = 116 MeV. (b) The depen-
dence of the probability of the compound-nucleus formation P� on
� for the same reaction and collision energy as in (a).

The dependence of the total compound-nucleus formation
probability P(E ) on E for the reaction 28Si + 28Si → 56Ni is
presented in Fig. 2 too. P(E ) values decrease with E at above-
barrier collision energies.

The quasielastic barrier is slightly lower than the capture
barrier Bsph, which takes place for the incident spherical nu-
clei; see Table I. Therefore, the probability of the elastic decay
of the stuck-together nuclei is low.

For the sake of a better description of the compound nu-
cleus formation cross section, the radius parameters of the
nuclear part of the nucleus-nucleus potential, R0i, are slightly
modified R0i + δRi. The values of δRi are given in Table II.
The radius value variation modulates the coupling channel
effects on the heavy-ion fusion, which are important around
the barrier [53].

As pointed out earlier, the probability of compound
nucleus formation depends on the competition between tran-
sitions over the compound nucleus formation barrier and the
quasielastic barrier. The compound nucleus formation barrier
height consists of the liquid-drop and shell-corrections contri-
butions; see Eqs. (20) and (21). The height of the liquid-drop
part of the compound nucleus formation barrier, Bld, is given

TABLE II. The values of δRi used for fitting the experimental
cross section data.

Nucleus

28Si 30Si 40Ar 50Ti 65Cu

δRi (fm) 0.1 0.27 0.2 0.35 0.4
84Kr 109Ag 121Sc 132Xe 208Pb

δRi (fm) 0.4 0.2 0.5 0.27 0.35

in Table I. Due to symmetry in the incident channel of the
reaction 28Si + 28Si → 56Ni, the value Bld used in the model
calculation coincides with the value of the liquid-drop fis-
sion barrier for symmetric fission, Bld

sym, of the nucleus 56Ni
obtained using the code BARFIT [100]. Note that symmetric
fission is a feature of the liquid-drop model. The value Bld =
Bld

sym leads to a good description of the experimental data for
the reaction 28Si + 28Si → 56N in the model.

C. Cross sections for heavy nucleus-nucleus systems

The comparison of the dependencies of the cross sec-
tions of the capture, σ c(E ), and compound nucleus for-
mation, σ cn(E ), on the collision energy in the center-of-
mass E with the available experimental data [132,133]
for reactions 84Kr + 65Cu → 149Tb, 40Ar + 109Ag → 149Tb,
40Ar + 121Sb → 161Tm, and 132Xe + 30Si → 162Er is pre-
sented in Fig. 4. The experimental data are well described in
the present model.

The systems considered now are much heavier than the
system 28Si + 28Si → 56Ni considered early. In comparison
to the light system, the height of the compound nucleus for-
mation barrier Bcnf − Q is slightly higher than the height of
the quasielastic barrier Bqe for heavy systems; see Table I.
Due to the strong competition between the compound nucleus
formation and the quasielastic decay of the stuck-together nu-
clei in the case Bcnf − Q > Bqe, the partial P�(E ) probability
of compound nucleus formation is noticeably smaller than 1
for all values of �; see Fig. 3. As a result, the partial cross
section of the compound nucleus formation is significantly
smaller than the capture cross section; see, for example, Fig. 3.
This leads to the total probability of compound nucleus for-
mation being remarkably smaller than 1, and the values of
compound-nucleus formation cross section σ cn(E ) are seri-
ously smaller than the capture cross section σ c(E ) for energies
larger than the barrier; see Fig. 4.

For the sake of a good description of σ c(E ), the radius
parameters of the nuclear part of the nucleus-nucleus poten-
tial, R0i, are modified as R0i + δRi. The values of δRi for the
considered incident nuclei are given in Table II.

The heights of the liquid-drop part of the compound
nucleus formation barrier Bld for reactions 84Kr + 65Cu →
149Tb, 40Ar + 109Ag → 149Tb, 40Ar + 121Sb → 161Tm, and
132Xe + 30Si → 162Er are given in Table I. For the near sym-
metric reaction 84Kr + 65Cu → 149Tb, the value Bld used in
the calculations coincides with the value of the liquid-drop
fission barrier Bld

sym obtained using the code BARFIT [100].
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FIG. 4. The comparison of the capture σ c(E ) and compound
nucleus formation σ cn(E ) cross sections calculated in the model for
the reactions 84Kr + 65Cu → 149Tb (a), 40Ar + 109Ag → 149Tb (b),
40Ar + 121Sb → 161Tm (c), and 132Xe + 30Si → 162Er (d) with the
experimental data [132,133].

For strongly asymmetric reactions 40Ar + 109Ag → 149Tb,
40Ar + 121Sb → 161Tm, and 132Xe + 30Si → 162Er, the values

of Bld are higher than Bld
sym; see Table I. This is related to

the left-right asymmetric shapes of the nuclear system along
the trajectory of the compound nucleus formation from the
stuck-together nuclei. The process of compound nucleus for-
mation in the asymmetric reaction is somehow inverse to the
cluster emission process. The cluster emission is a strongly
asymmetric fission [130,131]. The ordinary fission barrier
height is much smaller than the cluster emission barrier height
[71]. For example, the height of the ordinary fission barrier in
226Ra calculated relative to the ground state of the fissioning
nucleus is 8.2 MeV [101] while the barrier heights related to
the emission of clusters 14C or 20O from 226Ra are over 30
MeV [134]. Therefore, the high values of Bld given in Table I
for asymmetric reactions are reasonable. These values of Bld

are obtained by fitting the experimental data for the compound
nucleus formation cross section.

The value of the compound nucleus formation cross sec-
tion depends on the moment of inertia of the nucleus at the
compound nucleus formation barrier Jcnf . Jcnf links to the
value of the quadrupole deformation parameter in the barrier
saddle point, βcnf . The values of βcnf in the model are taken
by fitting the compound nucleus formation cross section. The
used values of βcnf are given in Table I.

Note that two different values of βcnf for 149Tb are
given in Table I because the trajectories of the compound
nucleus formation in reactions 84Kr + 65Cu → 149Tb and
40Ar + 109Ag → 149Tb are different. The different trajectories
have different positions of the barrier point and, therefore,
different values of βcnf . The effect of both different barrier
values and different values of βcnf can be seen in Fig. 4 by
comparing the results for the reactions 84Kr + 65Cu → 149Tb
and 40Ar + 109Ag → 149Tb leading to the same compound
nucleus.

The quasielastic barrier is much lower than the capture
barrier Bsph for heavy systems; see Table I. Therefore, the
probability of the elastic decay of the stuck-together nuclei
is very low.

D. Cross sections for a super-heavy nucleus-nucleus system

The model dependencies of the cross sections of the
capture, σ c(E ), and compound nucleus formation, σ cn(E ),
as well as the total probability of compound nucleus for-
mation, P(E ), on the collision energy E for the reaction
50Ti + 208Pb → 258Rf are compared with the available exper-
imental data [20,22,24,135,136] in Fig. 5. The experimental
data for σ cn(E ) are well described in the present model. The
model values of P(E ) are very close to experimental data at
low collision energies and are twice higher than the experi-
mental data at high collision energy; see Fig. 5. Unfortunately,
the experimental data for σ cn(E ) and P(E ) measured by dif-
ferent groups are not very consistent. Note that there are no
experimental data for σ c(E ) for this reaction.

The height of the compound nucleus formation barrier Bcnf

is much greater than the height of the quasielastic barrier
Bqe for reactions leading to superheavy systems; see Table I.
Therefore, the formation of a compound nucleus for such a
heavy system is strongly suppressed. This is seen in Fig. 5 at
low collision energies when the collision energies are close
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FIG. 5. (a) The dependencies of the capture σ c(E ) and com-
pound nucleus formation σ cn(E ) cross sections on the collision
energy E for the reaction 50Ti + 208Pb → 258Rf. The experimental
data are taken from Refs. [20,22,24,135,136]. (b) The dependence of
the total probability of the compound-nucleus formation, P(E ), on
the collision energy E for the same reaction as in (a). The experi-
mental data are taken from Refs. [20,135,136].

to the compound nucleus formation barrier and competition
between these processes is very strong.

The model calculations of the cross sections and compound
nucleus formation probability for reaction 50Ti + 208Pb →
258Rf are done for the values of parameters given in Tables I
and II. Most of the parameters for this reaction have values
similar to the ones for other reactions.

Note that the value of βcnf for the 258Rf case is smaller than
the ones for other systems; see Table I. Note that the values of
the quadrupole deformation parameter of the nuclear shape
in the fission barrier point smoothly decrease with increasing
mass A and charge Z of the fissioning nuclei in the liquid-drop
model; see, for example, Ref. [100]. Therefore, the fission
barrier saddle points in super- and ultraheavy elements oc-
cur at small values of the quadrupole deformation parameter
[99,137]. The same tendency should occur for the compound
nucleus formation barrier. Therefore the small value of βcnf

for this reaction is natural.
The value of the total fission barrier height for 258Rf ob-

tained in Ref. [101] is used in the present calculation. The

value Bld used for fitting is given in Table I. Note that the
heights of barriers of the fission and cluster emission are
close for superheavy nuclei [138,139]. Therefore, the value
of the compound nucleus formation barrier height for reaction
50Ti + 208Pb → 258Rf given in Table I is well supported.

E. Compound nucleus formation in symmetric
nucleus-nucleus collisions

It is useful to consider the compound nucleus formation in
symmetric nucleus-nucleus reactions AZ + AZ → 2A2Z , when
the incident nuclei AZ with Z protons and A nucleons are lo-
cated around the beta-stability line. Let the incident spherical
or almost spherical nuclei belong to the range from 20Ne to
123Sb. Then the compound nuclei lie in the range from 40Ca
to 246No.

As pointed out earlier, the compound nucleus formation
barrier Bcfn(0) for a symmetric incident system is close to
the fission barrier of this nucleus. Therefore, Bcfn(0) = Bld −
Egs sh, where the values Bld can be found using the code
BARFIT [100]. Recall that the values Egs sh are taken from
Ref. [98]. The values of Bcfn(0) for � = 0 does not depend
on βcnf .

Recall that the value of barrier Bcfn(0) is calculated rel-
ative to the ground state energy of the compound nucleus.
The height of this barrier evaluated relative to the interaction
energy of the incident nuclei at infinite distance between them
is Bcfn(0) − Q. The barrier height Bqe is defined relative to the
interaction energy of the incident nuclei at infinite distance
between them too.

The dependencies of the difference Bqe − Bcfn(0) + Q and
the partial probability of the compound nucleus formation
Pcn

0 (E ) for � = 0 on the number of protons in incident nucleus
Z for symmetric reactions AZ + AZ → 2A2Z are presented in
Fig. 6. The calculations are done for stable or near-stable
isotopes AZ around the beta-stability line, therefore there are
several dots for a fixed value of Z in Fig. 6. The dependence
Pcn

0 (E ) is presented in Fig. 6 in linear and logarithmic scales
because they give complementary information. The values
Bsph are calculated using δR = 0 because this value of δR leads
to the best description of the empirical nucleus-nucleus in-
teraction barrier heights for different collision systems [112].
The values of Pcn

0 (E ) are calculated at the above-barrier colli-
sion energy E = Bsph + 10 MeV.

The values of the difference Bqe − Bcfn(0) + Q > 1 MeV
for Z � 41 for most nuclear systems; see Fig. 6. For such
values of Z the values Pcn

0 (E ) are very close to 1; see
Fig. 6. Similar behavior has been observed in the reaction
28Si + 28Si → 56Ni. Note that the formation of the compound
nucleus at high collision energies for such heavy ion systems
is suppressed for higher values of �.

The values of the difference Bqe − Bcfn(0) + Q are around
zero for the range 42 � Z � 45; see Fig. 6. For this interval of
Z the values Pcn

0 (E ) are in the range from 0.1 to 1. Analogous
values of Pcn

0 (E ) are observed in heavy collision systems; see
Sec. III C.

The values of the difference Bqe − Bcfn(0) + Q < 0 for
Z � 46 and the values Pcn

0 (E ) � 0.1 for most nuclear sys-
tems; see Fig. 6. This situation is the same as for the
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FIG. 6. (a) The dependence of the difference Bqe − Bcfn(0) on the
number of protons Z in incident nuclei for the symmetric reactions
AZ + AZ → 2A2Z . (b) The dependence of the probability Pcn

0 of com-
pound nucleus formation for � = 0 on the number of protons Z in
incident nuclei in linear scale for the same reactions as in (a). (c) The
same as in (b), but in logarithmic scale.

superheavy systems; see Sec. III D. The values of the differ-
ence Bqe − Bcfn(0) + Q decrease strongly with rising charge
of incident nuclei. As a result, the values of Pcn

0 (E ) drastically
decrease with rising Z .

Due to strong changes of behavior of Pcn
0 (E ) in the range

of Z from 40 to 46, it is interesting to discuss the re-
actions 90Zr + 90Zr → 180Hg, 100Mo + 100Mo → 200Po, and

110Pd + 110Pd → 220U in detail. Recall that the proton num-
bers Z in 90Zr, 100Mo, and 110Pd are 40, 42, and 46,
respectively.

The analysis of the experimental data of the reaction
90Zr + 90Zr → 180Hg shows that the total probability of the
compound nucleus formation in this reaction at energies a
little over the capture barrier is slightly smaller than 1 [5].
In the case of the reaction 100Mo + 100Mo → 200Po the total
compound nucleus formation probability is smaller than in
the case of the reaction 90Zr + 90Zr → 180Hg. By comparing
the compound nucleus formation cross sections for the re-
actions 90Zr + 90Zr → 180Hg, 100Mo + 100Mo → 200Po, and
110Pd + 110Pd →220 U [5], one may conclude that the total
probability of the compound nucleus formation for reaction
110Pd + 110Pd → 220U is in the range 10−3–10−6 depending
on the collision energy. The behavior of Pcn

0 (E ) presented in
Fig. 6 agrees with the discussed experimental tendency for the
reactions 90Zr + 90Zr → 180Hg, 100Mo + 100Mo → 200Po,
and 110Pd + 110Pd → 220U observed in Ref. [5].

The formation of compound nuclei in symmetric reac-
tions with incident nuclei heavier than 110Pd is strongly
suppressed; see Fig. 6. Therefore, the cross sections of syn-
thesis of superheavy nuclei in symmetric reactions are very
small in the framework of the present model. This agrees
with the results of experimental studies of the fusion reaction
136Xe + 136Xe [27]. However, if the competition between the
compound nucleus formation and the quasielastic decay of the
stuck-together nuclei is neglected then the cross sections of
synthesis of superheavy nuclei in symmetric reactions are
much higher [32,33]. Therefore, this competition is very im-
portant for describing the compound nucleus formation for
reactions leading to superheavy elements [39].

IV. CONCLUSION

A model for the calculation of the compound nucleus for-
mation cross section and the probability of compound nucleus
formation in heavy ion collisions is proposed. It is shown
that the competition between the penetration through both
the compound nucleus formation barrier and the quasielastic
barrier is very important for the description of compound
nucleus formation. This competition constrains the compound
nucleus formation in collisions of light nuclei at high partial
waves. For heavy and especially for superheavy compound
nuclei in heavy-ion collisions, this competition strongly
suppresses the compound nucleus formation for all partial
waves.

A good description of the available experimental data for
various reactions leading to light, heavy, and superheavy
compound nuclei is obtained with the model. Therefore,
the proposed mechanism of compound nucleus forma-
tion is a general feature of nuclear reactions with heavy
ions.

The height of the compound nucleus formation barrier is
lower than that of the quasielastic barrier for light nucleus-
nucleus systems for low partial waves. In this case, the
probability of compound nucleus formation is close to 1.

For heavy nucleus-nucleus systems, the compound nu-
cleus formation barrier is slightly higher than the quasielastic
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barrier. The compound nucleus formation barrier is much
higher than the quasielastic barrier for systems leading to
superheavy compound nuclei. The probability of compound
nucleus formation is suppressed when the quasielastic barrier
is lower than the compound nucleus formation barrier.

The height of the liquid-drop part of the compound nucleus
formation barrier calculated relative to the ground state of
the compound nucleus is very close to the fission barrier
height of the liquid-drop model for incident symmetric or
near-symmetric nucleus-nucleus systems. In comparison to
this, the height of this barrier for strongly asymmetric incident
nucleus-nucleus systems may be significantly greater than

the liquid-drop fission barrier height because the liquid-drop
fission barrier is related to symmetric fission.
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