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Influence of the spin cut-off parameter on the isomeric cross-section ratio of the (n, 2n) reaction
within the Huizenga-Vandenbosch method
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The influence of the spin cut-off parameter on the isomeric cross-section ratio of the (n, 2n) reaction is studied
within the Huizenga-Vandenbosch method, in which the neutron transmission coefficient is evaluated from the
optical model, and the spin cut-off parameter is treated for the residual nucleus following the first neutron
emission (σ1) and that following the second neutron emission (σ2) separately. It is found that the isomeric
cross-section ratio is definitely sensitive to the spin cut-off parameters, especially the σ2. Moreover, various
formulas of the spin cut-off parameters are compared and applied to calculate the (n, 2n) isomeric ratios of a
series of nuclei from 45Sc to 198Hg at En = 14 MeV, and the results are compared with the evaluated values from
JENDL-5 and JEFF-3.3, which shows that the method is more reliable in the light- and medium-mass region,
and most of the calculated results are described well by the formulas giving the lower spin cut-off parameters
than the rigid-body formula, indicating that the effective moment of inertia is less than the rigid body moment
of inertia for most nuclei. Furthermore, with the above method the overall isomeric ratios as a function of the
incident energy for 45Sc(n, 2n)44m,gSc, 85Rb(n, 2n)84m,gRb, and 120Te(n, 2n)119m,gTe reactions are well described,
which shows the validity of the present method in calculating the isomeric ratio of the (n, 2n) reaction below
20 MeV.
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I. INTRODUCTION

The isomeric cross-section ratio, especially its dependence
on the incident energy, is of considerable significance in
testing nuclear reaction models, and providing valuable in-
formation on the spin cut-off parameter characterizing the
spin dependence of the level density [1,2]. The Huizenga-
Vandenbosch (H-V) method [1,3] based on the Hauser-
Feshbach statistical model [4] is a powerful method for
calculating the isomeric ratio and is generally adopted in
related works [5–11], including deducing the spin dependence
of the level density according to the experimental isomeric
ratios of the (n, 2n) and (n, γ ) reactions, which take place
primarily via the compound nucleus mechanism. However,
knowledge about the isomeric ratio as a function of the in-
cident energy is significantly lacking, as well as knowledge
about the influence of the spin cut-off parameter on the iso-
meric ratio.

The H-V method essentially focuses on the calculation of
the spin distribution of the compound nucleus and the residual
nucleus following the particle and γ -ray emission, and thus
the isomeric ratio is determined from the final spin distribution
and the spins of the isomeric states. Therefore, the spin cut-
off parameter is one of the most important parameters within
the H-V method. Up to now, there have been a few methods
developed for calculating the energy and mass-dependent spin
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cut-off parameter, including the microscopic models [12,13],
the rigid-body approximation [14,15], the formula derived by
Ericson [16,17] and the newly proposed empirical formula by
Egidy [18], most of which are applied in the present work to
calculate the isomeric cross-section ratio and compared with
the evaluated values from JENDL-5 [19] and JEFF-3.3 [20]
in order to determine the most appropriate formula of the spin
cut-off parameter within the H-V method.

In this work, the dependence of the isomeric cross-
section ratio of the (n, 2n) reaction on the spin cut-off
parameter is investigated within the H-V method, taking the
case of 45Sc(n, 2n)44m,gSc at En = 14 MeV as example, in
which the neutron transmission coefficient is evaluated from
the optical model, and the spin cut-off parameter is treated
for the residual nucleus following the first neutron emission
(σ1) and that following the second neutron emission (σ2) sep-
arately, due to the large difference of the excitation energy.
Moreover, the isomeric ratios of the (n, 2n) reaction of 18 iso-
topes from 45Sc to 198Hg at En = 14 MeV are calculated with
various formulas of the spin cut-off parameter and compared
with the evaluated values to determine the most appropriate
formula, based on which the isomeric ratios as a function
of the incident energy are calculated for 45Sc(n, 2n)44m,gSc,
85Rb(n, 2n)84m,gRb, and 120Te(n, 2n)119m,gTe, and the results
agree well with the evaluated values and the experimental
data, which indicates the predictive power of the H-V method
in calculating the isomeric ratio of the (n, 2n) reaction below
20 MeV.

This paper is organized as follows. A detailed introduction
of the method is presented in Sec. II. And in Sec. III, the
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calculated spin cut-off parameters with various formulas and
the corresponding isomeric cross-section ratio of the (n, 2n)
reaction and its dependence on the incident energy are shown
and the corresponding discussions are given. A summary
of the present work and future prospects are presented in
Sec. IV.

II. METHODS

The relative probability of forming the isomeric state by
the compound-nuclear reaction is governed mainly by the spin
difference between the states which decay to the isomer and
the isomeric spin itself and the formation probabilities of these
states with different spins [1]. Within the framework of the
spin dependent statistical model of nuclear reaction, Huizenga
and Vandenbosch proposed a method in which the isomeric
cross-section ratio is almost quantitatively related to the spin
dependence of the level density and the multiplicity of the
γ -ray cascade, i.e., the H-V method, in order to calculate
the isomeric cross-section ratio of the nuclear reaction taking
place primarily via the compound nucleus mechanism. In the
present work, the H-V method [1,3,21] is adopted to evaluate
the (n, 2n) isomeric ratios of a series of nuclei across the large
mass range.

In the H-V method, the most important factors are (1) the
spins of the compound-nuclear states, (2) the number and
types of steps in the deexcitation process, (3) the angular
momentum carried away by the emitted particles and the γ

ray, (4) the probability of forming states with different spins
at each step of the cascade, and finally (5) the spins of the
isomeric state and the ground state. It should be noted that the
two assumptions are made in order to perform the detailed
calculations, which are that the levels of both parities are
present in equal number so that the parity changes are not
followed in the deexcitation process, and the γ -ray cascade
is believed to consist mostly of dipole radiations so that the
pure dipole radiations are taken into account.

A. The spin distribution of the initial compound nucleus

In calculation of the isomeric ratio of the (n, 2n) reac-
tion, the first step is the calculation of the spin distribution
of the formed compound nucleus. The cross section for
the formation of a compound nucleus with spin Jc at a
bombarding energy E is given as follows according to the
Hauser-Feshbach model [4],

σ (Jc, E ) = πλ2
I+s∑

S=|I−s|

Jc+S∑
�=|Jc−S|

2Jc + 1

(2s + 1)(2I + 1)
T�(E ), (1)

where λ is the de Broglie wavelength of the incoming pro-
jectile, s and I are the spins of the projectile and the target
nucleus, respectively. T� is the barrier transmission coefficient
of the incident particle with orbital angular momentum � and
energy E . Here in Eq. (1) and in the following equations the
transmission coefficients are calculated with the TALYS 1.95
code [22] in which the optical model is incorporated with
local optical model parameters for many nuclei. The nor-
malized spin distribution of the initial compound nucleus is

written as

P(Jc) = σ (Jc, E )∑
Jc

σ (Jc, E )
. (2)

B. The spin distribution of the residual nucleus following
successive neutron emission

The compound nucleus with a given excitation energy can
decay by successive particle emission to the residual nucleus
with a variety of spin values. The relative probability for a
compound state with spin Jc to emit a neutron with orbital
angular momentum � leading to a final state with spin Jf is
given by

P(Jf )Jc ∝ ρ(Jf )

Jf + 1
2∑

S=|Jf − 1
2 |

Jc+S∑
�′=|Jc−S|

T�
′(En), (3)

where T�′ (En) is the barrier transmission coefficient of the
emitted neutron with angular momentum �′ and energy En.
In principle, the evaporated neutron spectra can be subdi-
vided into several energy bins and the associated transmission
coefficients are obtained individually for each bin. It was
found that using a single set of transmission coefficients which
are associated with the averaged energy of the evaporated
neutron was a surprisingly accurate approximation [3]. Thus,
the transmission coefficients corresponding to the averaged
neutron energy are used in the present work, and the averaged
energy is evaluated from the evaporated neutron spectra calcu-
lated with the TALYS 1.95. The other important input quantity
ρ(Jf ) in Eq. (3) denotes the spin dependence of the level
density of the residual nucleus, which is given from the Fermi
gas model by

ρ(Jf ) = 2Jf + 1

2σ 2
exp

[
−

(
Jf + 1

2

)2

2σ 2

]
, (4)

where σ is the spin cut-off parameter representing the width
of the spin distribution of the level density.

The yield of the state with spin Jf coming from the ini-
tial spin Jc is obtained by multiplying the initial normalized
yield PJc . To sum over all values of Jc, the normalized spin
distribution of the residual nucleus following the first neutron
emission is

P(Jf ) =
∑

Jc

P(Jc)
ρ(Jf )

∑Jf + 1
2

S=|Jf − 1
2 |

∑Jc+S
�′=|Jc−S| T�′ (En)∑

JF
ρ(JF )

∑JF + 1
2

S=|JF − 1
2 |

∑Jc+S
�′=|Jc−S| T�′ (En)

,

(5)

based on which the spin distribution following the second
neutron emission is calculated by repeating the above steps,
in which the initial spin distribution is that following the
first neutron emission, and the averaged neutron energy is
recalculated based on the energy spectra of the second neutron
as well as the associated transmission coefficients.
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C. The spin distribution of the residual nucleus following
successive γ-ray emission

After the second neutron is emitted, the residual nucleus
will continue to undergo deexcitation by emitting one or a
cascade of γ rays and finally reach the ground state or the
isomeric state. The relative probability of decaying from a
state Ji to Jf by γ -ray emission is assumed to be simply
proportional to the density of final states with spin Jf . Thus,
the normalized probability of Jf is given by the following
formula:

F (Jf ) =
Jf +l∑

Ji=|Jf −l|

F (Ji )ρ(Jf )δJi,Jf∑Ji+l
JF =|Ji−l| ρ(JF )

, (6)

where l is the multiplicity of the emitted γ ray and F (Ji ) is the
normalized probability of the initial state. For the first γ -ray
emission, F (Ji ) = P(Jf ), where P(Jf ) is the normalized spin
distribution following the second neutron emission. Consid-
ering the pure dipole radiation during the deexcitation, the
multiplicity l is taken to be one.

The number of γ rays to be emitted depends on the residual
excitation energy following the second neutron emission and
generally varies between one and four γ rays per cascade
[3]. The averaged number Nγ of γ rays for the pure dipole
emission in the γ cascade can be estimated by [6]

Nγ = 1
2

√
aE , (7)

where E is the excitation energy of the residual nucleus fol-
lowing the second neutron emission. And the averaged energy
of the dipole γ ray emitted from a nucleus of initial excitation
energy E is calculated by [23]

Eγ = 4(E/a − 5/a2)
1
2 . (8)

The energy of each succeeding γ ray in the cascade is ob-
tained by calculating the new initial excitation energy.

It is assumed that the last γ ray to be emitted leads the
excited nucleus to the ground state or the isomeric state, and
the last γ -ray transition depends on which transition has the
smaller spin change. Thus, one can find a separate spin Id from
the spin values between the ground and isomeric state, which
makes the state with the spin I > Id deexcite to the high-spin
product and the state with the spin I < Id deexcite to the low-
spin product. In this work, Id is defined as Id = (Ig + Im)/2, in
which Ig and Im represent the spins at the ground and isomeric
state, respectively.

If Im is larger than Ig and Id is not one of the possible
values of the final states, the isomeric cross-section ratio can
be expressed as

R = σm

σg
=

1 − ∑
Jf <Id

F (Jf )∑
Jf <Id

F (Jf )
, (9)

where σm and σg are the production cross section of the
residual nucleus at the isomeric state and the ground state,
respectively. Otherwise if Id is one of the possible values of
the final states, the isomeric cross-section ratio is expressed as

R = σm

σg
=

1 − [ ∑
Jf <Id

F (Jf ) + 1
2 F (Jf = Id )

]
∑

Jf <Id
F (Jf ) + 1

2 F (Jf = Id )
. (10)

D. The spin cut-off parameter

The spin cut-off parameter governs the distribution of the
spins on the nuclear levels according to the Fermi gas model
[24] and has a significant influence on the isomeric cross-
section ratio, which is obtained with various methods shown
below.

One of the methods is that derived by Ericson [16], in
which the spin cut-off parameter is defined by the following
equation within the Fermi gas model,

σ 2 = 6

π2
a
〈
m2

j

〉
t, (11)

where 〈m2
j 〉 is the averaged value of the square of the pro-

jection of the total angular momentum for the fermion states
around the Fermi level and is approximately expressed by
〈m2

j 〉 = 0.24A2/3 based on the statistical mechanical calcula-
tion [17]. Thus, the corresponding σ 2 is written by

σ 2 = 0.146A2/3
√

aU , (12)

with the level-density parameter a expressed as [25]

a = ã

(
1 + δW

1 − exp (−γU )

U

)
, (13)

in which the energy-dependent shell effect is taken into ac-
count, and ã is the asymptotic level-density parameter, and δW
and γ are the shell correction energy and the shell damping
parameter, respectively, and U is the effective excitation en-
ergy defined as the difference of the excitation energy Ex and
the pairing correction energy 	. The parameters in Eq. (13)
are evaluated from TALYS 1.95.

Another frequently used formula is based on the assump-
tion that the nucleus is a rigid sphere with the moment of
inertia I0, and one can relate σ 2 to the rigid moment of inertia
I0 and the thermodynamic temperature t through the expres-
sion σ 2 = I0t , which is expected to be valid at high excitation
energies. Furthermore, the shell effect is taken into account
according to the microscopic level-density studies that the
quantity σ 2/t is not constant [26], and thus the spin cut-off
parameter is written by the following expression [27]

σ 2
F = I0

a

ã
t = 0.01389

A5/3

ã

√
aU , (14)

with I0 = 2
5 m0R2A/(h̄c)2 and the radius R = 1.2A1/3 fm.

The above two methods are less appropriate when the
nucleus locates at low excitation energies (Ex < 	). For this
case, the spins of the low-lying discrete levels are used to
determine the spin cut-off parameter σd , which is determined
by the equation [28]

σ 2
d = 1

3
∑NU

i=NL
(2Ji + 1)

NU∑
i=NL

Ji(Ji + 1)(2Ji + 1), (15)

in the energy range from a lower discrete level NL with energy
EL to an upper level NU with energy EU , where Ji is the spin
of the discrete level i. This formula is usually applied in com-
bination with Eq. (14) to describe the whole excitation energy
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range, and the final functional from Ref. [15] is expressed as

σ 2(Ex ) =

⎧⎪⎪⎨
⎪⎪⎩

σ 2
d (0 < Ex < Ed )

σ 2
d + Ex−Ed

Sn−Ed

[
σ 2

F (Ex ) − σ 2
d

]
(Ed � Ex � Sn)

σ 2
F (Ex ) (Ex > Sn),

(16)

where Ed is defined as the energy in the middle of the NL − NU

region, i.e., Ed = 1
2 (EL + EU ). σ 2

d is assumed to be constant
up to the energy Ed and linearly interpolated to σ 2

F given by
Eq. (14) and the matching point is chosen to be the neutron
separation energy Sn.

As for the nucleus at the low excitation energy, the sys-
tematical formula could also give a reasonable estimate for
energies in the order of 1–2 MeV and is written by

σ 2 = (0.83A0.26)2. (17)

In addition, a new empirical formula [18] was proposed by
Egidy based on the comparison of various experimental and
calculated momenta in the energy-spin plane using a total of
7202 levels with spin assignment in 224 nuclei between F and
Cf, in order to the describe the mass and energy dependence
of the spin cut-off parameter in the large energy range, which
is expressed as

σ 2 = 0.391A0.675(E − 0.5Pa′)0.312, (18)

where Pa′ is calculated from the mass value [29] with the
formula:

Pa′ = 1
2 [M(A + 2, Z + 1) − 2M(A, Z ) + M(A − 2, Z − 1)],

(19)

In this work, the above methods for the spin cut-off param-
eter σ are adopted to evaluate the isomeric cross-section ratio,
and a comparison is made in order to determine the most
appropriate expression for σ within the H-V method.

III. CALCULATION RESULTS

The isomeric cross-section ratio is determined from the
final spin distribution of the residual nucleus within the H-
V method, which is obtained from the modification of the
spin distribution during the deexcitation process where the
particles and γ rays are successively emitted and take away
some energy and angular momentum. Figure 1 shows the
spin distributions corresponding to the successive stages in
the (n, 2n) reaction, taking the case of 14 MeV n + 45Sc as
an example. One can see that all of the spin distributions are
the Gaussian-like types, and the spin distribution is obviously
shifted to the left side with the narrower peak width during the
deexcitation process, which shows that the neutron and γ -ray
emission lead to a large modification of the spin distribution.
Thus, the isomeric ratio is significantly influenced by the spin
dependence of the level density of the residual nucleus, i.e.,
the spin cut-off parameter.

We further investigate the dependence of the isomeric
cross-section ratio on the spin cut-off parameter in the (n, 2n)

FIG. 1. The spin distributions corresponding to the successive
stages in the (n, 2n) reaction of 14 MeV n + 45Sc, including that of
the compound nucleus (PJC), the residual nucleus after emitting the
first neutron (PJF1), the second neutron (PJF2), and γ ray (PJ final,
Nγ = 1).

reaction. The spin cut-off parameter σ is generally dependent
on the excitation energy and the mass of the nucleus, so
the σ is handled for the residual nucleus following the first
neutron emission (σ1) and that following the second neutron
emission (σ2) separately due to the large difference of the
excitation energy between them. In addition, the spin cut-off
parameter of the residual nucleus following γ -ray emission
is set to be equal to σ2 in the present work, owing to the
quite low excitation energy after the second neutron emission.
Figure 2 shows the dependence of the calculated isomeric

FIG. 2. The dependence of the calculated isomeric cross-
section ratio in the (n, 2n) reaction of 14 MeV n + 45Sc on the spin
cut-off parameter σ1 of the residual nucleus following the first neu-
tron emission (black curve) and σ2 of the residual nucleus following
the second neutron emission (red curve), in which the averaged num-
ber of γ -ray emissions is obtained from the empirical formula and
set to be 1.0. The dashed lines show the corresponding experimental
values [30,31].
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FIG. 3. Comparison of the spin cut-off parameters calculated
with various formulas shown in Sec. II for a series of nuclei at
the excitation energy U = 11 MeV (a) and at the excitation energy
U = 1 MeV (b).

cross-section ratio in 45Sc(n, 2n)44m,gSc at En = 14 MeV on
σ1 and σ2, respectively, with the other spin cut-off parame-
ter fixed as an empirical value, which is obtained from the
formulas in Sec. II, i.e., σ1 = 3.37h̄ from Eq. (18) and σ2 =
2.22h̄ from Eq. (17). It can be obviously seen that the isomeric
cross-section ratio increases with the σ1 increasing, and in-
creases more rapidly with the σ2 increasing, which means that
the isomeric cross-section ratio is definitely sensitive to the
spin cut-off parameters, especially the σ2. The experimental
values are also shown in Fig. 2 by the dashed lines. According
to the experimental data, the corresponding fitted value of σ1

is located around 3.6h̄ and σ2 is located around 2.2h̄, which
are close to the empirical values, indicating the reliability of
the present method and the spin cut-off parameter calculation.

As the spin cut-off parameter σ has an important influence
on the isomeric cross-section ratio, the appropriate calculation
method of σ is studied within the H-V method in this work
in order to improve the predictive power of the H-V method.
First, using various formulas of σ introduced in Sec. II,
we calculate and compare the spin cut-off parameters of
a series of nuclei at the excitation energy U = 11 and
1 MeV, which are approximate to the excitation energy of
the residual nucleus following the first neutron emission and
that following the second neutron emission, respectively, in
most of the (n, 2n) reactions at En = 14 MeV. Equations (12),
(14), (16), and (18) are applicable in calculating σ at the
higher excitation energies, and with these formulas the
corresponding spin cut-off parameter σ1 at U = 11 MeV are
calculated and shown in Fig. 3(a) for these nuclei including

FIG. 4. The calculated isomeric cross-section ratios of the
(n, 2n) reactions at En = 14 MeV for a series of nuclei compared
with the evaluated results from JENDL-5 and JEFF-3.3, in which
the spin cut-off parameter σ1 and σ2 are that of the residual nucleus
following the first and the second neutron emission, respectively, and
calculated with various formulas introduced in Sec. II.

45Sc, 59Co, 76Ge, 85Rb, 86Sr, 90Zr, 107Ag, 116Cd, 120Te, 123Sb,
134Ba, 138Ce, 144Sm, 151Eu, 165Ho, 175Lu, 187Re, 198Hg, which
are important target nuclei of the isomeric (n, 2n) reactions.
On the whole, the spin cut-off parameters from the above
four types of formulas increase nearly linearly with the
mass of the nucleus increasing, although there are more or
less fluctuations due to the shell effects. However, there are
significant differences among the absolute values of the spin
cut-off parameter, and the overall values of σ1 from Eq. (12)
are the highest and those from Eq. (18) are the lowest. In
addition, the values from Eq. (14) are a little similar with
those from Eq. (16), which is understandable because the
expression of Eq. (14) is adopted for the case of the higher
excitation energy in Eq. (16), and meanwhile there are quite
large differences for several nuclei due to the contribution of
the discrete levels in Eq. (16) leading to the vast fluctuations.
Figure 3(b) shows the calculated spin cut-off parameters σ2 of
the neighboring nuclei (A − 1, Z ) of the above nuclei (A, Z )
at U = 1 MeV with Eqs. (16)–(18) which are applicable at
the lower excitation energy, and with the increasing mass
of the nucleus the σ2 increases more slowly than that at the
higher excitation energy shown in Fig. 3(a), accompanying
the strong fluctuations except that obtained from Eq. (17).
The values calculated with Eq. (17) seem to be an average of
those with Eq. (16) when the mass of the nucleus is less than
160, indicating the rationality of the systematical formula
from Eq. (17).

The isomeric cross-section ratios of the (n, 2n) reactions
bombarded by 14 MeV neutron are calculated based on the
above formulas of the spin cut-off parameter within the H-V
method, and the calculated results are shown in Fig. 4 for the
same target nuclei as those shown in Fig. 3, together with
the evaluated values from JENDL-5 and JEFF-3.3. There are
totally 12 types of combinations of appropriate formulas for

014603-5



LI-LE LIU et al. PHYSICAL REVIEW C 109, 014603 (2024)

calculating the spin cut-off parameter σ1 and σ2 in the present
work, and the corresponding calculated results are relatively
concentrated when the mass number At of the target nucleus is
less than 160, and the divergences become much larger when
At > 160, indicating the method is more reliable in describing
the light- and medium-mass region (At < 160), and the result
is consistent with Ref. [7] which shows a reduction of the
nuclear moment of inertia from the rigid-body value by up
to 70% in the heavy-mass region within the H-V method and
the deviation between the theoretical spin cut-off parameters
and those deduced from the experimental isomeric ratios in-
creases with increasing mass number. It also can be seen from
Fig. 4 that the calculated results with Eq. (17) (red symbols)
for σ2 are overall closer to the evaluated values whichever
formula is applied for σ1, indicating that the σ2 has a more
significant influence on the isomeric cross-section ratio of the
(n, 2n) reactions within the H-V method. And meanwhile,
with Eq. (17) the calculated spin cut-off parameter σ2 almost
locates the lowest across the whole mass region shown in
Fig. 3, except 120Te and 144Sm for which the lowest σ2 are
those from Eq. (16) and the corresponding calculated results
are more agreeable with the evaluated values, thus, it sees that
the isomeric cross-section ratios calculated with the lowest σ2

values shown in Fig. 3 agree better with the evaluated data.
And it is also applicable for the case of σ1. One can see that
there are better agreements between the evaluated values and
the calculated results with the lowest σ1 from Eq. (18) for
most nuclei and those with Eq. (16) for the other nuclei 107Ag,
116Cd, and 187Re than those with the higher σ1 calculated with
the rigid-body formula from Eq. (14), which means that the
effective moment of inertia should be less than the rigid-body
moment of inertia I0 from Eq. (14) in certain extent. Similar
results have been previously reported from other theoretical
calculations [32–35]. On the whole, the formula proposed
by Egidy [Eq. (18)] is more appropriate for the σ1 and the
systematical formula from Eq. (17) is more appropriate for
the σ2 within the H-V method for most nuclei.

In addition, the isomeric cross-section ratio of the (n, 2n)
reaction as a function of the incident energy is calculated with
the H-V method and the most appropriate formula for the
spin cut-off parameter is adopted in the whole energy range.
The upper panel of Fig. 5 shows the final spin distribution of
the residual nucleus in 45Sc(n, 2n)44m,gSc (Ig = 2+, Im = 6+),
which dominates the isomeric cross-section ratio based on the
spins of the ground state and the isomeric state of the residual
nucleus, and the calculated isomeric ratio as a function of
the incident energy is shown in the bottom panel, compared
with the evaluated values from JEFF-3.3 and JENDL-5 and
the experimental data. It can be seen from Fig. 5 that with
the incident energy increasing, the final spin distribution is
shifted to the left side, leading to the decrease of the iso-
meric cross-section ratio shown in the bottom panel, and the
decreasing tendency is almost similar to the evaluated values
and the calculated results agree well with the experimental
data around En = 14 MeV. And one also can see that the
isomeric ratio decreases much more rapidly around En = 17
MeV, and then becomes flatter when En is larger than 17 MeV,
although the calculated results locate between the evaluated
values from JEFF-3.3 and those from JENDL-5 throughout

FIG. 5. The spin distribution of the final residual nucleus in
45Sc(n, 2n)44m,gSc reaction for a series of neutron energies below
20 MeV (upper panel). The calculated isomeric cross-section ratio
of 45Sc(n, 2n) reaction as a function of the incident neutron energy,
compared with the evaluated data from JEFF-3.3 and JENDL-5, and
the experimental data [30,31] (bottom panel).

the energy range. It seems that the rapid decrease around
En = 17 MeV results from the increase of the averaged
number Nγ of γ rays, which also influences the final spin
distribution in certain extent. Moreover, the flatter tendency
compared with the evaluated data around the energies larger
than 17 MeV is possibly because that when the incident en-
ergy is larger enough, the contribution of the pre-equilibrium
reaction becomes non-negligible, which is not taken into ac-
count due to the limitation of the method used in the present
work. It should be noted that the present method is based
on the conventional Hauser-Feshbach model with the trans-
mission coefficient independent of K , i.e., the projection of
the angular momentum on the symmetry axis, however, the
deformed nuclei should in principle be treated with a de-
formed Hauser-Feshbach model which gives different results
[39], and the present results would be further improved if the
deformed nuclei are treated based on the deformed Hauser-
Feshbach model.

The calculated results of 85Rb(n, 2n)84m,gRb (Ig = 2−,
Im = 6−) and 120Te(n, 2n)119m,gTe (Ig = 1/2+, Im = 11/2−)
are shown in Figs. 6 and 7, respectively, together with the
evaluated values and the experimental data. It can be seen
from Fig. 6 that the final spin distribution of the residual
nucleus in 85Rb(n, 2n) is insensitive to the incident energy,
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FIG. 6. Similar to Fig. 5 for the 85Rb(n, 2n)84m,gRb reaction. The
experimental data are from Refs. [36–38].

FIG. 7. Similar to Fig. 5 for 120Te(n, 2n)119m,gTe reaction. The
experimental data are from Refs. [40,41].

and thus the calculated isomeric ratio is almost unchanged
across the whole energy region, which is consistent with the
evaluated values except that around En = 12 MeV. One can
see from Fig. 7 that, with the incident energy increasing, the
final spin distribution of 120Te(n, 2n) is shifted to the right side
and the corresponding isomeric cross-section ratio increases,
and the calculated results agree with the evaluated data from
JEFF-3.3, although there are slight fluctuations around the
larger energies. The overall agreement between the calculated
results and the evaluated data indicates the validity of the
present method in calculating the isomeric ratio of the (n, 2n)
reaction below 20 MeV. In the near future, the method will be
further improved by introducing the contribution of the pre-
equilibrium reaction and extended to describing more reaction
channels including that of the charged particle emission.

IV. SUMMARY

In this work, we have studied the influence of the spin cut-
off parameter on the isomeric cross-section ratio of the (n, 2n)
reaction and the isomeric ratio as a function of the incident
energy within the Huizenga-Vandenbosch method.

We first investigate the dependence of the isomeric cross-
section ratio on the spin cut-off parameter σ in the (n, 2n)
reaction, and the σ is treated for the residual nucleus following
the first neutron emission (σ1) and that following the second
neutron emission (σ2) separately, due to the large difference
of the excitation energy between them, which shows that
the isomeric cross-section ratio is definitely sensitive to the
spin cut-off parameters, especially the σ2. Moreover, various
formulas of the spin cut-off parameters at the lower and higher
excitation energies are compared and applied to calculate the
(n, 2n) isomeric ratios of a series of nuclei from 45Sc to 198Hg
at En = 14 MeV, compared with the evaluated values from
JENDL-5 and JEFF-3.3. It is found that the method is more
reliable in the light- and medium-mass region (At < 160),
and most of the calculated results are described well by the
formulas giving the lower spin cut-off parameters than the
rigid-body formula, which supports the previous investigation
results in which the effective moment of inertia is less than the
rigid body moment of inertia I0 in Eq. (14) for most nuclei.

In addition, with the H-V method and the most appropriate
formulas for the spin cut-off parameter, the isomeric ratios
as a function of the incident energy in 45Sc(n, 2n)44m,gSc,
85Rb(n, 2n)84m,gRb, and 120Te(n, 2n)119m,gTe are calculated
and compared with the evaluated values and experimental
data, and the overall agreement is obtained. However, the
deviation becomes larger around the higher excitation energy,
which will be left to the improvement of the method in the
future work.
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