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Application of a universal reaction function to the description of heavy-ion
reaction cross sections
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Approximating the angular momentum dependence of the reaction probability at a given bombarding energy
by shifting it by the centrifugal energy and using the analytical formula for the elastic scattering probability, new
analytical formulas for heavy-ion reaction cross sections and the universal reaction function are derived. It has
been found that these new formulas describe the experimental data well and can be used for the analysis and
predictions of heavy-ion reaction cross sections.

DOI: 10.1103/PhysRevC.109.014602

I. INTRODUCTION

To analyze the fusion (capture) cross sections σ f (E ) in
heavy-ion reactions with different Coulomb barrier heights
Vb and radii Rb calculated in the case of spherical nu-
clei, it is useful to compare not the excitation functions,
but the dependence of the dimensionless quantities F0(x) =
2Eσ f (E )/(h̄ωbR2

b ) versus x = (E − Vb)/(h̄ωb) [1–3]. Here,
E = Ec.m., ωb, and μ are the bombarding energy in the
center-of-mass system, the frequency of an inverted oscillator
approximating the barrier, and the reduced mass parameter
of the system, respectively. In this way the geometrical and
barrier hight effects can be eliminated. This reduction method
is suggested by Wong’s formula [4]

σ f (E ) = h̄ωbR2
b

2E
ln{1 + exp (2π [E − Vb]/(h̄ωb))}

for the fusion cross section [1–3]. This analytic expression is
derived by approximating the barrier as an inverse parabola
and neglecting the variation of the barrier radius with angular
momentum. In this case

F0(x) = ln[1 + exp(2πx)].

This is expected to be the universal fusion function (UFF)
for any fusion (capture) reaction. In reactions with heavy
nuclei (Z1Z2 > 1600), fusion does not always occur after the
projectile is captured by the target nucleus because of com-
petition with quasifission [5]. If the capture and fusion cross
sections coincide, the comparison of experimental data with
the UFF [1–3] allows us to conclude about the contributions
of static deformations of the colliding nuclei and the nucleon
transfer between them to the fusion cross section. Indeed,
the UFF disregards these effects, which are indicated by its
deviation from experiments.

In the present paper, by analogy to UFF we suggest the
universal reaction function (URF) for the heavy-ion reaction
cross section, which is the total interaction cross section mi-

nus the cross section of elastic scattering. So, the heavy-ion
reaction cross section is larger than σ f because it contains the
contribution of other (inelastic, breakup, transfer) channels.
Approximating the angular momentum dependence of the re-
action probability at a given bombarding energy by shifting it
by the centrifugal energy, we derive the analytical formula for
the reaction cross section. This formula provides the universal
trends of heavy-ion reaction cross section and will allow us to
conclude about the contributions of static deformations of the
colliding nuclei to the reaction cross section. The deformation
effects are disregarded by the URF and well manifested in the
comparison of the URF with experiments.

Thus, the challenge is to a have universal function to reduce
the experimental efforts on the measurement of heavy-ion
reaction cross sections. There is a nice suggestion for the
UFF. Our aim is to suggest similarly for the reaction function.
In Sec. II, we describe our method. In Sec. III, we derive
the URF and the universal reaction probability. The results
of calculations are presented in Sec. IV and summarized in
Sec. V.

II. REACTION CROSS SECTION

If the elastic backscattering probability Pel(E , J = 0) at
backward angle (θ = 180o) or zero angular momentum (J=0)
is known, the reaction probability PR(E , J = 0) can be found
[6–9]:

PR(E , 0) = 1 − Pel(E , 0). (1)

The value of Pel(E , 0) is defined by the ratio of the elastic scat-
tering differential cross section and the Rutherford differential
cross section dσC at θ = 180o, that is,

Pel(E , 0) = dσel/dσC . (2)

The value of σel deviates from σC because of the action of
nuclear forces. At backward angle, the nuclei converge at a
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minimum distance Rmin(θ = 180o) where the nuclear forces
are rather large and, thus, this deviation is maximal [10].

Furthermore, one can approximate the J dependence of the
reaction probability PR(E , J ) at a given bombarding energy
E by shifting [6–9] it by the Coulomb scattering rotational
energy ER(J ),

εJ = E − ER(J ), (3)

such that one can write

PR(E , J ) ≈ PR(εJ , 0). (4)

Using the Coulomb scattering unique relations

J = ηcot

[
θ

2

]
(5)

and

Rmin(θ ) = Z

2E

(
1 + sin−1

[
θ

2

])
(6)

between the entrance-channel angular momentum J and exit-
channel scattering angle θ in the center-of-mass system, and
between the distance Rmin of closest approach on a classical
Coulomb trajectory and θ , respectively, we obtain

ER(J ) = h̄2J2

2μR2
min(θ )

= E
(η2 + J2)1/2 − η

(η2 + J2)1/2 + η
. (7)

Here,

η = Z

√
μ

2h̄2E
(8)

is the Sommerfeld parameter [11] for Coulomb collision with
Z = Z1Z2e2, the charge numbers Z1,2 of interacting nuclei,
and the reduced mass μ = m0

A1A2
A1+A2

(m0 is the nucleon mass
and A1,2 are the mass numbers of the interacting nuclei).

Employing Eq. (4), we obtain the partial reaction cross
section

σR(E , J ) ≈ πλ̄2(2J + 1)PR(εJ , 0), (9)

where, λ̄2 = h̄2/(2μE ) is the reduced de Broglie wavelength.
Then, the reaction cross section is

σR(E ) =
∞∑

J=0

σR(E , J ). (10)

Using Eqs. (3) and (7), converting the sum over the partial
waves J into an integral in Eq. (10), and expressing J by the
variable ε = εJ , one can derive the following simple expres-
sion for the reaction cross section:

σR(E ) = πZ2

E

∫ E

0
dε

2E − ε

ε3
PR(ε, 0). (11)

In Ref. [10], the general perturbation treatment of elastic
scattering of heavy ions with a complex optical potential of
the Woods-Saxon type was introduced, and a simple analytical
expression for the elastic scattering probability was derived in
the first order of perturbation theory. This leads to an easy
estimate of the nuclear effects, if the energy of the projectile
is in the neighborhood of the Coulomb barrier. The derived
expression is quite accurate compared to the numerical solu-
tion of the Schrödinger equation, as long as the elastic cross
section deviates less than about 50% from the pure Rutherford
cross section [10]. Using the analytical formula

Pel(E , J = 0)

= 1 − 2Re

{
VR

E
eRR/aR D

(
a−1

R

) + iVI

E
eRI /aI D

(
a−1

I

)}
(12)

of Ref. [10], where

D(a−1) = 1

2

(
πZ

aE

)1/2

[1 − 2ika]e−Z/(aE ),

k = (2μE/h̄2)1/2,

and VR,I > 0, RR,I , and aR,I are the depths, radii, and dif-
fuseness parameters, respectively, of the spherical complex
nuclear optical potential U (R) = −ṼR(R) − iṼI (R) [ṼR(R) and
ṼI (R) are the real and imaginary parts parametrized by the
Woods-Saxon forms], we obtain

PR(E , J = 0) = VR

(
πZ

aR

)1/2 e(RR−Z/E )/aR

E3/2

+ 2aIVI

(
2πμZ

h̄2aI

)1/2 e(RI −Z/E )/aI

E
. (13)

Employing Eqs. (11) and (13), we finally derive

σR(E ) = π3/2Z3/2

E2

[
a1/2

R VR
e(RR−Z/E )/aR

E1/2
+ 2a3/2

I VI

(
2μ

h̄2

)1/2

e(RI −Z/E )/aI

]

= π3/2Z3/2

E5/2

[
a1/2

R VRe(RR−Z/E )/aR + 2a3/2
I VI

(
2μE

h̄2

)1/2

e(RI −Z/E )/aI

]

= π3/2R5/2
m

Z

[
a1/2

R VRe(RR−Rm )/aR + 2a3/2
I VI

(
2μZ

h̄2Rm

)1/2

e(RI −Rm )/aI

]
, (14)

where

Rm = Z/E

is the closest distance at the angle θ = 180◦. As one can see,
Eqs. (13) and (14) are valid at sub-barrier energies to ensure
Rm is larger than RI and RR. If the values of RI and aI are
comparable, respectively, to the values of RR and aR, the factor
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ψ0 = 2aI ( 2μE
h̄2 )1/2VI/VR defines the relative contribution of

the imaginary absorbing part of the optical potential to the
reaction cross section. Usually the depth VI of the imaginary
potential is smaller than the value of VR. Setting VI/VR =
0.5, for the considered reactions 6He, 9Be + 27Al, 6Li + 209Bi,
9Be + 208Pb, 11B + 209Bi, and 12C + 209Bi, the values of ψ0

are estimated as 0.79–0.92, 1.06–2.2, 1.94–2.42, 2.2–2.9, 2.6–
3, and 2.7–3.1, respectively. Thus, in reactions with heavy
nuclei the main contribution to PR(E , J = 0) comes from
the imaginary potential with VI [10]. The role of the real
potential VR can be taken effectively into account through
the replacements Z → Z ′ = Z (1 − aR

Rb
) (Rb is the position of

the Coulomb barrier—see the Appendix—where the value
of Vb is defined) and Rm → R′

m = Z ′/E in the second term of
Eq. (14). In this case, we effectively multiply ψ0 by the factor
exp[Z/(RbE )], which is larger than e at sub-barrier energies
and leads to ψ0 > 2 for all reactions considered. Thus, instead
of Eq. (14) we can employ the simpler formula

σR(E ) = 2[πaI ]
3/2VI R

′2
m

(
2μ

h̄2Z ′

)1/2

e(RI −R′
m )/aI

= 2[πaI Z ′]3/2VI

E2

(
2μ

h̄2

)1/2

e(RI −Z ′/E )/aI , (15)

which seems to be justified for all reactions considered, with
the exception of the 6He + 27Al reaction. As shown below, this
reaction is satisfactorily described using Eq. (15).

The simple expression (15) can also be extended to any
value of E if the energy dependence is introduced in RI as

RI =
(

0.5 − 0.6 exp(−χ/14.09)

+ 0.717

1 + exp[(E − Vb − 7.3)/15.7]

)
RR,

where χ = Z1Z2/(A1/3
1 + A1/3

2 ). So, the lighter the interacting
nuclei are, the larger the deviation of RI is from RR = (R1 +
R2). This expression was obtained to describe the experimen-
tal values of σR using the Akyüz-Winther optical potential [12]
with the following parameters:

VR = 15.2π

(
1 − 1.8

N1 − Z1

A1

N2 − Z2

A2

)
aR

R1R2

R1 + R2
,

VI = 0.5VR,

aR = 1
/[

1.17
{
1 + 0.53

(
A−1/3

1 + A−1/3
2

)}]
fm,

where Ri = 1.2A1/3
i − 0.09 fm. For a better description of

the experimental functions σR(E ), we set aI = aR in the
6He + 27Al reaction, aI = 1.05aR in the reactions 9Be + 27Al
and 6Li + 209Bi, aI = 0.85aR in the 9Be + 208Pb reaction, and
aI = 0.75aR in the reactions 11B + 209Bi and 12C + 209Bi. The
value of RI decreases with respect to RR with increasing E ,
which allows us to use Eq. (15) at E > Vb.

III. REDUCED REACTION CROSS SECTION
AND PROBABILITY

To analyze the reaction cross sections σR(E ) in the col-
lisions with different Coulomb barrier heights Vb and radii

Rb calculated in the case of spherical nuclei, it is useful to
consider the dimensionless quantities

σR(E ) → σ red
R (x) = 1

R′2
m

σR(E )

[
h̄2Z ′

(2πaI )3V 2
I μ

]1/2

= E2σR(E )

[
h̄2

(2πaI Z ′)3V 2
I μ

]1/2

= e−x (16)

versus

E → x = (R′
m − RI )/aI = (Z ′/E − RI )/aI .

Thus, σ red
R (x) is the same function for any reaction and can be

called the URF. The URF allows us to conclude about the role
of static deformations of the colliding nuclei in the reaction
cross section, particularly at sub-barrier energies. Indeed, the
URF disregards this effect.

Analogously, one can suggest the universal reaction prob-
ability (URP) at backward angle (J = 0 or θ = 180o):

PR(E , J = 0) → Pred
R (x) = 1

R′
m

PR(E , J = 0)

[
h̄2Z ′

2πaIμV 2
I

]1/2

= EPR(E , J = 0)

[
h̄2

2πaIμZ ′V 2
I

]1/2

= e−x (17)

versus E → x. In the case of the reaction probability at any
angle θ , one can generalize Eq. (17):

PR(E , θ ) → Pred
R (y) = E

1+cot(θ/2)
PR(E , θ )

[
2h̄2

πaIμZ ′V 2
I

]1/2

= e−y (18)

versus

(E , θ ) → y = {Z ′[1 + 1/ sin(θ/2)]/(2E ) − RI}/aI .

Here, R′′
m(θ ) = Z ′[1 + 1/ sin(θ/2)]/(2E ) is the closest dis-

tance at the angle θ . As follows from our analysis of the
experimental data, the reduced probability Pred

R (y) has also
universal behavior on y.

IV. RESULTS OF THE CALCULATIONS

Employing the formulas (16), we compare the URF

σ red
R (x) = e−x (19)

and reduced experimental reaction cross sections

σ red
R exp(x) = E2σR exp(E )

[
h̄2

(2πaI Z ′)3V 2
I μ

]1/2

. (20)

In Fig. 1, the results are presented for the reactions
6He + 27Al; 6Li, 12C + 209Bi; 9Be + 27Al, 208Pb; and
11B + 209Bi. As one can see, the reduced experimental
cross sections and URF results are rather close. Thus,
for all reactions, the suggested URF reproduces well the
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FIG. 1. The comparison of the reduced experimental reaction cross sections (symbols) with the URF (lines) versus x for the specified
reactions. The experimental reaction cross sections are from Refs. [3,13–19]. The heights of the Coulomb barriers defined in the Appendix and
corresponding values of xb are indicated.

energy dependence and, correspondingly, the formula (16)
is justified. The URF is quite sensitive to the value of aI .
For the reactions under consideration, the found values of aI

are in the range (0.60–0.65) fm, which is consistent with the

value of aR and parameters of the known optical potentials.
So, the parameters of the optical model can be tested in
the comparison of the reduced experimental reaction cross
sections and URF.
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FIG. 2. The dependencies of the experimental ratio
E2

mσ ex
R (Em )

E2σ ex
R (E )

(closed squares connected by solid lines) and the calculated value of e
Z′
aI

( 1
E − 1

Em
)

(open squares connected by dashed lines) on the bombarding energy E for the specified reactions. The experimental reaction cross sections are
from Refs. [3,13–19].

If we disregard the energy dependence of RI at E > Vb, the
ratio

σ red
R (En)

σ red
R (E )

= E2
n σR(En)

E2σR(E )
= e

Z′
aI

( 1
E − 1

En ) (21)

can be used to estimate the cross section at any E > En, if the
cross sections at two energies, including E = En, are known
to fix the parameter aI . Here the value of En can be taken as a
minimum bombarding energy E under consideration. As seen
in Fig. 2, the experimental and calculated results are close or
coincide, and the energy dependence is well reproduced. The
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calculated value of e
Z′
aI

( 1
E − 1

Em
) is quite sensitive to aI . For the

reactions under consideration, the found values of aI are in
the range (1.3–1.7) fm, and are larger than those in Eq. (16) to
take effectively into account the role of RI (E ). So, Eqs. (16)
and (21) with corresponding adjustment of aI can be used to
estimate the reaction cross sections.

V. SUMMARY

Approximating the angular momentum dependence of the
reaction probabilities at a given bombarding energy by shift-
ing it by the centrifugal energy and using the analytical
formula for the elastic scattering probability, we derived a new
analytical formula for heavy-ion reaction cross sections at any
value of the bombarding energy. As a result we transformed
the reaction cross section in a such a way as to obtain an
exponential dependence on the dimensionless value x, which
is used as the URF. We presented two variants. The first
one includes the energy dependence of the radius RI of the
imaginary potential. The second variant is the exponential
dependence with the exponent defined from two experimental
points. So, the heavy-ion reaction cross section can be defined
at any energy if it is known for as few as two energy values.
As shown for several systems, the suggested URF works well
for the reaction cross section and provides global trends for
it. The URF can be used along with the UFF when we are
also interested in the reaction cross section. We suggest the
URF for the analysis of experimental data and predictions of
heavy-ion reaction cross sections.
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APPENDIX: EFFECTIVE SOMMERFELD PARAMETER

Near the Coulomb barrier at R = Rb the nuclear part
of the nucleus-nucleus interaction potential V (R) = VN (R) +

VC (R) [VN (R) and VC (R) are the nuclear and Coulomb
parts] can be approximated by the exponential function
VN (R) ∼ exp[−R/ab], with the diffuseness parameter ab.
From

d

dR
V (R)|R=Rb = d

dR
VC (R)|R=Rb + d

dR
VN (R)|R=Rb = 0,

we obtain the following expressions:

VN (Rb) = −abZ1Z2e2

R2
b

= −abZ

R2
b

and

Vb = V (Rb) = Z

Rb

(
1 − ab

Rb

)
= Z ′

Rb
,

where

Z ′ = Z

(
1 − ab

Rb

)
.

Thus, the nuclear part of interaction mainly reduces the height
of the Coulomb barrier and very weakly influences the barrier
shape at R > Rb. This effect of the reduction of the Coulomb
barrier is taken effectively into consideration in the parameter
Z ′ or η′. Then, the Coulomb scattering relation is

J = η cot

[
θ

2

]
,

where η = Z
√

μ

2h̄2E
can be replaced by

J = η′ cot

[
θ

2

]

with the effective Sommerfeld parameter

η′ = Z ′
√

μ

2h̄2E
= Z

(
1 − ab

Rb

)√
μ

2h̄2E

in the presence of the nuclear part of the nucleus-nucleus
interaction potential. Using this relation between the entrance-
channel angular momentum and exit-channel angle, one can
calculate the reaction cross sections [6–9].
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