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Fine structure of the isoscalar giant monopole resonance in 58Ni, 90Zr, 120Sn, and 208Pb
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Background: Over the past two decades high energy-resolution inelastic proton scattering studies were used
to gain an understanding of the origin of fine structure observed in the isoscalar giant quadrupole resonance
(ISGQR) and the isovector giant dipole resonance (IVGDR). Recently, the isoscalar giant monopole resonance
(ISGMR) in 58Ni, 90Zr, 120Sn, and 208Pb was studied at the iThemba Laboratory for Accelerator Based Sciences
(iThemba LABS) by means of inelastic α-particle scattering at very forward scattering angles (including 0◦).
The good energy resolution of the measurement revealed significant fine structure of the ISGMR.
Objective: To extract scales by means of wavelet analysis characterizing the observed fine structure of the
ISGMR in order to investigate the role of different mechanisms contributing to its decay width.
Methods: Characteristic energy scales are extracted from the fine structure using continuous wavelet transforms.
The experimental energy scales are compared to different theoretical approaches performed in the framework of
quasiparticle random phase approximation (QRPA) and beyond-QRPA including complex configurations using
both non-relativistic and relativistic density functional theory.
Results: All models highlight the role of Landau fragmentation for the damping of the ISGMR especially
in the medium-mass region. Models which include the coupling between one-particle–one-hole (1p-1h) and
two-particle–two-hole (2p-2h) configurations modify the strength distributions and wavelet scales indicating the
importance of the spreading width. The effect becomes more pronounced with increasing mass number.
Conclusions: Wavelet scales remain a sensitive measure of the interplay between Landau fragmentation and
the spreading width in the description of the fine structure of giant resonances. The case of the ISGMR is
intermediate between the IVGDR, where Landau damping dominates, and the ISGQR, where fine structure
originates from coupling to low-lying surface vibrations.
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I. INTRODUCTION

Giant resonances (GRs) as a collective mode of excitation
are defined as small amplitude vibrations at high frequency
(high Ex) around the ground state of the nucleus, involv-
ing most of the nucleons [1]. The isoscalar giant monopole
resonance (ISGMR) was discovered four decades after the
isovector giant dipole resonance (IVGDR) was first identi-
fied in the 1930s, and was later studied extensively at the
Texas A&M University (TAMU) Cyclotron Institute and the
Research Center for Nuclear Physics (RCNP), through small
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angle (including 0◦) inelastic α-scattering measurements at
240 MeV and 386 MeV, respectively. However, only the gross
properties (centroids and strengths in terms of exhaustion
of sum rules) are so far reasonably well characterized and
described by microscopic models [2]. A systematic under-
standing of the widths, decay properties, and fine structure of
the ISGMR remain largely unexplored topics.

One of the main properties that define giant resonances
is the width �GR. The width is as a result of the damping
processes in the resonance, and has typical values of several
MeV. The damping of resonances can be described by differ-
ent components as follows [3]:

�GR = �� + �↑ + �↓ (1)

with �� representing Landau damping which describes
the fragmentation of the elementary one-particle–one-hole
(1p-1h) excitation, �↑ representing the escape width which
corresponds to direct particle emission out of the contin-
uum, and �↓ is the spreading width due to coupling to
two-particle–two-hole (2p-2h) and many-particle–many-hole
(np-nh) states. Information on the dominant damping mech-
anisms of nuclear giant resonances can be found in the
properties and characteristics of the fine structure of the giant
resonance. This fine structure is the consequence of the mix-
ture of multiple scales of fluctuations which are induced by the
decay of nuclear states [4]. The spreading width �↓ originates
from the pre-equilibrium and statistical decay observed in
compound nuclei. Its stochastic coupling mechanism is well
described by the doorway model [5].

Through systematic studies at both the iThemba Labora-
tory for Accelerator Based Sciences (iThemba LABS) and
RCNP, it was established that the main mechanism respon-
sible for fine structure differs for different resonances. In the
case of the ISGQR it is due to coupling to low-lying surface
vibrations [6–10], but mainly due to Landau damping in the
case of the IVGDR [4,11–14]. It is then of interest to know
the mechanism leading to the fine structure in the case of
ISGMR. The present work aims at the investigation of the
fine structure of ISGMR in 58Ni, 90Zr, 120Sn, and 208Pb based
on continuous wavelet analysis of high energy-resolution data
extracted from (α, α′) reaction at very forward scattering an-
gles. The range of nuclei under investigation include singly
and doubly magic nuclei and as such we opt to use theoretical
approaches including degrees-of-freedom at and beyond the
mean-field approximation of the quasiparticle random-phase
approximation (QRPA). In particular, we test calculations at
the QRPA level (relativistic and nonrelativistic) and beyond
QRPA, allowing for the inclusion of correlated 2p-2h states by
means of phonon-phonon coupling (PPC) employing Skyrme
interactions and the relativistic quasiparticle time blocking
approximation (RQTBA) developed for relativistic energy
density functionals.

II. EXPERIMENT AND DATA ANALYSIS

The details of the experimental procedure followed in this
study are given in Refs. [15,16]. As such, only the main points
are summarized here. The experiment was performed at the
Separated Sector Cyclotron (SSC) facility of iThemba LABS,
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FIG. 1. Isoscalar monopole strength distributions obtained with
the (α, α′) reaction at Eα = 196 MeV on 208Pb,120Sn,90Zr, and 58Ni.
See text for details.

South Africa. A beam of 196 MeV α particles was inelasti-
cally scattered off self-supporting 58Ni, 90Zr, 120Sn, and 208Pb
targets with areal densities ranging from 0.7 to 1.4 mg/cm2

and isotopically enriched to values >96%. The reaction
products were momentum analyzed by the K600 magnetic
spectrometer positioned at laboratory scattering angles 0◦ and
4◦ [17]. Following extraction of the inelastic scattering cross
sections, the isoscalar monopole (IS0) strength distributions
were obtained by means of the difference-of-spectra (DoS)
technique with excitation energy-dependent corrections (see
Ref. [16] for details). The correction factors used here are
based on the multipole decomposition analysis of L > 0 cross
sections in previous experiments at RCNP [18–21]. The re-
sulting spectra shown in Fig. 1, binned to 30 keV, demonstrate
significant fine structure up to excitation energies of approxi-
mately 20 MeV.

The momentum calibration for both the zero- and four-
degree measurements was very important in order to ensure
that no false structures are induced in the difference spectrum
of the DoS method. This was achieved using well-known
states in 24Mg [22,23] as shown in Fig. 2. An energy reso-
lution of ≈70 keV full width at half-maximum (FWHM) was
obtained for both the zero- and four-degree measurements.

III. THEORETICAL MODELS

In the following we discuss the four models that will be
used to provide IS0 strength functions to be compared with
the experimental results.
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FIG. 2. Double-differential cross sections measured for the
24Mg(α,α′) reaction at Eα = 196 MeV for the angular range θLab =
0◦–1.91◦ (blue) and θLab = 2◦–6◦ (red).

A. Nonrelativistic approaches with a Skyrme interaction

One of the successful tools for nuclear structure studies is
the quasiparticle random phase approximation (QRPA) with
the self-consistent mean-field derived by making use of the
Skyrme interaction. Such QRPA calculations do not require
new parameters since the residual interaction is derived from
the same energy density functional (EDF) as that determining
the mean field. The residual interaction in the particle-hole
channel and in the particle-particle channel can be obtained
as the second derivatives of the EDF with respect to the
particle density and the pair density, respectively. To build the
QRPA equations on the basis of Hartree-Fock (HF) Bardeen-
Cooper-Schrieffer (BCS) quasiparticle states with the residual
interaction is a standard procedure [24]. The wave functions
of the ground state is the QRPA phonon vacuum |0〉 and the
one-phonon QRPA states given by Q+

λμi|0〉 have energy ωλi,
where the index λ denotes the total angular momentum and
the index μ is its z projection in the laboratory system. The
dimensions of the QRPA matrix grow rapidly with the size
of the nucleus. Using the finite-rank separable approximation
(FRSA) [25] for the residual interactions, the eigenvalues of
the QRPA equations can be obtained as the roots of a relatively
simple secular equation [26]. It enables us to perform QRPA
calculations in very large two-quasiparticle spaces. The cut-
off of the discretized continuous part of the single-particle
(SP) spectra is at the energy of 100 MeV. This is sufficient to
exhaust practically all the energy-weighted sum rule. Because
of this large configurational space, we do not need effective
charges. We use the Skyrme-EDF SLy4 [27] with a nuclear
matter incompressibility modulus K∞ = 229.9 MeV. It is
worth to mention that the SLy4 set provides a good description
of the ISGMR in medium- and heavy-mass spherical nuclei
[28–30]. The pairing correlations were generated by a surface
peaked density-dependent zero-range force, and the pairing
strength was taken as −870 MeV fm3 [30,31]. To limit the
pairing SP space, we used a smooth cutoff at 10 MeV above
the Fermi energies [26]. In the QRPA solution, there exists
the problem of the spurious 0+ state which can appear at low
energy (<2 MeV). It is shown that the spurious state is very

well separated from the physical modes [32] and we can thus
ignore them.

The qualitative agreement with high energy-resolution
experimental data can only be achieved by including phonon-
phonon coupling (PPC) effects, such as the fragmentation
of the QRPA states [13]. We follow the basic ideas of the
quasiparticle-phonon model (QPM) [33]. Using the complete-
ness and orthogonality conditions for the phonon operators
one can express bifermion operators through the phonon ones
and the Hamiltonian can be rewritten in terms of quasiparticle
and phonon operators, see Ref. [34]. This method has al-
ready been introduced in Refs. [34,35]. We construct the wave
functions from a linear combination of one- and two-phonon
configurations as

�ν (λμ) =
(∑

i

Ri(λν)Q+
λμi

+
∑

λ1i1λ2i2

Pλ1i1
λ2i2

(λν)[Q+
λ1μ1i1

Q+
λ2μ2i2

]λμ

)
|0〉, (2)

where the [· · · ]λμ stands for angular momentum coupling.
Using the variational principle one obtains a set of linear
equations for the amplitudes Ri(λν) and Pλ1i1

λ2i2
(λν),

(ωλi − Eν )Ri(λν) +
∑

λ1i1λ2i2

U λ1i1
λ2i2

(λi)Pλ1i1
λ2i2

(λν) = 0, (3)

∑
i

U λ1i1
λ2i2

(λi)Ri(λν)+2(ωλ1i1 + ωλ2i2−Eν )Pλ1i1
λ2i2

(λν) = 0. (4)

For its solution it is required to compute the Hamiltonian
matrix elements coupling one- and two-phonon configurations
[34,35]

U λ1i1
λ2i2

(λi) = 〈0|QλiH[Q+
λ1i1

Q+
λ2i2

]λ|0〉. (5)

The rank of the set of linear equations (3) and (4) is equal to
the number of one- and two-phonon configurations included
in the wave functions Eq. (2). Equations (3) and (4) have
the same form as the QPM equations [33,36], but the SP
spectrum and the parameters of the residual interaction are
calculated with the Skyrme EDF. Our calculation is based on
the QRPA formulation. It should be noted as well that the
ground state correlations beyond the QRPA [36,37] may play
an important role. In this context the problem of convergence
and stability of solutions of the beyond QRPA models and the
so-called problem of double counting have been discussed in
[38]. However, all these questions are beyond the scope of the
present paper, and require separate studies.

In the present study, to construct the wave functions of the
excited 0+ states we take all the two-phonon configurations
below 25 MeV into account that are built from the QRPA
phonons with multipolarities λπ = 0+, 1−, 2+, 3−, 4+, and
5− coupled to 0+. It is interesting to examine the energies
and reduced transition probabilities of the lowest 2+, 3−,
and 4+ RPA states, which are the important ingredients for
understanding the nature of the two-phonon 0+ states of 208Pb.
The results of the RPA calculation for the energies, the B(Eλ)
values, and the structure of these states are given in Table I.
Note that the energies and the reduced transition probabilities
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TABLE I. Energies, transition probabilities, and structures of the
RPA low-lying states in 208Pb. The two-quasiparticle configuration
contributions greater than 5% are given. Experimental data are taken
from Refs. [40,41].

Energy B(Eλ; 0+
gs → λπ

1 )

(MeV) (e2bλ)

λπ
1 Expt. Theory Expt. Theory Structure

2+
1 4.085 5.2 0.318±0.016 0.34 54%{2g9

2 , 1i 13
2 }ν

36%{2 f 7
2 , 1h 11

2 }π

5%{1h 9
2 , 1h 11

2 }π

3−
1 2.615 3.6 0.611±0.012 0.93 13%{2g9

2 , 1p 3
2 }ν

9%{1i 11
2 , 2 f 5

2 }ν

7%{1 j 15
2 , 1i 13

2 }ν

21%{1h 9
2 , 2d 3

2 }π

9%{1i 13
2 , 1h 11

2 }π

9%{2 f 7
2 , 3s 1

2 }π

4+
1 4.323 5.6 0.155±0.011 0.15 33%{2g9

2 , 1i 13
2 }ν

41%{1h 9
2 , 1h 11

2 }π

15%{2 f 7
2 , 1h 11

2 }π

calculated within the FRSA are very close to those calculated
in the RPA with a full treatment of the Skyrme-type p-h
residual interaction [39]. As one can see, the overall agree-
ment of the energies and B(Eλ) values with the experimental
data [40,41] looks reasonable. The overestimates regarding
energies indicate that there is a room for the PPC effects
(see, for example, [34]).

The rank of the set of linear equations (3),(4) is equal
to the number of the one- and two-phonon configura-
tions included in the wave functions. This means that
the two-phonon configurational space is now enlarged by
the phonon compositions [λπ1

1 ⊗λ
π2
2 ]QRPA, i.e., [0+⊗0+]QRPA,

[1−⊗1−]QRPA, [2+⊗2+]QRPA, [3−⊗3−]QRPA, [4+⊗4+]QRPA,
and [5−⊗5−]QRPA. As an example, for 208Pb, in the case of the
set SLy4, the PPC calculation takes into account 40 monopole
phonons, 49 dipole phonons, 74 quadrupole phonons, 109 oc-
tupole phonons, 93 hexadecapole phonons, and 104 pentapole
phonons when all the one- and two-phonon configurations
below 25 MeV are included.

The IS0 strength function is computed as

IS0(ω) =
∑

ν

|〈0+
ν |M̂λ=0|0+

g.s.〉|2ρ(ω − Eν ), (6)

where |〈0+
ν |M̂λ=0|0+

g.s.〉|2 is the transition probability of the νth
0+ state. The transition operator of the ISGMR is defined as

M̂λ=0 =
A∑

i=1

r2
i . (7)

The IS0 strength function is averaged out by a Lorentzian
distribution with a smoothing parameter of � as

ρ(ω − Eν ) = 1

2π

�

(ω − Eν )2 + �2/4
. (8)
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FIG. 3. The PPC prediction of IS0 strength of 208Pb. The dotted
curve shows the RPA result, and the solid curve corresponds to the
result of the calculation taking into account the phonon-phonon cou-
pling. The dashed curve corresponds to the PPC calculation included
only the [3−⊗3−]RPA configurations. The experimental data are taken
from Ref. [16].

For accurate comparison between theoretical and experi-
mental results, a smoothing parameter equivalent to the
experimental energy resolution is used. The strength is then
summed over the appropriate number of bins. The inclusion
of the PPC lead to small down shifts of the centroid energy of
the ISGMR. It is worth mentioning that the first systematical
Skyrme-EDF study of the influence of the quasiparticle-
vibration coupling on the ISGMR centroid has been done in
[42]. We recall that the importance of the complex configura-
tions for the interpretation of basic peculiarities of the ISGMR
strength distribution in the case of 208Pb was already qualita-
tively discussed in the framework of simple model [43,44].
Our calculations give the same tendency [45], see Fig. 3.
The major contribution to the ISGMR strength distribution
is brought about by the coupling between the [0+]RPA and
[3−⊗3−]RPA components.

B. Relativistic approaches with an effective
meson-exchange interaction

Two relativistic self-consistent approaches, the relativis-
tic quasiparticle random phase approximation (RQRPA) and
the relativistic quasiparticle time blocking approximation
(RQTBA), were employed to compute the isoscalar monopole
response in the nuclear systems under study. RQRPA pi-
oneered in Ref. [46] is confined by two-quasiparticle (2q)
configurations interacting via the exchange of mesons be-
tween nucleons. The effective interaction is a derivative of
the self-consistent mean field with respect to the nucleonic
density, i.e., both are defined by the same set of eight parame-
ters NL3∗, namely, the nucleon-meson coupling constants and
meson masses. The latter values are slightly refitted compared
to their vacuum values, and non-linear couplings of the scalar
meson are adopted to obtain a realistic mean field, whereas
the compressibility modulus K∞ = 258 MeV corresponds to
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this parameter set [47]. In most cases, RQRPA reasonably
describes the collective states at both low and high energies,
however, it is known to overestimate the centroid of the giant
monopole resonance in nuclei lighter than lead.

Many details of the nuclear spectra are stipulated by much
more complex wave functions of the excited states than
the 2q ones. The leading approximation beyond (R)QRPA
includes 2q ⊗ phonon configurations, which produce consid-
erable fragmentation of the (R)QRPA modes and generate
much richer spectral structures. In the relativistic frame-
work, this approach was first formulated and implemented
numerically as the relativistic quasiparticle time blocking
approximation in Ref. [48], where it was derived from the
phenomenological nucleon-phonon self-energy by the time
blocking technique following Ref. [49]. Later, the time block-
ing was ruled out as an unnecessary step when the response
theory is derived from an ab initio Hamiltonian in the model-
independent equation of motion (EOM) framework [50,51].
In the EOM formalism, RQTBA was obtained as one of the
possible approaches to the dynamical kernel, or in-medium
long-range interaction, which keeps the leading effects of
emergent collectivity. The developments of Refs. [50–53] also
allowed for a self-consistent extension of the theory to the
2q ⊗ 2phonon configurations, i.e., to the three-particle-three-
hole level, which produces further refinement of the spectral
strength distributions.

In Refs. [50,51] it was shown that all the many-body mod-
els for the fermionic response are derivable from the exact
ab initio theory. The QRPA, or one-phonon, approach follows
when completely neglecting the EOM’s dynamical kernel for
the response function and considering only the 2q config-
urations. The dynamical kernel, which generates complex
configurations beyond the 2q ones, couples to the hierarchy
of EOMs of growing complexity and may be approximated
by a cluster decomposition to make the many-body prob-
lem tractable. The minimal truncation on the two-body level
leads to the quasiparticle-vibration coupling and multiphonon
approaches, depending on the desirable correlation content,
which is expressed by Eq. (60) of Ref. [51]. Using an effective
interaction instead of the bare interaction between the nucle-
ons requires the subtraction [38], which eliminates the double
counting of the complex configurations from the effective
interaction, thereby recovering the consistency of the theory.

Both the original and extended versions of RQTBA
have demonstrated a good performance in the descrip-
tion of nuclear excited states in both neutral [48,54,55]
and charge-exchange [56–59] channels, showing remarkable
improvements with respect to RQRPA. Most notably, the
2q ⊗ phonon configurations produce a reasonable degree of
fragmentation of the 2q states already in the leading approxi-
mation. In particular, the description of the low-energy (soft)
modes was refined considerably, which is especially important
for the applications to r-process nucleosynthesis in stellar
environments and supernovae evolution [60,61]. The so-called
nuclear fluffiness puzzle was addressed recently in Ref. [62]
within the same approach applied to the ISGMR in various
nuclei across the nuclear chart. It was shown that the self-
consistent relativistic response theory, including 2q ⊗ phonon
configurations beyond RQRPA, can reasonably describe both

the centroids and the widths of the ISGMR in the lead, tin,
zirconium, and nickel isotopes. Reference [62] was the major
stepping stone on the way to consensus between a softer
equation of state extracted from the compressibility of finite
nuclei and a stiffer one required by recent analyses of neutron
star data.

In this work, we employ the same version of RQTBA as
in Ref. [62] with pairing correlations taken into account on
an equal footing with the quasiparticle-vibration coupling in
terms of the 2q ⊗ phonon configurations, which are included
up to 50 MeV. The corresponding amplitudes are generated
from the characteristics of the relativistic mean-field quasi-
particles and RQRPA phonons in a parameter-free way. The
phonon model space is truncated using the same criteria as in
the series of earlier calculations, for instance, in Refs. [62,63].
The complete set of the 2q configurations was included in
the calculations, which allows for maximal suppression of
the spurious component. The subtraction procedure, following
Ref. [38], eliminates the 2q ⊗ phonon contributions from the
effective interaction to avoid their double counting, ensures
converged results within the given configuration space, and
preserves the decoupling of the spurious state. The imaginary
part of the energy variable in the response function, corre-
sponding to half of the width of the resulting peaks, is chosen
to be � = 35 keV to match the experimental energy resolution
of 70 keV.

Fragmentation of the ISGMR due to the 2q ⊗ phonon
configurations included in RQTBA was found in reasonable
agreement with the lower-resolution data of Refs. [2,64] and
[65] for 208Pb, 120Sn, and 80Zr, respectively. An accurate com-
parison was performed and discussed in Ref. [62], where also
the ISGMR’s centroid shift due to these configurations was
investigated and linked to quadrupole collectivity, which is
typically enhanced in soft mid-shell nuclei. The fragmentation
of the monopole response is overall weaker than that of the
higher multipoles, and both the fragmentation and centroid
position are sensitive to the details of the numerical scheme,
such as the basis completeness and self-consistency. The latter
is stipulated using the same effective interaction in the static
and dynamic sectors and the subtraction procedure.

IV. FINE-STRUCTURE ANALYSIS

Different methods can be employed in order to gain insight
into the characteristic energy-scales of the fine structure of
giant resonances, such as the entropy index method [66], a
multifractal analysis [67], or a method based on the continu-
ous wavelet transform (CWT) [6]. The CWT method was used
previously in the analysis of the fine structure observed in the
ISGQR [7,8,10] and the IVGDR [13,14], and will therefore
also be employed in this study. A brief summary of the for-
malism and techniques of the wavelet analysis, discussed in
detail elsewhere [13], is provided here.

A. Wavelet-analysis formalism

Wavelet analysis is an effective tool to analyze multiscale
structures [68]. Fourier analysis can also play the same role
through superposition of sine and cosine functions to analyze
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periodic signals. However, the sinusoidal functions used to
represent data are nonlocal and infinite, this then makes the
Fourier analysis inappropriate in the case of the fine structure
analysis of giant resonances. Wavelet analysis offers informa-
tion on the localization of high-frequency signal aspects [69].
In addition, wavelet analysis is not constrained to the usage
of sinusoidal functions only. These features together allow
a study of the evolution of the frequency pattern of a given
signal with optimized resolution. Another useful feature of
the wavelet analysis is the approximation of any background
contribution in the experimental data, through the so-called
vanishing moments of the wavelet function.

The choice of a wavelet plays an important role when per-
forming wavelet analysis. The most frequently used functions
for wavelet analysis are discussed in Ref. [70]. The detector
response of the magnetic spectrometer used in the experi-
ments is well approximated by a Gaussian line shape. As such,
for the analysis of the fine structure, the Morlet wavelet con-
sisting of a Gaussian envelope on top of a periodic structure is
the most suitable. The Morlet wavelet is given by [71]

�(x) = 1

π
1
2 fb

exp

(
2π i fc − x2

fb

)
, (9)

where fb = 2 and fc = 1 are used as the wavelet bandwidth
and the center frequency of the wavelet, respectively.
This wavelet-function or wavelets must meet a set of
requirements:

(i) the function oscillating with a mean value that equals
zero and

(ii) the function must have finite length.

Mathematically, the above conditions can be written as∫ ∞

−∞
�∗(x)dx = 0 (10)

and

K� =
∫ ∞

−∞
| �2(x) | dx < ∞, (11)

where �(x) is a real or complex function used as mother-
wavelet with �∗(x) as its complex conjugate. Here, K� is the
norm of the wavelet. The second condition defines the local
feature of wavelets. The continuous wavelet transform and
the discrete wavelet transform (DWT) are the two categories
of wavelets transforms available. Their main properties and
the comparison between the two transforms are discussed in
Ref. [70]. For the purposes of the present analysis, only the
application of the CWT will be discussed.

The convolution of a given signal σ (E ) with the wavelet
function (generally complex-conjugated) yields the coeffi-
cients of the wavelet transform. This is explicitly given by [71]

C(δE , Ex) = 1√
δE

∫
σ (E )�∗

(
Ex − E

δE

)
dE , (12)

where C(δE , Ex) are the coefficients of the wavelet transform,
δE represents the bin size, and moreover a scaling factor.
The parameter Ex shifts the position of the wavelet across the
excitation-energy range, hence allowing access to the scale-
localization information. The parameters δE and Ex are varied

continuously in the framework of CWT. The values of the
coefficients indicate to what extent the form of the scaled and
shifted wavelet is close to the original spectrum.

The extraction of wavelet energy-scales can be achieved
from the wavelet coefficient plot as peaks in the corresponding
power spectrum. The wavelet power spectrum is the projec-
tion of the summed squared wavelet coefficients onto the
wavelet scale axis

Pω(δE ) = 1

N

∑
i

| Ci(δE )C∗
i (δE ) |, (13)

where Pω(δE ) represents the power as a function of scale
δE summed at each scale value over the index i = N with
N the number of energy bins in the excitation-energy region
considered.

B. Application of the CWT on the ISGMR data

The wavelet analysis was performed following the tech-
niques outlined above. A CWT was used to generate the
wavelet coefficients Eq. (12) as a function of excitation en-
ergy, for each of the IS0 strength distributions of the nuclei
under investigation. In Ref. [16], it was discussed that the
IS0 strength distributions extracted with the DoS technique
need to be corrected by energy-dependent factors determined
from the MDA analysis of previous experiments on the same
nuclei. It is, therefore, important to investigate the impact of
this dependency on the fine structure analysis.

The sensitivity of the wavelet analysis to the different cor-
rection factors is illustrated in Fig. 4 for the case of 90Zr. IS0
strength distributions obtained with correction factors derived
from Refs. [19] and [72] are shown in the top and third
rows, respectively. The two-dimensional plots of the wavelet
coefficients are displayed in the second and fourth panels on
the right-hand side of Fig. 4. The intermittent appearance of
blue (red) regions indicating negative (positive) values, result
from the oscillatory structure of the mother wavelet [Eq. (9)]
used in the analysis. Extracted wavelet coefficients are then
projected onto the scale axis to generate the power spectrum
shown in the two panels on the left-hand side of Fig. 4.
These spectra display the distribution of the scales in the
excitation-energy region chosen for the analysis. The presence
of characteristic scales is indicated by peaks and points of
inflection in the power spectra.

When comparing the power spectra resulting from the IS0
strength distributions with different correction factors, it is
clear that even though there are relative power changes, very
similar scale energies are found. The details of the analysis
techniques used in Ref. [16] do, therefore, not affect the
extraction of information on the fine structure of the GMR
extracted with wavelet techniques. All results presented in the
next section are based on the DoS results that employed the
correction factors based on RCNP experiments [18–21].

V. DAMPING OF THE ISGMR - WAVELET
ENERGY-SCALES COMPARISON

In this section, the results of the wavelet analysis of the
experimental and model IS0 strength functions are presented.
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FIG. 4. Top set (right column): IS0 strength of 90Zr obtained
using the RCNP-based energy-dependent correction factor as deter-
mined in Ref. [16]. Top set (lower right): Density plot of the real part
of the CWT coefficients of the data. Top set (left column): Corre-
sponding power spectrum for the excitation-energy region indicated
by the vertical dashed lines (11 MeV � Ex � 24 MeV) in the top
right plot. Bottom set: Same as the top set but for the difference
spectrum obtained using TAMU-based energy-dependent correction
factors. Bottom set (left column): The corresponding power spectrum
shown in black, contrasted with the power spectrum from the top set
(blue line).

They are summarized in Figs. 5–8. For each nucleus, different
energy regions have been considered for the analysis depend-
ing on the location of the main ISGMR peak. These regions
are indicated by the vertical dashed lines shown in panels on
the left-side of Figs. 5–8. Characteristic scales are extracted
from the power spectra and displayed as black (experiment),
red (QRPA and PPC), and blue (RQRPA and RQTBA) filled
circles. The associated error is given by one standard deviation
of the corresponding width-like scale corresponding to half of
the peak width (FWHM), cf. [14]. For comparison purposes
and in order to facilitate the determination of similar scales in
the corresponding power spectra from the model calculations,
the results obtained from experiments are also displayed as
vertical grey bars in all right-side panels of Figs. 5–8. For the
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FIG. 5. Left column: Experimental IS0 strength in 58Ni (top row)
in comparison with model predictions (rows 2–5) folded with the
experimental energy resolution. The vertical dashed lines indicate
the summation region of the wavelet coefficients (11–24 MeV) to
determine the power spectra. Right column: Corresponding power
spectra. Scales are indicated by filled circles with the associated
errors, and for the experimental results additionally by vertical grey
bars.

sake of better display, their widths have been reduced to 2/3
of the standard deviation. The extracted energy scales, both
experimental and theoretical, are also listed in Tables II–V.
When two scales agree within error, they are placed in the
same column to ease comparison between experiment and
model results.

A. General observations

Before entering a detailed discussion for each studied
nucleus, we summarize some general observations when com-
paring experimental and theoretical strength distributions and
wavelet scales. Both theoretical approaches overestimate the
energy centroids of the ISGMR on the QRPA level, but as
discussed in Refs. [42,62] inclusion of complex configurations
leads to a downshift which brings experiment and models
in fair agreement in most cases. We note that in any case a
shift between experimental and theoretical centroids does not
impact on the CWT. The inclusion of complex configuration
leads to an increased fragmentation, but effects are much
stronger in the PPC than in the RQTBA calculations.
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FIG. 6. Same as Fig. 5, but for 90Zr.

Characteristic scales deduced from the fine structure are
significantly modified when going from QRPA level to inclu-
sion of two-phonon or 2q ⊗ phonon configurations. In most
cases additional scales appear in overall better agreement with
the number of scales extracted from the experimental data.
The capability to reproduce absolute scale energies varies
from case to case as discussed below. The smallest scale with
values 130–160 keV is prominent in the power spectra of all
studied nuclei, but generally much weaker in the theoretical
results. Consistent with findings in the IVGDR [4], this scale
can be uniquely related to the spreading width in cases where
it only appears in calculations including complex configura-
tions (PPC or RQTBA in the present work).

B. 58Ni

The energy centroids of the RPA model calculations are too
high by about 2 MeV (QRPA), respectively, 1 MeV (RQRPA).
Inclusion of 2p-2h configuration brings the energies down to
a good agreement with experiment (see Table V of Ref. [16]).
The skewness of the experimental strength distribution to-
wards higher energies is qualitatively reproduced by the PPC
results, while no such effect is seen in the RQTBA prediction.

The CWT of the experimental IS0 strength distribution
shows the largest number of scales (7) of the four nuclei
studied. The numbers observed for QRPA and RQRPA are
5 and 4, respectively, and no additional scales appear when
complex configurations are included. The major experimental
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FIG. 7. Same as Fig. 5, but for 120Sn and the excitation-energy
region from 11 to 20 MeV (experimental data).

scales at 270 and 950 keV are reproduced by all models, while
the scale at 580 keV is only seen by the QRPA/PPC approach
(eventually also shifted to 730 keV in RQTBA).

A scale >1 MeV is seen in all but the RQTBA result.
Indeed, this scale is observed in the RQRPA result because
of Landau fragmentation into a few main states, while the
RQTBA result exhibits a single prominent peak only. Finally,
a small scale found to be a generic feature of coupling to
2q ⊗ phonon configurations in previous studies of the IVGDR
and ISGQR is visible in the PPC result only.

C. 90Zr

The centroid energies predicted by QRPA and RQRPA
are about 2 and 1 MeV too high, respectively, similar to
58Ni. However, the effects of particle-vibration coupling are
smaller than in 58Ni leaving the predicted energies too high
by 1.5 MeV (PPC) or 0.5 MeV (RQTBA). The experimental
strength distribution is symmetric, and this is reproduced by
both models as well as the width.

A significant effect of the coupling to complex configura-
tions is seen in the CWT for 90Zr in both models. The number
of scales is increased from 4 to 5 (PPC), respectively, 5 to 6
(RQTBA). The PPC and RQTBA results can account for all
experimental scales below 1 MeV including the observation
of two scales at small energies (�200 keV). We note, how-
ever, that these are seen already in the RQRPA results. This
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FIG. 8. Same as Fig. 5, but for 208Pb and the excitation-energy
region from 11 to 16 MeV over which the wavelet coefficients were
summed in order to determine the corresponding power spectra.

represents the only case where the lowest experimental energy
scale is predicted to arise from Landau damping, while in all
other model results it is related to the spreading width. An
additional weaker scale at 300 keV not seen in the data is pre-
dicted by the RQTBA approach. A scale >1 MeV consistent
with the experimental one at 1200 keV is found in both models
but the predicted value (1500 keV) is somewhat large.

D. 120Sn

The summation window for the wavelet power as well as
the discussion of resonance properties are limited to excitation
energies �20 MeV since the strength at higher excitation
energies might be attributed to a less than perfect subtraction

TABLE II. Energy scales extracted for 58Ni in the excitation
energy region 11 MeV � Ex � 24 MeV. Equivalent characteristic
energy-scale values are vertically aligned.

Dataset Scales (keV)

Expt. 130 170 270 390 580 950 1500
QRPA 190 290 580 1100 1700
PPC 120 270 620 1020 2000
RQRPA 290 420 870 1400
RQTBA 260 370 730 1100

TABLE III. Energy scales extracted for 90Zr in the excitation
energy region 11 MeV � Ex � 24 MeV. Equivalent characteristic
energy-scale values are vertically aligned.

Dataset Scales (keV)

Expt. 135 180 400 700 1200
QRPA 270 360 530 1000
PPC 140 210 330 700 1500
RQRPA 145 220 400 980 1400
RQTBA 140 200 300 420 850 1500

of the low-energy rank of the ISGDR that dominates the back-
ground cross sections [73]. Both QRPA results are already
fairly close to the experimental centroid of the ISGMR. The
shifts due to particle-vibration are less than 1 MeV in both
models and lead to a good agreement within the experimental
uncertainties. The width is again well reproduced by PPC but
slightly underestimated by RQTBA.

The five experimental scales are to be compared with four
in the PPC approach (with no change from the QRPA re-
sult despite a considerable increase of fragmentation of the
strength distribution) and six in RQTBA (three in RQRPA).
RQTBA also accounts well for the absolute scale values
except one (250 keV vs. 360 keV experimentally) and an ad-
ditional weak scale at 1400 keV not seen in the data. The PPC
scales below 1 MeV are systematically shifted to higher values
as compared with experiment.

E. 208Pb

Because of the problem of remaining ISGDR strength in
the DoS subtraction [73] already discussed for 120Sn, the com-
parison of the strength distributions and the wavelet power
summation are restricted to 11–17 MeV. Although the same
window is used for the theoretical results, this might affect the
power spectrum, in particular at larger scale values. Thus, the
discussion here is restricted to scales <1 MeV.

QRPA and RQRPA predictions are about 1 MeV and
0.5 MeV higher than the experimental centroid, respectively.
Effects of coupling to 2p-2h configurations are small, of the
order 300–400 keV. The width is reasonably reproduced by
both approaches.

In opposition to the 120Sn case, the inclusion of complex
configurations increases the number of scales in the PPC

TABLE IV. Energy scales extracted for 120Sn in the excitation
energy region 11 MeV � Ex � 20 (24) MeV for experimental data
(theoretical calculations). Equivalent characteristic energy-scale val-
ues are vertically aligned.

Dataset Scales (keV)

Expt. 160 360 590 950 1900
QRPA 370 570 850 1400
PPC 240 460 790 1600
RQRPA 220 360 670
RQTBA 130 250 510 1050 1400 1900

014325-9



A. BAHINI et al. PHYSICAL REVIEW C 109, 014325 (2024)

TABLE V. Energy scales extracted for 208Pb in the excitation
energy region 11 MeV � Ex � 16 MeV. Equivalent characteristic
energy-scale values are vertically aligned.

Dataset Scales (keV)

Expt. 130 190 260 570 870
QRPA 240 360 620
PPC 160 220 310 520 870 1250 1700
RQRPA 280 370 570 1100
RQTBA 150 350 720 1300 1900

approach to 5 in accordance with experiment, while it remains
at 3 when going from RQRPA to RQTBA. The PPC result
quantitatively reproduces all scale values within the typical
uncertainties. RQTBA reproduces the smallest and largest
scale (in the region up to 1 MeV).

VI. CONCLUSIONS AND OUTLOOK

In this study, we present high energy-resolution IS0
strength distributions over a wide mass range extracted from
measurements of the (α, α′) reaction at 196 MeV and extreme
forward-scattering angles (including 0◦), revealing significant
fine structure. Characteristic energy scales were extracted
from a continuous wavelet transform (CWT) analysis of the
data to investigate the role of Landau fragmentation and
spreading width in the damping of the ISGMR.

The experimental results are compared to microscopic cal-
culations of the ISGMR strength functions based on the QRPA
and beyond-QRPA using both nonrelativistic and relativistic
density functional theory. The extracted experimental energy
scales are well reproduced by the models where in most cases
a number of scales can be approximately reproduced, but the
one-to-one correspondence varies from case to case.

The wavelet scales remain a sensitive measure of the in-
terplay between Landau fragmentation and spreading width
in the description of the fine structure of giant resonances
[4]. In the case of the ISGMR, Landau damping is prominent
in the medium-mass region while the spreading width in-
creases with mass number and makes the largest contribution
in heavy nuclei. The relative importance of both contributions
is intermediate between the IVGDR, where Landau damping

dominates over the spreading width even for heavy nuclei, and
the ISGQR, where fine structure is entirely due to coupling to
low-lying surface vibrations (except maybe for light nuclei).

The fragmentation of the J = 0 response is generally
weaker than that of the J > 0 one because of the smaller
amount of the 2q ⊗ phonon or phonon ⊗ phonon configura-
tions allowed by the angular momentum conservation. Both
the fragmentation and centroid position are sensitive to the de-
tails of the numerical scheme, such as the basis completeness
and selfconsistency. These criteria are maximally fulfilled in
RQTBA by the parameter-free implementation of the 2q ⊗
phonon configurations extending the fully self-consistent
RQRPA and the proper subtraction procedure, which takes
care of the double counting, convergence, and spurious com-
ponents of the strength distributions. One question to be
addressed in future work is the impact of the subtraction pro-
cedure on the PPC approach considering the different degree
of fragmentation with respect to the RQTBA results.

A complete response theory for atomic nuclei should in-
clude continuum, unnatural parity and isospin-flip phonons,
complex ground-state correlations, and higher-order configu-
rations, which are expected to further affect the fine structure
of the strength functions and improve the description of the
characteristic energy scales. These effects are beyond the
scope of this work and will be addressed by future efforts.
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