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Generalized coherent states satisfying the Pauli principle in a nuclear cluster model
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We propose a new basis state, which satisfies the Pauli principle in the nuclear cluster model. The basis
state is defined as the generalized coherent state of the harmonic oscillator wave function using a pair of the
creation operators and is orthogonal to the Pauli-forbidden states having smaller quanta. In the coherent basis
state, the range parameter is changeable and controls the radial dilation. This property is utilized for the precise
description of the relative motion between nuclear clusters. We show the reliability of this framework for the 2α

system of 8Be in the semimicroscopic orthogonality condition model. We obtain the resonances and nonresonant
continuum states of 2α with complex scaling. The resonance solutions and the phase shifts of the α-α scattering
agree with those using the conventional projection operator method to remove the Pauli-forbidden states. We
further discuss the extension of the present framework to the multi-α cluster systems using the SU(3) wave
functions.
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I. INTRODUCTION

Nuclear clustering is a fundamental aspect of nuclei [1–3],
such as the spatial formation of α clusters in nuclei. The
8Be nucleus is a typical cluster system decaying into two α

particles. In 12C, the 0+
2 state is known as the Hoyle state

having a three-α structure located near the three α threshold
energy.

In nuclear cluster models, the resonating group method
(RGM) [4,5] is a microscopic approach starting from the
degrees of freedom of nucleons and used to solve the rel-
ative motions between clusters in nuclei. The orthogonality
condition model (OCM) [6] is a semimicroscopic approach,
in which the local potential is often used as the intercluster
potential to fit the experimental data of the cluster systems.
This is the advantage of OCM to reproduce the threshold
energies of every cluster emission in nuclei.

The Pauli principle is an essential statistics of nuclei and
this property is fully treated in RGM. The Pauli-forbidden
states are defined as the zero-eigenvalue states of the RGM
norm kernel. In OCM, the Pauli-forbidden states are removed
from the space of relative motion between clusters, and only
the Pauli-allowed states are treated and obtained dynamically.

When the nuclear clusters are described with the har-
monic oscillator (HO) shell-model wave functions, the
Pauli-forbidden states are also expressed by using the HO
states for the relative wave function between clusters. Techni-
cally there are several methods to remove the Pauli-forbidden
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states in relative motion in OCM. One is the Gram-Schmidt
orthonormalization method [7]. When the relative motion is
precisely solved by using the linear combination of the appro-
priate basis functions, Kukulin’s projection operator method
works to push the Pauli-forbidden states in every relative
motion to the irrelevant energy region [8]. In this method,
the pseudopotential with the projection operator form to the
Pauli-forbidden states is added to the Hamiltonian and the
orthogonal solutions can be obtained as physical states. This
method sometimes makes difficulty increasing the number of
clusters in multicluster systems such as 4α and 5α, because
precise projections are necessary for every cluster pair to
eliminate the Pauli-forbidden states in all the relative motions,
which causes the numerical efforts with many basis states.
In this situation, one needs an efficient method to treat the
Pauli-allowed states in the description of multicluster systems
based on OCM.

In this paper, we propose a new scheme to treat the Pauli-
allowed states in OCM; all the basis states in relative motion
are automatically orthogonal to the Pauli-forbidden states and
it is not necessary to use the projection operator in the Hamil-
tonian and the wave function. We formulate this method in the
generalized coherent states [9] of the HO basis states for rela-
tive motion between clusters using the raising operator â† · â†

[10,11]. This operator increases the quanta of every HO state
and can be utilized to define the Pauli-allowed states above
the Pauli-forbidden states. In this method, we can describe
the resonances in cluster-cluster scattering using the complex
scaling [12].

In this paper, we formulate the new method and confirm
its reliability by calculating the 2α system of 8Be, in which
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we use the complex-scaled solutions of the resonant and non-
resonant continuum states. The present work becomes the
foundation to investigate the multicluster systems in the OCM
approach.

In Sec. II, we provide the formulation of the generalized
coherent state with the HO basis states and its application
to the nuclear cluster systems. In Sec. III, we discuss the
resonances and scattering of the 2α system of 8Be. In Sec. IV,
we discuss the extension to the multi-α cluster systems using
the SU(3) wave functions. In Sec. V, we summarize this work.
In the Appendix, we give the mathematical derivation of the
generalized coherent states with the HO basis states.

II. THEORETICAL METHODS

A. Generalized coherent states

We begin with the harmonic oscillator (HO) basis state
φn�m(r, ν) with a range ν = 1/b2 and a principal quantum
number N = 2n + �, where n represents the number of nodes
in the radial wave function and � is an orbital angular momen-
tum. Using the operators of the creation and annihilation of a
quanta N , the HO basis state can be written as [13,14]

φn�m(r, ν) = An�

(
â† · â†)nY�m(â†) φ0(r, ν),

An� = (−1)n

√
4π

(2n + 2� + 1)!! (2n)!!
,

φ0(r, ν) =
( ν

π

)3/4
e− 1

2 νr2
, (1)

where Y�m(r) = r�Y�m(r̂) is a solid spherical harmonics and φ0

is a vacuum with N = 0. This HO basis state can be used to
represent the single-nucleon wave function in nuclei and also
the relative wave function between nuclear clusters.

In this study, we introduce the following scalar operators
D̂† (raising) and D̂ (lowering) following Ref. [10] as

D̂† = â† · â†, D̂ = â · â. (2)

These operators belong to the symplectic Sp(3,R) Lie algebra
of the coherent state of the collective motion and change the
quanta of the wave function by two for the radial part without
changing the angular momentum. Using the raising operator
D̂†, we introduce the following new basis state φ

β

n�m(r, ν), in
which D̂† is coherently multiplied by the HO basis state with
the weight of the real parameter β in the exponential form as

φ
β

n�m(r, ν) = exp

(
1

2
βD̂†

)
φn�m(r, ν)

= 1√
(1 + β )N+3/2

exp

(
β

2(1 + β )
νr2

)

× φn�m

(
r,

ν

1 + β

)
. (3)

The derivation of this equation is given in Appendix A. This
new basis state is a kind of generalized coherent state [9] in
terms of D̂† and can be represented by the HO basis state with
the same quanta N and the different range parameter ν/(1 +
β ) and multiplying the Gaussian function with the coordinate

r. This equation plays an essential role in this study. It is noted
that the basis state has the following exponential dependence:

φ
β

n�m(r, ν) ∝ exp

(
− 1 − β

2(1 + β )
νr2

)
. (4)

This form gives a condition of |β| < 1 to satisfy the asymp-
totically damping behavior, which is imposed throughout this
study. When n = 0, the basis state φ

β

0�m(r, ν) becomes the
nodeless Gaussian function multiplying r�, which is often
used in the Gaussian expansion technique [15–17].

From the property of the raising operator D̂†, the function
φ

β

n�m(r, ν) includes only the quanta larger than or equal to N
of the HO basis states with the range ν. Hence the following
orthogonal condition is satisfied:

〈φn′�m(ν)|φβ

n�m(ν)〉 = 0 for n′ < n (N ′ < N ). (5)

This property is useful to construct the HO basis states with
a quanta N and any values of β, which are orthogonal to the
HO states with a lower quanta N ′. If one regards the HO basis
states with the lower quanta N ′ as the occupied states in the
nucleus, namely the Pauli-forbidden states, the generalized
coherent basis states φ

β

n�m(r, ν) can be the unoccupied states
in the nucleus automatically, and represents the Pauli-allowed
states. A specific case of this formulation is introduced in the
shell model, in which the HO particle state with a free range
parameter is taken to be orthogonal to the HO hole states by
adjusting the polynomial in the HO particle state [18,19].

The parameter β controls the spatial range of the general-
ized coherent basis states. When β is close to unity, the basis
state has a long tail and is suitable to describe a weak-binding
state of nuclei such as a halo structure and the low-energy
scattering solution in the nuclear reaction. When β is close to
−1, the basis state becomes a short range and is suitable to
describe the short-range and tensor correlations of nucleons
with high momenta in nuclei [18]. From these properties, the
parameter β plays a role on the radial dilation of the coherent
basis state, and then we call β dilation parameter hereafter.

In the cluster model, the present coherent basis state is
useful to describe relative motion between clusters with the
orthogonality condition from the Pauli principle for the fol-
lowing two reasons:

(i) When the cluster wave functions are the HO shell-
model ones, the Pauli-forbidden states in relative
motion become the HO states with a specific quanta
NPF. Hence, the coherent basis states with a relative
oscillator quanta N and β become the Pauli-allowed
states that are orthogonal to the Pauli-forbidden states
with the condition of NPF < N [20].

(ii) The relative motion between clusters is solved pre-
cisely and the relative wave function is optimized by
superposing the coherent basis states φ

β

n�m(r, ν) with
various dilation parameters β, each of which shows a
different spatial distribution.

In the multicluster system, we can prepare the cluster
wave function using the coherent basis states in relative
motion between every cluster pair. In this paper, we con-
sider the two-cluster case with clusters C1 and C2 and one
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intercluster motion with the coordinate r in the single channel.
We express the total nuclear wave function �, in which the
relative wave function 	rel(r) is in the linear combination
form of the coherent basis states {φβi

n�m(r, νrel )} with the range
parameter νrel, the set of {βi} with i = 1, . . . , Nbase, and the
condition of N = 2n + � for Pauli-allowed states, N > NPF;

� = A{φC1φC2	rel(r)},

	rel(r) =
Nbase∑
i=1

Ci φ
βi

n�m(r, νrel ),
(6)

where A is the antisymmetrizer of nucleons between different
clusters and φC is the internal wave function of the cluster C.
Hereafter we omit the notation of the quantum numbers n, �,
and m in the basis states for simplicity. It is possible to add the
basis states with different n to 	rel(r) as well as βi.

In the present study, we adopt the orthogonality condition
model (OCM). The eigenvalue problem of the Hamiltonian
H for relative motion is given to obtain the relative energy E
between clusters:

H =Trel + VC1C2 ,

H	rel(r) =E	rel(r),

Nbase∑
j=1

(Hi j − ENi j )Cj =0, (7)

Hi j =〈φβi (νrel )|H |φβ j (νrel )〉,
Ni j =〈φβi (νrel )|φβ j (νrel )〉,

where Trel and VC1C2 are the kinetic energy and the potential
of relative motion between clusters, respectively. The matrix
elements of Hi j and Ni j are those of the Hamiltonian and norm
with the individual β values, respectively. In this paper, we
call the present framework “coherent basis method.”

In the coherent basis method, the matrix elements can be
calculated analytically, and we use the formulas using the HO
basis states with the independent range parameters in the bra
and ket states [7], characterized by βi and β j in Eq. (7). For
kinetic energy, we give the formula in Appendix B.

B. α-α system

We demonstrate the present new scheme in the α-α cluster
system of 8Be. The α cluster is represented by the (0s)4

configuration of the HO basis state where the range parameter
ν of the single-nucleon state is taken as 0.535 fm−2, which
corresponds to the length of b = 1.3672 fm, to reproduce
the charge radius of the α particle. We prepare the coherent
basis states for the relative wave function of 2α, the range
parameter of which is νrel = 2ν = 1.070 fm−2 corresponding
to the length of brel = 0.9667 fm. We employ the folding po-
tential between α-α with the nucleon-nucleon interaction and
the Coulomb interaction using the α cluster wave function.
We adopt the Schmid-Wildermuth effective nucleon-nucleon
interaction [21], which is often used in the previous studies of
the multi-α cluster systems [22–25]. The form of the α-α fold-
ing potential Vαα (r) is given with nuclear (N) and Coulomb

(C) parts as

Vαα (r) = V N
αα (r) + V C

αα (r),

V N
αα (r) = 2 XD V0 a3/2e−aμr2

,

XD = 8W + 4B − 4H − 2M, a = 2ν

2ν + 3μ

V C
αα (r) = 4 e2 erf (cr)

r
, c =

√
2ν

3
,

(8)

where r = |r|, V0 = −72.98 MeV, μ = 0.46 fm−2, W = M =
0.4075, and B = H = 0.0925.

The lowest shell-model configuration of the 2α system is
(0s)4(0p)4 in the HO basis state with a total quanta of 4.
Hence the Pauli-forbidden HO states, ωF(r, νrel ), are defined
by the condition of quanta NPF < 4 in the relative motion
with the range νrel. In the coherent basis state, we impose this
condition of the Pauli-allowed states and set N = 4 for the
0+, 2+, and 4+ states and N = 6 for the 6+ state in the present
study. For the 4+ and 6+ states, there is no Pauli-forbidden
state.

We take various dilation parameters βi in Eq. (6) to opti-
mize the radial wave function. In the present study, we choose
the set of βi in the form of the geometric progression of the
length parameters bi of the HO basis state [15,16] according
to Eq. (4) as

1 − βi

1 + βi
νrel = 1

b2
i

= 1

(b0γ i−1)2
. (9)

We set b0 = 0.2 fm, γ = 1.2, and Nbase = 30 in the present
calculation, which are transformed to βi in the coherent basis
states.

To show the reliability of the coherent basis method, we
compare the obtained results with those of the conventional
projection operator method (PO) [8]. In PO, one usually adds
the pseudopotential of the projection operators with a positive
prefactor λ to the original Hamiltonian given as

Hλ = H + λ
∑

f

|ωF, f 〉〈ωF, f |. (10)

One uses a large value of λ to make the solutions orthogonal
to the Pauli-forbidden states {ωF, f } with the index f and we
take λ = 106 MeV in this study [17]. The number of the Pauli-
forbidden states is determined from the condition of quanta
as NPF = 2n f + � f < 4. For the basis states of the relative
motion in PO, we adopt the nodeless HO basis functions with
n = 0, which are often used in the OCM calculation, as

	rel(r) =
Nbase∑
i=1

C̄i φ0�m(r, bi ),

φ0�m(r, bi ) = N�(bi ) e−1/2(r/bi )2 Y�m(r),

(11)

where N�(b) is a normalization factor of the basis state. The
choice of the length parameters {bi} is the same as those
of the coherent basis states in Eq. (9), which is suitable for
comparing the solutions.
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C. Complex scaling

We describe the resonances and the scattering of the α-α
system using the complex scaling [12,17,26–28] in both the
coherent basis method and the projection operator method.
In the complex scaling, the relative coordinate r, the relative
momentum p in the Hamiltonian H , and the relative wave
function 	rel(r) are transformed using a scaling angle θ with
an operator U (θ ) as

U (θ ) : r → r eiθ , p → p e−iθ , (12)

where θ is a real positive number. The complex-scaled Hamil-
tonian H θ , the complex-scaled relative wave function 	θ

rel,
and the corresponding energy E θ are given as

H θ = U (θ )HU −1(θ ),

	θ
rel(r) = U (θ )	rel(r)

H θ	θ
rel(r) = E θ	θ

rel(r).

(13)

After solving the last equation, E θ are obtained for bound,
resonant, and continuum states on the complex energy plane
according to the ABC theorem [29]. The energies of the
continuum states start from the α + α threshold energy and
are obtained along the line rotated down by 2θ from the real
energy axis. The energies of the bound and resonant states
are independent of θ . The resonance has a complex energy
ER = Er − i�/2 with a resonance energy Er and a decay
width �. The asymptotic behavior of the resonance wave
function becomes a damping form if 2θ > | arg(ER)| [29].
In calculations with a finite number of the basis states, the
resonances are identified from the stationary property of ER

with respect to θ on the complex energy plane [17,26,27],
and the continuum states are discretized with the complex
energies. The wave function 	̃θ

rel(r) is the biorthogonal state
of 	θ

rel(r) [30], and used for the bra state in the complex-scaled
matrix elements. One does not take the complex conjugate of
the radial part of the bra state in the matrix elements [26,27].

The Pauli-forbidden state ωF(r, νrel ) is also transformed in
the complex scaling as

U (θ )ωF(r, νrel ) = ωθ
F(r, νrel ) = e3iθ/2ωF(reiθ , νrel )

= ωF(r, νrele
2iθ ).

(14)

In the last equation, we use the explicit form of the HO basis
state, and the range parameter νrel is transformed instead of r.

In the projection operator method, the Hamiltonian Hλ in
Eq. (10) is transformed as H θ

λ = U (θ )HλU −1(θ ), in which the
Pauli-forbidden states are transformed in the pseudopotential
[17]. In analogy with Eq. (11), the complex-scaled wave func-
tion is given as

	θ
rel(r) =

Nbase∑
i=1

C̄θ
i φ0�m(r, bi ), (15)

where the θ dependence is included in {C̄θ
i }. This expansion is

often used in the conventional OCM calculation with complex
scaling [17].

In the coherent basis method, the coherent basis state with
a dilation parameter β in Eq. (6) is transformed because the

basis state should be orthogonal to the complex-scaled Pauli-
forbidden states as

〈ω̃θ
F(νrel )|φβ,θ (νrel )〉 = 〈ω̃F(νrele

2iθ )|φβ (νrele
2iθ )〉 = 0. (16)

Hence the relative wave function 	θ
rel(r) is expanded in terms

of the complex-scaled coherent basis states {φβi,θ (r, νrel )}
with the index i for βi as

	θ
rel(r) =

Nbase∑
i=1

Cθ
i φβi,θ (r, νrel ). (17)

One solves the following eigenvalue problem of the
complex-scaled Hamiltonian matrix and obtains E θ and {Cθ

i }
for each eigenstate:

Nbase∑
i=1

(H θ
i j − E θNθ

i j )C
θ
j = 0. (18)

Technically, the matrix elements with the complex-scaled
coherent basis states are calculated in the following proce-
dure:

H θ
i j = 〈φ̃βi,θ (νrel )|H θ |φβ j ,θ (νrel )〉

=
Np∑
p,q

〈φ̃βi,θ (νrel )|φp〉 〈φ̃p|H θ |φq〉 〈φ̃q|φβ j ,θ (νrel )〉

=
Np∑
p,q

Dθ
p,iH

θ
pqDθ

q, j, (19)

H θ
pq = 〈φ̃p|H θ |φq〉 = 〈φ̃−θ

p |H |φ−θ
q 〉,

Dθ
p,i = 〈φ̃βi,θ (νrel )|φp〉 = 〈φβi (νrel )|φ−θ

p 〉,

Nθ
i j = 〈φ̃βi,θ (νrel )|φβ j ,θ (νrel )〉 =

Np∑
p

Dθ
p,iD

θ
p, j . (20)

Here we insert the completeness relation consisting of the
states with a finite number Np; 1 = ∑Np

p=1 |φp〉 〈φ̃p|. In this
study, we construct the completeness relation in terms of the
nodeless HO basis function with θ = 0, which are the same
as those used in the projection operator method. We use the
same set of {bi}

φp(r) =
Nbase∑
i=1

Ci,p φ0�m(r, bi ),

〈φ̃p|φq〉 = δpq.

(21)

We diagonalize the norm matrix of φ0�m(r, bi ) and construct
the orthonormalized basis states {φp} in the linear combi-
nation of φ0�m(r, bi ) with the coefficients Ci,p, which nicely
describe the completeness relation in the present calculation.
The states {φp} involve the Pauli-forbidden states, which are
removed by diagonalizing the norm matrix with the elements
of Nθ

i j in Eq. (20), because of the overlap with the coherent
basis state in {Dθ

p,i}. In the eigenvalue problem in Eq. (18),
when one diagonalizes the norm matrix, the eigenstates of
the Pauli-forbidden states show the zero-energy eigenvalue,
which are removed from the basis states before diagonalizing
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the Hamiltonian matrix. It is noted that this procedure is used
for the calculation of the unbound states with the complex
scaling only, and is not necessary for the bound-state calcu-
lation with θ = 0.

D. Level density

In the complex scaling, the solutions {	θ
n, 	̃

θ
n} construct

the completeness relation [30,31] given as

1 =
∑

n

|	θ
n〉 〈	̃θ

n|, (22)

where n is the state index. Using the energy eigenvalues {E θ
n },

the complex-scaled Green’s function Gθ (E ) is expressed as

Gθ (E ) = 1

E − H θ
=

∑
n

|	θ
n〉 〈	̃θ

n|
E − E θ

n

. (23)

We calculate the level density ρ(E ) = ∑
n δ(E − En) with

complex scaling [32–34]. The complex-scaled level density
ρθ (E ) is given with Gθ (E ) as

ρθ (E ) = − 1

π
Im{Tr Gθ (E )} = − 1

π

∑
n

Im

(
1

E − E θ
n

)
.

(24)
We also consider the asymptotic Hamiltonian H θ

0 with the
energy eigenvalues {E θ

0,n}, and define the asymptotic level
density ρθ

0 (E ) as

ρθ
0 (E ) = − 1

π

∑
n

Im

(
1

E − E θ
0,n

)
. (25)

One defines the continuum level density �(E ) = ρθ (E ) −
ρθ

0 (E ), which is related to the scattering matrix S(E ) [35]:

�(E ) = 1

2π
Im

d

dE
ln{det S(E )}. (26)

In the single channel, �(E ) becomes the derivative of the
phase shift δ(E ) and the phase shift is obtained as

δ(E ) = π

∫ E

−∞
�(E ′)dE ′. (27)

We define the asymptotic Hamiltonian H0 for the 2α sys-
tem as [36]

H0 = Trel + 4e2

r
. (28)

We omit the nuclear interaction, and replace the Coulomb
interaction with the point type. In the asymptotic wave func-
tion of 2α, one omits the antisymmetrization between the
nucleons in the different α clusters [36,37]. This means no
Pauli-forbidden state in the relative motion between 2α and
then we set N = � with n = 0 in the coherent basis method.
We also omit the projection operator in H0 in the projection
operator method.

FIG. 1. Diagonal energies of the relative motion in 8Be for 0+

(red) and 2+ (blue) states as functions of the HO length parameter b
(top) and dilation parameter β (bottom) in the coherent basis method
(CH) and the projection operator method (PO) without complex
scaling.

III. RESULTS

A. α-α system

In this study, we treat the 2α system of 8Be and discuss
the α-α resonances. First, we compare the diagonal energies
of the basis states in the coherent basis method (CH) and
the projection operator method (PO) as functions of the HO
length parameter b in the Gaussians using Eq. (9). In two
methods, the treatments of Pauli-forbidden states are different,
and affect the diagonal energies. We show the results of the
0+ and 2+ states in Fig. 1 (top) in a logarithmic scale. We
also show the results as functions of the dilation parameter
β used in the coherent basis states in Fig. 1 (bottom). These
figures are useful to understand the treatment of the Pauli
principle in the coherent basis method, which leads to the
low-energy states in the large value of b, namely a large α-α
distance, and also in the values of β close to unity.

In the projection operator method, the basis states in
Eq. (11) can involve the Pauli-forbidden states, and then the
pseudopotential with the strength of λ = 106 MeV makes the
states have high energies. The HO length of Pauli-forbidden
states is brel = 0.9667 fm and the maximum energies appear
at this length for two spin states. For the 0+ state, there are two
Pauli-forbidden states with n = 0 and 1 and then the repulsive
effect is distributed in a wider range of b than the results of the
2+ state, which includes one Pauli-forbidden state with n = 0.
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TABLE I. Energies of 8Be (0+ and 2+) measured from the α + α

threshold energy in MeV, calculated in two methods; coherent basis
method (CH) and projection operator method (PO). The parameter δ

is the enhancement factor of the α-α nuclear potential.

0+ 0+ 2+ 2+

δ CH PO CH PO

0.05 −0.072 −0.072 – –
0.10 −0.593 −0.593 – –
0.15 −1.256 −1.256 – –
0.20 −2.065 −2.065 – –
0.25 −3.026 −3.026 – –
0.30 −4.147 −4.147 −0.954 −0.954
0.35 −5.430 −5.430 −2.175 −2.175
0.40 −6.880 −6.880 −3.553 −3.553

In the projection operator method, the superposition of the
basis states makes the Pauli-allowed states with low energies.
The comparison of the two methods explains the reasonable
treatment of the Pauli-allowed states in the coherent basis
method.

Next, we solve the eigenvalue problem of the Hamiltonian
matrix. For 0+ state, there are two Pauli-forbidden states and
in the projection operator method, two states are obtained to
have the high energies close to λ. On the other hand in the
coherent basis method, the basis states do not involve the
Pauli-forbidden states, and all eigenstates are obtained as the
Pauli-allowed states.

Before the calculation of resonances, we discuss the relia-
bility of the present coherent basis method for the bound state.
For this purpose, we artificially strengthen the α-α nuclear
potential V N

αα (r) to make the 0+ and 2+ states of 8Be bound.
We introduce the enhancement factor δ in V N

αα (r) as

V N
αα (r) → V N

αα (r)(1 + δ). (29)

We compare the resulting energies with those obtained in the
projection operator method.

In Table I, we show the energies of 8Be (0+ and 2+)
measured from the α + α threshold energy by changing δ. It
is found that the two methods give the same energies of the
0+ and 2+ states from weak to strong bindings with various
values of δ. These results indicate the reliability of the present
coherent basis method.

Next, we keep δ = 0 in the α-α nuclear interaction and
describe the unbound states of 8Be in the complex scaling. We
solve the complex-scaled eigenvalue problem in Eq. (18) for
2α of 8Be (0+, 2+, 4+, and 6+). In Fig. 2, we show the energy
eigenvalues {E θ

n } of four spin states on the complex energy
plane. The scaling angle θ is optimized in each spin state
from the stationary condition of the energy eigenvalues of res-
onances on the complex energy plane with respect to θ . This
condition gives θ = 16◦, 18◦, 20◦, and 25◦ for 0+, 2+, 4+, and
6+, respectively. We show two kinds of solutions obtained
in the coherent basis method (CH) and projection operator
method (PO) in the 0+ and 2+ states. For 4+ and 6+, the
results obtained in the coherent basis method are shown. The
continuum states are discretized along a straight line and we

FIG. 2. Energy eigenvalues of 8Be (top: 0+ and 2+, bottom: 4+

and 6+) for the coherent basis method (CH, solid symbols) and
the projection operator method (PO, open symbols) on the complex
energy plane, measured from the α + α threshold energy. Scaling
angle θ is taken as 16◦ (0+), 18◦ (2+), 20◦ (4+), and 25◦ (6+). The
eigenvalues deviated from the line of discretized continuum states
are resonances.

obtain one resonance in each state deviating from the line
of the continuum states. In Fig. 2, the discretized continuum
states also agree with each other by using the same range
parameters in the relative wave function of 2α.

In Table II, we list the resonance energies and decay widths
of four resonances of 8Be obtained in the coherent basis

TABLE II. Resonance parameters of 8Be measured from the
α + α threshold energy in MeV, in the coherent basis method (CH)
and the projection operator method (PO). The experimental values
(Expt.) are in the square brackets [38,39].

J± energy decay width

CH 0.294 0.014
0+ PO 0.296 0.015

Expt. [0.0918] [5.57(25) × 10−6]

CH 3.01 1.65
2+ PO 3.00 1.67

Expt. [3.12(1)] [1.513(15)]

4+ CH 12.13 5.19
Expt. [11.44(15)] [≈ 3.5]

6+ CH 30.49 37.88
Expt. [≈ 28] [≈ 20]
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FIG. 3. Phase shifts of the α–α scattering (0+, 2+, 4+, and 6+)
in the center-of-mass frame. The lines using dashed or dotted ones
are the results in the coherent basis method and the gray solid lines
for 0+, and 2+ are the ones in the projection operator method. The
upper arrows from the bottom indicate the resonance energies of 0+,
2+, 4+, and 6+ in Table II.

method in comparison with the projection operator method.
We also include the experimental data. It is found that reso-
nance energies and decay widths of two states of 8Be agree
with each other in the two methods. These results mean the
reliability of the coherent basis method to describe resonances
with complex scaling.

B. Phase shifts

We calculate the eigenstates of the asymptotic Hamilto-
nian H θ

0 of 2α using Eq. (28) to obtain the continuum level
densities and phase shifts in the coherent basis method. We
employ the same set of the dilation parameters {βi} as used in
the calculation with the full Hamiltonian H θ and set the same
scaling angle θ for each state.

Using the energy eigenvalues {E θ
n } and {E θ

0,n} of 2α, we
calculate the continuum level density, �(E ), and evaluate
the phase shift of the α–α scattering by integrating �(E ) in
Eq. (27). In Fig. 3, we show the phase shifts of the four states
obtained, where we put the arrows at the resonance energies
of four states shown in Table II.

The resulting phase shifts with dashed or dotted lines are
obtained in the coherent basis method, and they agree with
the gray lines obtained in the projection operator method for
the 0+ and 2+ states. In each state, the energy at the max-
imum derivative of the phase shift is close to the resonance

energy shown in the arrow. From these results, one can apply
the present coherent basis method to the scattering problem
between various nuclear clusters with complex scaling. One
does not need the projection operator to eliminate the Pauli-
forbidden states between clusters, which are automatically
removed in the coherent basis method.

IV. DISCUSSION

We discuss the application of the present coherent basis
method to the multicluster system beyond the two-cluster
case. We shall consider the 3α system for 12C with two Ja-
cobi coordinates of the α-α and 2α-α systems. We adopt the
SU(3) representation for 12C with the coherent HO basis states
[11,40], which is defined as

	
β

Q,(λ,μ),JKM = exp

(
1

2
βD̂†

)
	Q,(λ,μ),JKM ,

D̂† =
2∑

i=1

D̂†
i ,

(30)

where i = 1(2) is for the α-α (2α-α) system with a quanta
Ni = 2ni + �i. The total quanta of the basis state is given as
Q = N1 + N2 with the quanta of each Jacobi coordinate under
the irreducible SU(3) representation of (λ,μ) in the total spin
J with the K-quantum number. The total raising operator D̂†

is a summation of those for each Jacobi coordinate with the
single dilation parameter β in the exponent. Using Eq. (30),
the basis state for the 3α system is expressed as the product
of the relative wave functions with the coherent basis states
	

β

Ni �i γi
as

	
β

Q,(λ,μ)JKM =
∑
N1,N2

CN1N2(λ,μ)

×
∑
�1,�2

〈(N1, 0)�1, (N2, 0)�2||(λ,μ)JK〉

× [
e

1
2 βD̂†

1 	N1 �1 γ1 , e
1
2 βD̂†

2 	N2 �2 γ2

]
JM

=
∑
N1,N2

CN1N2(λ,μ)

×
∑
�1,�2

〈(N1, 0)�1, (N2, 0)�2||(λ,μ)JK〉

× [
	

β

N1 �1 γ1
,	

β

N2 �2 γ2

]
JM,

(31)

where γ1 = 2ν for α-α and γ2 = 8ν/3 for 2α-α are the HO
range parameters in each relative motion, and 〈· · · || · · · 〉 is
a SU(3) Clebsch-Gordan coefficient. The specific coefficient
CN1N2(λ,μ) is determined from the quanta in each relative mo-
tion and the (λ,μ) representation. The total variational wave
function is a superposition of the above basis states with vari-
ous values of the quanta Q, N1, N2 with (λ,μ) and the dilation
parameter β. It is noted that the common β is used in the two
relative motions in the single basis state. This condition comes
to keep the symmetry of the identical α clusters, which fixes
the ratio of the range parameters of the coherent basis states
for the two Jacobi coordinates to γ1/γ2.
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We show the case of Q = 8, (λ,μ) = (0, 4), J = 0, and
K = 0 for 12C, which uniquely gives N1 = 4 and N2 = 4, as

	
β

8,(0,4) =
∑

�1=�2=0,2,4

〈(4, 0)�1, (4, 0)�2||(0, 4)00〉

× [
	

β

4 �1 γ1
,	

β

4 �2 γ2

]
00

, (32)

〈(4, 0)0, (4, 0)0||(0, 4)00〉 = 8

15
,

〈(4, 0)2, (4, 0)2||(0, 4)00〉 = 4

3
√

5
,

〈(4, 0)4, (4, 0)4||(0, 4)00〉 = 3

5
.

(33)

We also define the basis states for the linear-chain states of
12C, in which the lowest total quanta is Q = 12 with (λ,μ) =
(12, 0). In this configuration, the sets of the quanta (N1, N2)
are given as (4, 8), (6, 6), (8, 4), and (10, 2). In a similar
way, extending the 3α case, the heavier multi-α cluster states
can be constructed systematically in the SU(3) representation
with the coherent basis states. We plan to investigate the 3α

structure in 12C in the present framework in the future.

V. SUMMARY

We presented a new scheme to construct the Pauli-allowed
states in nuclei with the harmonic oscillator (HO) basis states.
We introduced a generalized coherent state of the HO basis
state in terms of the raising operator â† · â† in the exponen-
tial form. This basis state results in the HO basis state with
the same quanta, but with the changeable range parameters,
namely, the radial dilation character. This property is im-
portant and controlled by one parameter, which we call the
dilation parameter. This coherent basis state is automatically
orthogonal to the lower quanta state and represents the short-
range and long-range properties of the particle motion from
the dilation property of the basis state. In this study, we uti-
lized this property to treat the Pauli-allowed states appearing
in relative motion of nuclear cluster systems. We also extend
this framework to treat the resonances and the cluster-cluster
scattering in the complex scaling.

We show the application to the 2α system of 8Be in the
orthogonality condition model. We compare the results in
the coherent basis method with the conventional projection
operator method, in which the projection operator is imposed
in the Hamiltonian to obtain the Pauli-allowed states. It is con-
firmed that the present coherent basis method gives reasonable
solutions of resonance energies, decay widths, and the phase
shifts of the α-α scattering, which agree with those obtained
in the projection operator method. These results indicate the
reliability of the coherent basis method.

We further discuss the extension of the present method to
the multicluster systems and explain the basic framework of
the 3α system of 12C. We adopt the SU(3) representation of
the HO basis states in the relative motions with the Jacobi
coordinates and introduce the coherent basis states in each
relative motion with a common dilation parameter. It would be
interesting to apply this framework to investigate the multi-α
cluster states of nuclei.
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APPENDIX A: GENERALIZED COHERENT STATE

We formulate the generalized coherent state [9] of the
harmonic oscillator (HO) basis state using the raising operator
D̂† = â† · â† [10]. The HO basis state φn�m(r, ν) with a range
ν = 1/b2 is usually defined using the associated Laguerre
polynomials L(�+1/2)

n (νr2) as follows:

φn�m(r, ν) = Nn�(ν) e− 1
2 νr2

L(�+1/2)
n (νr2)Y�m(r),

Nn �(ν) =
√

ν�+3/2 2�+2 (2n)!!√
π (2n + 2� + 1)!!

,
(A1)

where n represents the number of nodes in the radial wave
function, and N = 2n + � is a principal quantum number.
First, we start from the generating function for the associated
Laguerre polynomials with α = � + 1/2 as

e−νr2 t/(1−t )

(1 − t )α+1
=

∞∑
m=0

L(α)
m (νr2) tm, (A2)

where |t | < 1. We introduce the following nth derivative of
the generating function Sn with its expansion:

Sn = 1

n!

dn

dtn

{
e−νr2·t/(1−t )

(1 − t )α+1

}

= 1

n!

∞∑
m=0

L(α)
m (νr2)

dntm

dtn

=
∞∑

k=0

L(α)
n+k (νr2)

(n + k)!

k! n!
t k,

(A3)

where m = n + k. It is also proven that Sn is proportional to
the associated Laguerre polynomials with the order of n and
the argument of νr2/(1 − t ) as

Sn = e−νr2 t/(1−t )

(1 − t )n+α+1
L(α)

n

(
νr2

1 − t

)
. (A4)

This formula can be confirmed in the mathematical induc-
tion using the relation of Sn+1 = (dSn/dt ) /(n + 1) and the
properties of the associated Laguerre polynomials. From two
expressions of Sn in Eqs. (A3) and (A4), we obtain the fol-
lowing relation:

L(α)
n

(
νr2

1 − t

)
= (1 − t )n+α+1 exp

(
t

1 − t
νr2

)

×
∞∑

k=0

(n + k)!

k! n!
t k L(α)

n+k (νr2).

(A5)

This formula means that the associated Laguerre polynomial
with the argument of νr2/(1 − t ) and the order n is expanded
by t k in terms of those with the argument of νr2 and the order
of n + k. This property is applicable to the HO basis states to
connect the HO basis states with different range parameters.
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Hereafter we define β = −t for the dilation parameter in the
coherent basis state and use this relation in the HO basis state
with the range ν/(1 + β ).

Next, we discuss the generalized coherent state with the
dilation parameter β, which can be expanded in the HO basis
states using Eq. (1), the quanta of which is larger than or equal
to N , because of the raising operator D̂† = â† · â† as

φ
β

n�m(r, ν) = exp

(
1

2
βD̂†

)
φn�m(r, ν)

=
∞∑

k=0

βk

2kk!
An�(â† · â†)n+kY�m(â†) φ0(r, ν)

=
∞∑

k=0

βk

2kk!

An �

An+k �

φn+k �m(r, ν). (A6)

We get the following relation for the ratio of the coefficients
An �/An+k � as

An �

An+k �

= (−1)k

√
(2n + 2k + 2� + 2)! (n + � + 1)! (n + k)!

(n + k + � + 1)! (2n + 2� + 2)! n!
.

(A7)

On the other hand, we define the following function ϕ
β

n�m with
a normalization constant C and the HO basis state with the
range ν/(1 + β ),

ϕ
β

n�m(r, ν) = C exp

(
β

2(1 + β )
νr2

)
φn�m

(
r,

ν

1 + β

)
. (A8)

Using Eq. (A5) with β = −t ,

ϕ
β

n�m(r, ν) = C exp

(
−ν(1 − β )

2(1 + β )
r2

)
Nn�

(
ν

1 + β

)
Y�m(r)

× (1 + β )n+�+3/2 exp

(
− β

1 + β
νr2

)

×
∞∑

k=0

(n + k)!

k! n!
(−β )k L(�+1/2)

n+k (νr2)

= C (1 + β )n+�+3/2
∞∑

k=0

(n + k)!

n!

(−β )k

k!

×
Nn�

(
ν

1+β

)
Nn+k �(ν)

φn+k �m(r, ν).

(A9)

Here,

Nn�

(
ν

1+β

)
Nn+k �(ν)

=
√

(2n)!! (2n + 2k + 2� + 1)!!

(1 + β )�+3/2 (2n + 2k)!! (2n + 2� + 1)!!

= 1√
(1 + β )�+3/2

n! (−1)k

2k (n + k)!

An �

An+k �

.

(A10)

Hence we can rewrite ϕ
β

n�m using Eq. (A6) as

ϕ
β

n�m(r, ν) = C
√

(1 + β )2n+�+3/2
∞∑

k=0

βk

2k k!

An �

An+k �

× φn+k �m(r, ν)

= C
√

(1 + β )N̄ exp

(
1

2
βD̂†

)
φn�m(r, ν)

= C
√

(1 + β )N̄ φ
β

n�m(r, ν), (A11)

where N̄ = 2n + � + 3/2 = N + 3/2. Imposing the relation
of ϕ

β

n�m = φ
β

n�m, we can determine C as

C = 1√
(1 + β )N̄

. (A12)

Finally, we define the generalized coherent state of the HO
basis state.

φ
β

n�m(r, ν) = exp

(
1

2
βD̂†

)
φn�m(r, ν)

= 1√
(1 + β )N̄

exp

(
β

2(1 + β )
νr2

)

× φn�m

(
r,

ν

1 + β

)
. (A13)

It is noted that the above coherent basis state is not normal-
ized, and one can normalize it in the calculation of the norm
matrix element.

APPENDIX B: KINETIC ENERGY

We give the formula of the matrix element of the kinetic
energy T with a reduced mass μ in the generalized coherent
basis states with the independent values of β and n in the bra
and ket states.

〈φβ ′
n′�(ν)|T |φβ

n�(ν)〉 = h̄2νβ

2μ
f β ′β
n′n �(ν),

f β ′β
n′n �(ν) = (1 − β )2 An Gβ ′β

n′n+1 �(ν)

+ (1 − β )(1 + β ) Bn Gβ ′β
n′n �(ν)

+ (1 + β )2 Cn Gβ ′β
n′n−1 �(ν), (B1)

where

Gβ ′β
n′n �(ν) = 〈φn′�(νβ ′ )|e(γβ′+γβ )r2 |φn�(νβ )〉√

(1 + β ′)N̄ ′ (1 + β )N̄
,

An =
√

(n + 1)(n + � + 3

2
),

Bn = 2n + � + 3

2
, Cn =

√
n(n + � + 1

2
),

νβ = ν

1 + β
, γβ = β

1 + β

ν

2
.

(B2)
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