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Probing spin and pseudospin symmetries in deformed nuclei by the Green’s function method
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Spin and pseudospin symmetries play vital roles in nuclear physics and have been studied extensively in
spherical nuclei. However, there are much fewer studies in deformed systems and there remain many open
questions. In this work, for the first time, we examine the possible spin and pseudospin symmetries (SS and
PSS) in deformed nuclei by solving a coupled-channels Dirac equation with the Green’s function method, which
provides a novel way to exactly determine the single-particle levels and properly describe the spacial density
distributions. Taking axially deformed nucleus 154Dy as an example, the spin doublets with a combination

of Nilsson levels � ± 1/2[N , nz, �] and pseudospin doublets with a combination of �̃ ± 1/2[ ˜N , nz, �] are
determined. Different behaviors are displayed for the spin and pseudospin doublets. For the spin partners, those
with smaller angular momentum l and the third component � owns better symmetry such as the 1p doublet while
good pseudospin symmetry appears in partners locating close to the continuum threshold. By examining the
single-particle Nilsson levels �[N , nz,�] and the energy splittings between the partners, the conservation and
breaking of SS and PSS are examined at different deformations. In the prolate side, the Nilsson levels for the spin
and pseudospin doublets are almost parallel and the energy splittings are stable against varying deformations. By
examining the density distributions, great similarities have been observed in the upper components for the spin
doublets while great similarities in the lower component for the pseudospin doublets. Besides, these similarities
maintain well at different deformations.

DOI: 10.1103/PhysRevC.109.014323

I. INTRODUCTION

Symmetries in the single-particle spectra of atomic nu-
clei are of great significance to nuclear structure and have
been extensively discussed in the literature [1–4]. The break-
ing of spin symmetry (SS), i.e., the remarkable spin-orbit
splitting for the spin doublets (n, l, j = l ± 1/2) caused
by the spin-orbit potential (SOP), laid the foundation for
the understanding of the traditional magic numbers in nu-
clear physics [5,6]. Afterwards, based on the observation of
the near-degeneracy in single-particle levels with quantum
numbers (n, l, j = l + 1/2) and (n − 1, l + 2, j = l + 3/2), a
new symmetry, namely the pseudospin symmetry (PSS) was
introduced in nuclear physics, and the two levels are viewed as
pseudospin doublets denoted by the pseudo quantum numbers
(ñ = n − 1, l̃ = l + 1, j = l̃ ± 1/2) [7,8]. Significantly, PSS
has been used to explain a number of phenomena in nuclear
structure such as nuclear deformation [9], superdeformation
[10], magnetic moment [11], and identical rotational bands
[12].

In the early years, comprehensive efforts were made to
understand the origin of PSS. Apart from relabeling the quan-
tum numbers, the explicit transformations from a normal state
(l, s) to a pseudostate (l̃, s̃) were proposed in Refs. [13–15].
In 1997, Ginocchio made substantial progress and clearly
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showed that PSS is a relativistic symmetry in the Dirac
Hamiltonian and becomes exactly conserved when the at-
tractive scalar and repulsive vector potentials are equal in
size and opposite in sign, i.e., �(r) ≡ S(r) + V (r) = 0 [16].
He also claimed that the pseudo-orbital angular momentum
l̃ is nothing but the orbital angular momentum of the lower
component of the Dirac wave function [16]. Meanwhile, the
single-nucleon wave functions of the lower component for the
pseudospin doublets exhibit some similarities [17]. However,
the PSS is always broken in real nuclear systems due to
the nonzero potentials �(r). Later, Meng et al. proposed a
more general condition d�(r)/dr = 0 for PSS, which can be
approximately satisfied in exotic nuclei with highly diffused
potentials [18]. Besides, he also pointed out that the extent
of the conservation of PSS is connected with the compe-
tition between the pseudocentrifugal barrier (PCB) and the
pseudospin-orbit potential (PSOP) [19]. Afterwards, the SS
and PSS were studied extensively, e.g., PSS and SS in hy-
pernuclei [20–24], SS in antinucleon spectra [25–28], PSS in
the single-particle resonate states [29–37], perturbative inter-
pretation of SS and PSS [38,39], and PSS in supersymmetric
quantum mechanics [40,41].

PSS has also been observed in deformed nuclei [42].
In axially deformed nuclei, two single-particle orbitals
with asymptotic Nilsson quantum numbers (� = � +
1/2 [N , n3,�]) and (� = � + 3/2 [N , n3,� + 2]) are re-
defined as a pseudospin doublet (�̃ = �̃ ± 1/2[Ñ = N −
1, ñ3 = n3, �̃ = � + 1]) due to the quasidegeneracy between
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them [9]. To date, a series of works have been done to study
the SS and PSS in deformed nuclei [43,44]. In Ref. [45], based
on the relativistic mean-field (RMF) theory, Sugawara-Tanabe
et al. pointed out for the first time that the PSS is always
hidden in the unnatural parts of the Dirac wave function ir-
respective of the deformation. Later, they also found that both
SS and PSS exist in the deformed nuclei and are respectively
related to the upper and lower components of the Dirac wave
functions [44]. In Ref. [46], the quasidegenerate pseudospin
doublets were confirmed to exist near the Fermi surface for
deformed nuclei by carrying out constrained deformed RMF
calculations. In Ref. [47], the Dirac eigenfunctions in the
RMF calculations of deformed nuclei were examined exten-
sively. In Ref. [48], based on the similarity renormalization
group theory, Guo et al. investigated the pseudospin symme-
try in deformed nuclei and confirmed the crucial role of the
nonrelativistic term, the spin-orbit term, and the dynamical
term. In Ref. [49], based on the complex momentum rep-
resentation (CMR) method, the PSS in resonant states was
explored in deformed nuclei and found to be approximately
reserved with small splittings for energies, widths, and density
distributions.

In recent years, Green’s function (GF) method has achieved
great successes in describing continuum and has been widely
applied in nuclear physics, such as in the studies of single-
particle structures including the resonant states [35,50–54],
halos in exotic nuclei [55–58], and collective excitations
[59–64]. This method is very convenient to use in combina-
tion with different nuclear models. In 2014, we applied the
Green’s function method to the RMF theory (RMF-GF) to
investigate the single-particle resonant states for the first time
[50]. In 2016, by further including the pairing correlation,
we applied the Green’s function method to the relativistic
continuum Hartree-Bogoliubov theory (RCHB-GF) to study
halo phenomena [57]. In 2019, by including the blocking
effects, we extended the self-consistent Green’s function con-
tinuum Skyrme-Hartree-Fock-Bogoliubov theory [56] to the
descriptions of odd-A nuclei [58,65]. In 2020, by further
including the deformation, we applied the Green’s function
method to solve a coupled-channels Dirac equation with ax-
ially quadrupole deformed potentials, and we analyzed the
deformed halo in 37Mg [66]. According those studies, the
Green’s function method has shown great advantages, such
as treating the single-particle bound states and the continuum
on the same footing, determining directly the energies and
widths for resonances, and describing properly the the spatial
density distributions. Recently, based on the Green’s function
method, a novel way by searching for the extremes of the
density of states [67] or the poles of Green’s function [68]
has been proposed to determine the resonant states, which can
exactly determine the energies and widths for the bound and
resonant states regardless of the width. Besides, this method
can describe the resonant states in any potential without any
requirement on the potential shape. As an application, the
conservation and breaking of PSS in the single-nucleon res-
onant states have been examined from the PSS limit to finite
depth potentials, and in the PSS limit, besides strictly the same
energies and widths between the PS partners, identical density
distributions of the lower component were found for the first

time [69]. Furthermore, a uniform description of pseudospin
symmetry in bound and resonant states has been given [70].

In this work, the possible SS and PSS of single-particle
bound states in deformed nuclei are examined by the Green’s
function method. The effects of deformation on these sym-
metries are discussed. The paper is organized as follows.
The theoretical framework of the Green’s function method
for solving the coupled-channel Dirac equation is presented
in Sec. II. After the numerical details in Sec. III, Sec. IV is
devoted to the discussions of the numerical results, where the
conservation and breaking of the SS and PSS in deformed
nuclei are illustrated by analyzing the energy splittings and the
density distributions. Finally, a summary is given in Sec. V.

II. THEORETICAL FRAMEWORK

To explore the SS and PSS in deformed nuclei with the
RMF theory, the Dirac equations governing the motion of the
nucleons will be examined:

{α · p + V (r) + β[M + S(r)]}ψ (r) = εψ (r), (1)

where α and β are Dirac matrices, M is the mass of nucleon,
and S(r) and V (r) are the scalar and vector potentials, respec-
tively, which are adopted as the axially quadrupole-deformed
potentials,

S(r) = S0(r) + S2(r)Y20(θ, φ), (2a)

V (r) = V0(r) + V2(r)Y20(θ, φ), (2b)

with S0(r) and V0(r) being the spherical components while
S2(r)Y20(θ, φ) and V2(r)Y20(θ, φ) are the quadrupole parts.

For a nucleon in an axially quadrupole-deformed potential,
parity π and the z component � of the angular momentum are
good quantum numbers, and the single-particle wave function
can be expanded in terms of spherical Dirac spinors,

ψ� =
∑

κ

(
i G�κ (r)

r
F�κ (r)

r σ · r̂

)
Yκ�(θ, φ), (3)

where G�κ (r)/r and F�κ (r)/r are, respectively, the ra-
dial wave functions for the upper and lower components,
Yκ�(θ, φ) are the spinor spherical harmonics, and the quantum
number κ is related with the orbital angular momenta l and the
total angular momenta j,

l = κ, j = κ − 1
2 if κ > 0,

l = −κ − 1, j = −κ − 1
2 if κ < 0, (4)

which labels different spherical partial waves or “channels.”
Then the Dirac equation (1) is transformed into a coupled-

channels form of radial wave functions,

0 = dG�κ

dr
+ κ

r
G�κ − (ε� + 2M )F�κ

+
∑
κ ′λ

(Vλ − Sλ)A(λ, κ ′, κ,�)F�κ ′ , (5a)

0 = dF�κ

dr
− κ

r
F�κ + ε�G�κ

−
∑
κ ′λ

(Vλ + Sλ)A(λ, κ ′, κ,�)G�κ ′ , (5b)
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where the couplings among different spherical channels are
governed by the deformed potentials,

υ±
κκ ′ =

∑
λ

(Vλ ± Sλ)A(λ, κ ′, κ,�), (6)

in which the index λ = 0 and 2, respectively, for the spherical
and quadrupole parts of the potentials, and A(λ, κ ′, κ,�) can
be expressed as

A(λ, κ ′, κ,�)

= 〈Yκ�|Yλ0|Yκ ′�〉

= (−1)�+ 1
2

ĵ ĵ′√
4π

(
j λ j′

−� 0 �

)(
j′ λ j
1
2 0 − 1

2

)
, (7)

with ĵ = √
2 j + 1. In the practical calculations, we must

truncate the partial-wave expansion and use N to represent
the number of spherical partial waves to be included for a
given block �π . Besides, note that the single-particle energy
in Eq. (5) is shifted by M with respect to that in Eq. (1).

Applying the Green’s function method to solve the
coupled-channels Dirac Eq. (5), a Green’s function will be
constructed, defined as

[ε − ĥ(r)]G(r, r′; ε) = δ(r − r′), (8)

where ĥ(r) is the Dirac Hamiltonian and ε is an arbitrary
single-particle energy. In the axially quadrupole-deformed po-
tential, using the partial-wave expansion, the Green’s function
with a given � can be expanded as

G�(r, r′; ε) =
∑
κκ ′

Yκ�(θ, φ)
G�κκ ′ (r, r′; ε)

rr′ Y ∗
κ ′�(θ ′, φ′), (9)

where G�κκ ′ (r, r′; ε) is the radial Green’s function coupling
the partial waves κ and κ ′, and it is in a 2N × 2N matrix form,

G�κκ ′ (r, r′; ε) =
(G (11)

�κκ ′ (r, r′; ε) G (12)
�κκ ′ (r, r′; ε)

G (21)
�κκ ′ (r, r′; ε) G (22)

�κκ ′ (r, r′; ε)

)
. (10)

According to the definition in Eq. (8), the radial Green’s
function G�κκ ′ (r, r′; ε) satisfies the following coupled-
channels equation:( −ε − d

dr + κ
r

d
dr + κ

r −ε − 2M

)
G�κκ ′ (r, r′; ε)

+
∑
κ ′′

(
ν+

κκ ′′ 0
0 ν−

κκ ′′

)
G�κ ′′κ ′ (r, r′; ε) = δ(r − r′)

rr′ J,

(11)

where

J =
(

1 0
0 −1

)
⊗ IN , (12)

with IN being the N-dimensional unit matrix.
For the single-particle bound states, the density of states

(DoS) n(ε) exhibits discrete δ functions and can be easily
expressed as

n(ε) =
∑

n

δ(ε − εn), (13)

where ε is a real single-particle energy and εn represents
the eigenvalues of the Dirac equation. With an infinitesimal
imaginary part “iε” to the real energy ε, n(ε) can be calculated
by integrating the imaginary part of the Green’s function in the
coordinate space. For a given block �π , it can be expressed
as

n�(ε)

= − 2

π

∑
k

∫
drIm

[G (11)
�κκ (r, r; ε + iε)+G (22)

�κκ (r, r; ε+iε)
]
.

(14)

With the infinitesimal imaginary part “iε”, the DoSs for dis-
crete single-particle states in forms of δ functions (no width)
are simulated by Lorentzian functions with the full width at
half maximum (FWHM) of 2ε.

For the constructions of the Green’s function and other
details in solving the couple-channel Dirac equations with
the Green’s function method, refer to our previous work in
Ref. [66].

III. NUMERICAL DETAILS

In the present study, potentials in Woods-Saxon forms for
the radial part of the quadrupole deformed potentials in Eq. (2)
are adopted as [71,72]

S0(r) = SWS f (r), V0(r) = VWS f (r),

S2(r) = −βSWSk(r), V2(r) = −βVWSk(r), (15)

with

f (r) = 1

1 + exp( r−R
a )

and k(r) = r
df (r)

dr
. (16)

To study the behavior of SS and PSS in the single-particle
spectra, as an example we take the nucleus 154Dy, which has
a stable axially deformation of β = 0.24 [73]. The mean-field
Woods-Saxon potentials are adopted with the depths of the
scalar and vector potentials SWS = −405.0 MeV and VWS =
350.0 MeV, the radius R = 6.81 fm, and the diffuseness a =
0.67 fm following Ref. [48].

To solve the coupled-channels Dirac equation in the coor-
dinate space, a space size of Rbox = 20 fm and a mesh step of
0.1 fm are taken. For calculating the density of states n�(ε),
the infinitesimal parameter ε in Eq. (14) is taken as 1.0 × 10−6

MeV and the energy step dε is 1.0 × 10−3 MeV. With those
parameters, the accuracy of the obtained single-particle en-
ergies can be up to 1.0 keV. Furthermore, a higher degree of
accuracy can be achieved for energies if a smaller energy steps
dε is taken.

IV. RESULTS AND DISCUSSION

With the Green’s function method, the single-particle spec-
trum can be exactly determined both for the bound and
resonant states by searching for the poles of Green’s functions
or extremes of density of states. In Fig. 1, the density of states
n�(ε) for deformed nucleus 154Dy with �π = 1/2±, 3/2±,
5/2±, and 7/2± are plotted as functions of single-particle

014323-3



TING-TING SUN, BING-XIN LI, AND KUN LIU PHYSICAL REVIEW C 109, 014323 (2024)

FIG. 1. Density of states n�(ε) for nucleus 154Dy with blocks
�π = 1/2±, 3/2±, 5/2±, and 7/2±, obtained by solving the coupled-
channels Dirac equations with quadrupole-deformed Woods-Saxon
potentials using the GF method. The deformation parameter β =
0.24 and the number of coupled partial waves N = 8 are chosen. The
dashed lines denote the continuum threshold.

energies ε obtained by solving the coupled-channels Dirac
equation with the Green’s function method, where the defor-
mation parameter β = 0.24 and the number of coupled partial
waves N = 8. The peaks in δ-function shape below the contin-
uum threshold (ε = 0) correspond to the single-particle bound
states, and the spectra with ε > 0 describe the continuum with
peaks therein being the single-particle resonant states. For
the single-particle bound states, the energies could be well
determined directly by reading the locations of the extremes
of the DoSs. For the single-particle resonant states, DoSs will
be calculated on the complex energy plane ε = εr + iεi by
scanning energies along both the real εr and imaginary εi axes.
For the details, refer to Refs. [66,67].

In Table I, taking the blocks �π = 1/2+ and 1/2− as
examples, the single-particle energies ε of the bound states
extracted from Fig. 1 are listed, labeled by Nilsson quantum
numbers �[N , nz,�] with N being the principal quantum
number, nz the number of nodes of the wave functions in
the z direction, and � the projection of the orbital angular
momentum l onto the z axis. The nine positive parity states
from top to bottom are split from the spherical 1s1/2, 1d5/2,
1d3/2, 2s1/2, 1g9/2, 1g7/2, 2d5/2, 2d3/2, and 3s1/2 states, respec-
tively. Similarly, the ten negative parity states are split from
the 1p3/2, 1p1/2, 1 f7/2, 1 f5/2, 2p3/2, 2p1/2, 1h11/2, 1h9/2, 2 f7/2,
and 3p3/2 states, respectively. As shown in Table I, energies
for the bound states in a deformed Dirac equation could be

TABLE I. Single-particle energies ε (in MeV) for the bound
states in 154Dy with �π = 1/2+ and 1/2− extracted from the density
of states shown in Fig. 1.

�[Nnz�] “+”parity �[Nnz�] “minus”parity

1/2[000] −47.681 1/2[110] −42.268
1/2[220] −35.556 1/2[101] −39.538
1/2[211] −32.605 1/2[330] −27.708
1/2[200] −28.175 1/2[321] −24.475
1/2[440] −19.295 1/2[310] −20.314
1/2[431] −15.031 1/2[301] −16.150
1/2[420] −11.810 1/2[550] −10.661
1/2[411] −8.314 1/2[541] −5.057
1/2[400] −4.665 1/2[530] −3.311

1/2[510] −1.008

effectively obtained by the Green’s function method. This
method can also strictly determine the energies and widths
for resonant states. However, in this work, we will not talk
much about the resonant states but mainly focus on the bound
states.

In the following, the SS and PSS in deformed nuclei are
examined for the single-particle bound states. In Fig. 2, tak-
ing 154Dy as an example, we give the spin doublets as a

FIG. 2. Spin doublets � ± 1/2 [Nnz�] and pseudospin doublets

�̃ ± 1/2 [ ˜N , nz, �] in 154Dy.
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combination of Nilsson levels with quantum numbers � =
� + 1/2 [N , nz,�] and � = � − 1/2 [N , nz,�] and pseu-
dospin doublets as a combination of Nilsson levels with
quantum numbers � = � + 1/2 [N , nz,�] and � = � +
3/2 [N , nz,� + 2]. The partners with the same � or �̃ =
� + 1 are put in the same column and those with the same
(pseudo) principal quantum number n (̃n) and (pseudo) orbital
angular momentum l (̃l ) are denoted in the same color. For
spin doublets, the following points could be revealed: (i) For
partners with the same �, the SS becomes worse with in-
creasing orbital angular momentum l , showing greater energy
differences between the partners. In the case of � = 1, the
energy differences are respectively 0.73, 1.23, 2.14, 3.59, and
5.14 MeV for the 1p, 1d, 1 f , 1g, and 1h spin doublets. (ii) For
partners with the same n and l , SS deteriorates with larger �,
e.g., the energy differences of the 1g doublets corresponding
to � = 1, 2, 3, 4 are respectively 3.59, 3.85, 4.43, and 5.14
MeV for the (1/2[431], 3/2[431]), (3/2[422], 5/2[422]),
(5/2[413], 7/2[413]), and (7/2[404], 9/2[404]) spin dou-
blets. (iii) When entering the continuum, an inversion of
energy levels occurs for the spin doublet with the spin down
state being lower than the spin up state, such as the partner
(1/2[501], 3/2[501]).

However, different behaviors are displayed for the pseu-
dospin doublets: (i) For partners with the same �̃, the PSS
is better maintained with increasing pseudo-orbital angular
momentum l̃ . In the case of �̃ = 1, the energy differences
between the PS partners are respectively 1.75, 1.73, 1.62,
and 0.86 MeV for the 1 p̃, 1d̃, 1 f̃ , and 1̃g PS doublets. (ii)
For partners with the same ñ and l̃ , the evolutions of the
PSS with �̃ show different behaviors: for the 1p̃ and 1d̃
PS partners, PSS becomes worse with increasing �̃ while
it improves significantly for the 1 f̃ PS partners. (iii) There
is an obvious threshold effect, i.e., when the PS partner ap-
proaches the continuum threshold, PSS becomes much better
and is conserved approximately. (iv) As in the spin doublet,
when entering the continuum, an inversion of energy levels
occurs for the PS doublet with the pseudospin down state
being lower compared with the pseudospin up state, such as
the partners (1/2[510], 3/2[512]), (3/2[501], 5/2[503]), and
(7/2[503], 9/2[505]).

To explore the effects of deformation for the SS and PSS,
in Fig. 3, the single-particle Nilsson levels �[Nnz�] as a
function of deformation parameter β are plotted ranging from
β = −0.4 to 0.6. The solid and dashed lines are respectively
for the levels with positive and negative parities. In the spheri-
cal case with β = 0, a distinct shell structure emerges with the
traditional magic numbers 2, 8, 20, 28, 50, and 82, and seven
pairs of spin doublets, i.e., 1p, 1d , 1 f , 2p, 1g, 2d , and 1h,
are obtained. With the quadrupole deformations, as a result
of levels splitting, more pairs of spin doublets are obtained
as a combination of Nilsson levels with quantum numbers
� = � − 1/2 [N , n3,�] and � = � + 1/2 [N , n3,�]. On
closer inspection, in the side of prolate deformations with
β ranging from 0 to 0.6, the single-particle levels of spin
doublets are approximately parallel, such as the spin dou-
blets 1d (3/2[202], 5/2[202]), 1 f (5/2[303], 7/2[303]), and
2p (1/2[301], 3/2[301]). However, this relationship does not
exist well in the side of β < 0 with oblate deformation.

FIG. 3. Nilsson single-particle levels � [N , n3,�] as a function
of deformation parameter β in quadrupole-deformed Woods-Saxon
potentials. The solid and dashed lines denote levels with positive and
negative parities, respectively.

In order to better master the SS in the deformed nuclei,
in Fig. 4, the energy splittings �ε = ε�<

− ε�>
for the spin

doublets � ± 1/2 [N , n3,�] are plotted as a function of de-
formation β, where ε�<

and ε�>
are the energies of the spin

FIG. 4. Energy splittings �ε between the spin doublets � ±
1/2 [Nnz�] as a function of the deformation parameter β. The solid
and dashed lines indicate doublets with positive and negative parities,
respectively.
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FIG. 5. Single-particle levels for the pseudospin doublets in
154Dy as a function of deformation parameter β in quadrupole-
deformed Woods-Saxon potentials. The solid and dashed lines with
the same color denote one pseudospin doublet with the pseudospin
s̃ = ±1/2, respectively.

down and up states, respectively. According to Fig. 4, the
following points could be revealed: (i) The energy splitting �ε

between the spin doublets for the bound states stay positive
over the whole range of deformation considered here. (ii) In
the case of β � 0, the energy splitting between a spin dou-
blet with the same principal quantum number n is relatively
larger for those owning larger orbital angular momentum l ,
i.e., �ε(1h) > �ε(1g) > �ε(1 f ) > �ε(1d ) > �ε(1p) and
�ε(2d ) > �ε(2p). (iii) For the spin doublets with the same
n and l , the energy splitting with greater � is larger, e.g., for
the 1h spin doublets, �ε7/2[404]−9/2[404] > �ε5/2[413]−7/2[413] >

�ε3/2[422]−5/2[422] > �ε1/2[431]−3/2[431]. (iv) The sensitivity of
energy splitting of the spin doublets on the deformation β

is much higher in the oblate side than in the prolate side,
especially for those with lower angular momentum such as
1p and 2p spin doublets.

In Fig. 5, the single-particle levels for all pseudospin
doublets in 154Dy are plotted as a function of deformation
parameter β. The solid and dashed lines with the same
color denote one pair of PS doublet with the pseudospin
s̃ = ±1/2, respectively. At spherical deformation, five pairs of
pseudospin doublets, i.e., 1p̃(2s1/2, 1d3/2), 1d̃ (2p3/2, 1 f5/2),
1 f̃ (2d5/2, 1g7/2), 2 p̃(3s1/2, 2d5/2), and 1̃g (2 f7/2, 1h9/2), are
obtained. In the deformed case, levels are split and more
pairs of pseudospin doublets are obtained as a combination of
Nilsson levels with quantum numbers � = � + 1/2 [Nn3�]
and � = � + 3/2 [N , n3,� + 2], which correspond to the

pseudospin down state � = �̃ − 1/2 [ ˜Nn3�] and the pseu-

FIG. 6. The same as Fig. 4, but for the pseudospin doublets �̃ ±
1/2 [ ˜Nnz�].

dospin up state � = �̃ + 1/2 [ ˜Nn3�]. For most of the bound
pseudospin doublets, the pseudospin up state is located lower
than the pseudospin down state except for those close to the
continuum threshold and those with a resonant state being a
PS partner. At the deformation of β = 0.1, an energy level
crossing between the doublets 7/2[503] and 9/2[505] is ob-
served, and the same phenomenon happens for the doublets
5/2[512] and 7/2[514] around β = 0.5. Such level cross-
ings lead to the change of the energy splittings between PS
doublets, and in Refs. [9,35,46] the same phenomenon has
also been observed. Further studies have pointed out that the
reversed level structure is decided by the sign of the inte-
gration of the pseudospin-orbit potential over r [19]. This
can also be explained by the spin-orbit effects within the
framework of supersymmetric quantum mechanics as dis-
cussed in Refs. [40,41]. Besides, almost for all the bound
pseudospin doublets, the corresponding single-particle levels
approximately satisfy the parallel relationship in the area of
β > 0, which is the same as for spin doublets.

Similarly to the spin doublets, in Fig. 6, the energy split-
tings �ε = ε�̃<

− ε�̃>
between the pseudospin doublets are

plotted as a function of the deformation parameter β, where
ε�̃<

and ε�̃>
are energies of the pseudospin down and up

doublets, respectively. For convenience, we use the pseudo

quantum numbers ˜[Nnz�] to denote the PS doublet �̃ ∓
1/2[Ñ = N − 1, ñ3 = n3, �̃ = � + 1] with a combination
of � + 1/2 [N , n3,�] and � + 3/2 [N , n3,� + 2]. For ex-
ample, the PS doublet (1/2[200], 3/2[202]) can be denoted
as [1̃01]. From Figs. 5 and 6, the following points can be
revealed for the PSS: (i) The energy difference between the
pseudospin up and down states always remains positive except
for the pseudospin doublets ˜[413] and ˜[404], the partners of
which have crossed the continuum threshold. (ii) The energy
splitting is much smaller for the pseudospin doublets close
to continuum threshold, revealing the good pseudospin sym-
metry, which has also been observed in Refs. [46,48]. (iii)
In the side of prolate deformation with β > 0, the energy
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FIG. 7. Density distributions in the coordinate space, ImG (11)
κ and ImG (22)

κ , for the 2d (1/2[411], 3/2[411]) spin doublets with different
deformation parameters β = −0.30 (a,b), 0.00 (c,d), and 0.30 (e,f).

splitting between PS parters stays almost constant for most
of the pseudospin doublets.

For a pair of (pseudo)spin doublet, the good (P)SS results
in not only a (quasi)degeneracy in their energies, but also great

similarities in their Dirac wave functions. For the spin dou-
blets, the upper components of the Dirac spinor G(r) behave
similarly, and for the pseudospin doublets, the lower compo-
nents of the Dirac spinor F (r) are similar. In the PSS limit,

FIG. 8. The same as Fig. 7, but for the pseudospin doublet 1 f̃ (5/2[402], 7/2[404]).
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i.e., when the attractive scalar and repulsive vector potentials
have the same magnitude but opposite sign, identical density
distributions of the lower components have been proved for
the PS partners [69]. With the Green’s function method, the
density distributions in the coordinate space can be used to
study the similarities of Dirac spinors and in the deformed
nuclei, the radial density distributions corresponding to the
upper and lower components of the Dirac wave functions for
the single-particle state with �π at the eigenvalues of ε could
be calculated by

ρ
(g)
� (r, ε) = − 1

4πr2

∑
κ

ImG (11)
�κκ (r, r; ε), (17)

ρ
( f )
� (r, ε) = − 1

4πr2

∑
κ

ImG (22)
�κκ (r, r; ε), (18)

where different spherical partial waves are coupled together.
In Fig. 7, taking the spin doublets 2d (1/2[411], 3/2[411])

as examples, the density distributions ρ
(g)
� (r, ε) and ρ

( f )
� (r, ε)

are plotted at different deformations β = −0.3, 0.0, 0.3. In the
spherical case, great similarities are observed in ImG (11)

κ cor-
responding to the upper component of Dirac wave functions
while a big difference exists in the lower component ImG (22)

κ

between the spin partners. All those together with a small en-
ergy splitting support the approximate spin symmetry. When
the mean field potential deviates from the spherical shape,
good consistency in ImG (11)

κ between the spin doublets still
stays at a prolate deformation of β = 0.30 while some more
differences happen at the oblate deformation of β = −0.3. As
seen in Fig. 4, the energy splitting between the spin doublets
2d (1/2[411], 3/2[411]) is small in the side of prolate defor-
mation and it remains stable with the increase of β from 0 to
0.6, while in the oblate side great differences are revealed at
various deformations for the SS doublets, especially for those
with low angular momentum.

In Fig 8, we show the density distributions of the PSS
doublets 1 f̃ (5/2[402], 7/2[404]) at different deformations
β = −0.3, 0.0, 0.3. In the spherical case, some similari-
ties are revealed in the density distributions ImG (22)

κ (r, ε)
of the PSS doublets while one node difference, i.e.,
n(2d5/2) = n(1g7/2) + 1, is observed in the density distribu-
tions ImG (11)

κ (r, ε) corresponding to the upper component of
the Dirac wave functions. In the deformed case, the simi-
larities in the lower component of the Dirac wave function
remain, while the node relationship in the upper component
ImG (11)

κ (r, ε) is no longer satisfied.

V. SUMMARY

In this work, Green’s function method has been applied
to examine the possible spin and pseudospin symmetries in
deformed nuclei for the first time, which provides a novel
way to exactly determine the single-particle energies and also
properly describe the density distributions.

First, taking the axially deformed nucleus 154Dy as an
example, the densities of states are calculated with the Green’s

functions method by solving the coupled-channels Dirac
equation with quadrupole-deformed Woods-Saxon potentials.
By searching for the extremes of DoSs, the single-particle
energies for 154Dy are exactly obtained, based on which the
spin doublets � ± 1/2[N , nz,�] and pseudospin doublets

�̃ ± 1/2[ ˜N , nz,�] are determined. Different behaviors are
displayed for the spin and pseudospin doublets. SS for dou-
blets with the same � deteriorates with increasing l and, for
those with the same n and l , it also becomes worse for larger
�. Differently, PSS for doublets with the same �̃ is better
maintained with increasing l̃ and, for those with the same
ñ and l̃ , it sometimes becomes better for larger �̃. Besides,
a great threshold effect is exhibited for PSS. One common
point for the spin and pseudospin doublets is the inversions
of energy levels between the partners observed in the area of
continuum.

Second, to explore the effects of deformation for the SS and
PSS, the single-particle Nilsson levels �[N , nz,�] are plotted
as a function of deformation ranging from β = −0.4 to 0.6.
By studying the energy splittings between the partners, the
conservation and breaking of SS and PSS are examined at dif-
ferent deformations. In the side of prolate deformations with
β > 0, the Nilsson levels for the spin and pseudospin doublets
are almost parallel and the energy splittings are stable against
different deformations. However, the energy splitting is very
sensitive to the deformation β in the oblate side with β < 0.
For the spin doublets, the energy splitting for the bound states
stays positive over the whole range of deformation. The same
conclusion is obtained for pseudospin doublets except those
close to the continuum threshold. Besides, good spin symme-
try may appear for partners with smaller angular momentum
such as 1p partners, while good pseudospin symmetry appears
in the states which locate close to the continuum threshold.

Finally, the density distributions in the coordinate space
are plotted for the spin and pseudospin doublets at different
deformations β = −0.3, 0, 0.3. For the spin doublets, great
similarities are observed for the ρ

(g)
� (r, ε), which is related to

the upper component of the Dirac wave functions, while great
similarities are observed for the density distribution ρ

( f )
� (r, ε),

which is related to the lower component of the Dirac wave
function for the pseudospin doublets. Besides, these similari-
ties can be maintained well at different deformations.
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