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Microscopic study of M1 resonances in Sn isotopes
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The magnetic dipole (M1) resonances of even-even 112–120,124Sn isotopes are investigated in the framework
of the self-consistent Skyrme Hartree-Fock + Bardeen-Cooper-Schrieffer (HF+BCS) and quasiparticle random
phase approximation (QRPA). The Skyrme energy density functionals SLy5 and T11 with and without tensor
terms are adopted in our calculations. The mixed type pairing interaction is used to take care of the pairing effect
for open-shell nuclei both in the ground and excited states calculations. The calculated magnetic dipole strengths
are compared with available experimental data. The QRPA results calculated by SLy5 and T11 with tensor force
show a better agreement with the experimental data than those without the tensor force. By analyzing the HF
and QRPA strength distributions of 112Sn and 124Sn, we discuss the effect of tensor force on the M1 resonances
in detail. It is found that the M1 resonance is sensitive to the tensor interaction, and favors especially a negative
triplet-odd tensor one. Depending on the nucleus, a quenching factor of the M1 operator of about 0.71–0.95
is needed to reproduce the total observed transition strength. In our calculations, we also find some low-lying,
pygmy-type magnetic dipole states distributed below 6.0 MeV, and they are formed mainly from the neutron
configuration ν2d5/2 → ν2d3/2.
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I. INTRODUCTION

The magnetic dipole (M1) resonance is one of the funda-
mental excitations of spin-flip type in finite nuclei [1–5]. It
has been studied experimentally and theoretically for several
decades. The M1 resonance is known experimentally to in-
clude two major components. One is an orbital component
at low excitation energy. It is found in deformed nuclei and
called scissors mode. In spherical nuclei, the scissors mode is
much suppressed. The other spin-flip component is found at
an energy of around 8 MeV, contributing to most of the M1
strength. The scissors mode in deformed nuclei is interpreted
as neutrons and protons vibrating with a small angle with re-
spect to each other in a scissors-like motion, while the higher
energy component describes a resonance-like structure made
of proton and neutron spin-flip excitations. The study of M1
resonance is of great interest not only for the nuclear structure
but also for nuclear astrophysics. It provides, in addition to
charge-exchange modes, an alternative chance to explore the
nuclear interactions in spin and spin-isospin channels and
can offer crucial information on nuclear structure [6]. The
properties of the M1 resonance may impact the description
of neutral current neutrino interactions in supernova [7,8],
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or the estimate of the reaction cross sections in large-scale
nucleosynthesis network calculations [9–11].

In the past years, great efforts have been devoted to the
study of M1 resonance in the framework of nonrelativistic
random phase approximation (RPA) with Skyrme or Gogny
interactions, relativistic RPA, and shell model calculations.
In the nonrelativistic approaches, it is well known that the
distribution of M1 resonance is very sensitive to the spin-
dependent interactions. So, many studies have focused on
the effect of spin-orbit and tensor interactions on the M1
strength distribution [10–18]. Recently, the self-consistent
description of magnetic dipole resonance with relativistic en-
ergy density functionals has become available [19–22]. The
density-dependent point-coupling or density-dependent me-
son exchange interactions are adopted in the calculations.
To properly describe the unnatural-parity M1 resonance, the
isovector-pseudovector interaction should be included in the
residual interaction. In the case of the shell model calcu-
lations, the studies of the magnetic dipole resonance pay
attention to the strengths at low energy for some selected
nuclei [23–25].

Experimentally, the magnetic dipole resonance can be ex-
cited by inelastic scattering of protons, electrons, and photons,
it has been investigated for many years, and a rich amount
of database has been built [1–5,26–30]. Recently, electric
and magnetic dipole responses along the even-even tin iso-
topes have been measured in an inelastic proton scattering
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experiment at Research Center for Nuclear Physics (RCNP)
Osaka University [31,32]. Total photoabsorption cross sec-
tions have been derived from the E1 and M1 strength distri-
butions and show significant differences compared to those
from previous experiments. The magnetic dipole strengths in
112–120,124Sn exhibit a broad distribution between 6 and 12
MeV in all studied nuclei. The new magnetic dipole data in
Sn isotopes provide a good opportunity to check the ability
of existing nuclear energy density functionals (EDFs) to re-
produce the data. In Ref. [21], the authors have investigated
M1 transitions in even-even 100–140Sn isotopes based on the
relativistic EDFs, by raising many points for discussion. Up
to now, a systematic investigation of the new database by
nonrelativistic models is still missing.

As we know, the tensor force plays a significant role
in nuclear structure studies [33]. The shell evolution of the
single-particle energies in some exotic nuclei can be well
explained by the inclusion of tensor force [34–42]. Exten-
sive efforts have also been undertaken to study the influence
of the tensor force on the excited state properties of fi-
nite nuclei, like the spin and spin-isospin excitation modes
[43–49]. The tensor force also plays a role in the calcu-
lations of the response functions of infinite nuclear matter
[50–52]. The effect of the tensor force on heavy-ion collisions
has been discussed within the time-dependent Hartree-Fock
(TDHF) method. It plays a non-negligible role in dynamic
processes in nuclei [53–55]. In this work, we will investigate
the M1 resonances in even-even 112–120,124Sn isotopes within
the framework of Skyrme Hartree-Fock + Bardeen-Cooper-
Schrieffer (HF+BCS) plus quasiparticle RPA (QRPA). The
calculated results are compared to the experimental data from
Refs. [31,32]. The effect of the tensor force on M1 resonances
in even-even 112–120,124Sn isotopes is discussed in detail in
the present work. We will also pay attention to the quench-
ing associated with the magnetic dipole operator, which is a
longstanding problem in nuclear structure [56–58].

This article is organized as follows. The theoretical model
is briefly reviewed in Sec. II. In Sec. III, the calculated results
are compared with experimental data. The discussions on the
effect of tensor force and quenching problem are also given in
Sec. III. The summary and some perspectives for future work
are given in Sec. IV.

II. THEORETICAL FRAMEWORK

In this work, a HF + BCS plus QRPA approach is em-
ployed in the calculations. Since the theoretical framework

of HF + BCS method is well known in the literature (cf.
Refs. [59,60]), we briefly review only the QRPA main equa-
tions. The matrix equations of QRPA can be written as(

A B
−B∗ −A∗

)(
X ν

Y ν

)
= Eν

(
X ν

Y ν

)
, (1)

where Eν is the eigenvalue of the νth QRPA state and X ν ,
Y ν are the corresponding forward and backward quasipar-
ticle amplitudes, respectively. The details about the matrix
elements A and B can be found in Refs. [61,62].

The magnetic dipole operator is given by

F̂ (M1) = μN

A∑
i=1

(gl �li + gs�si ) = μN

A∑
i=1

[gl �ji + (gs − gl )�si],

(2)
where μN = eh̄/2mc is the nuclear magneton. Since j is a
good quantum number for the single-particle states in spher-
ical nuclei, the first term gl �ji does not contribute to the
transition matrix for the p-h type excitation since jp �= jh.
On the other hand, in open shell nuclei, the two quasiparticle
excitation with the same j quantum number, j1 = j2, con-
tributes to the matrix element. We should notice that even in
the p-h type excitation, the orbital contribution exists and it is
absorbed in the g factor of spin operator gs → gs − gl .

For the magnetic dipole operator, the reduced transition
strength from the ground state to the excited state ν is written
as

Bν (M1) = 1

2J + 1
|〈ν||F̂ ||g.s.〉|2

= 1

2J + 1

∣∣∣∣∣∣
∑
c�d

(
X ν

cd + Y ν
cd

)
(vcud + ucvd )〈c‖F̂‖d〉

∣∣∣∣∣∣
2

.

(3)

In the figures, the M1 discrete spectra are convoluted with
Lorentzian distributions

SM1(E ) =
∑

ν

Bν (M1)
1

π

�/2

(E − Eν )2 + �2/4
, (4)

where � is the width and is taken equal to 2 MeV in present
calculations.

The triplet-even and triplet-odd zero-range tensor terms of
the Skyrme force are expressed as

vT =T

2

{[
(σ1 · k′)(σ2 · k′) − 1

3
(σ1 · σ2)k′2

]
δ(r1 − r2) + δ(r1 − r2)

[
(σ1 · k)(σ2 · k) − 1

3
(σ1 · σ2)k2

]}

+ U

{
(σ1 · k′)δ(r1 − r2)(σ2 · k) − 1

3
(σ1 · σ2)k′ · δ(r1 − r2)k

}
, (5)

where the operator k = (∇1 − ∇2)/2i acts on the right and
k′ = −(∇1 − ∇2)/2i acts on the left. The coupling constants

T and U denote the strengths of the triplet-even and triplet-
odd tensor interactions, respectively.
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It is known that the tensor force affects the spin-orbit mean
potential. The spin-orbit potential is expressed as

V (q)
s.o. = U (q)

s.o. l · s (6)

and

U (q)
s.o. = W0

2r

(
2

dρq

dr
+ dρ1−q

dr

)
+

(
α

Jq

r
+ β

J1−q

r

)
, (7)

where q = 0(1) is the quantum number (1 − tz )/2 (tz being
the third isospin component) that distinguishes neutrons and
protons. The first term on the right comes from the Skyrme
spin-orbit interaction, and the second term, contributions from
J terms, comes from some exchange terms of the central force
as well as from the tensor force. The spin-orbit density J in
spherical nuclei has only a radial component whose expres-
sion reads

Jq = 1

4πr3

∑
i

v2
i (2 ji + 1)

[
ji( ji + 1) − li(li + 1) − 3

4

]
R2

i (r),

(8)
where i = n, l, j runs over all states. The quantity v2

i is the
occupation probability of each orbit determined by the BCS
approximation and Ri(r) is the radial part of the HF single-
particle wave function. α and β in Eq. (7) include both the
central exchange terms and the tensor terms, that is, α = αC +
αT and β = βC + βT . The central exchange contributions are
written in terms of the usual Skyrme parameters

αC = 1
8 (t1 − t2) − 1

8 (t1x1 + t2x2),

βC = − 1
8 (t1x1 + t2x2), (9)

while the tensor contributions are expressed as

αT = 5
12U, βT = 5

24 (T + U ). (10)

In the HF + BCS plus QRPA calculations, we take an
effective density-dependent zero-range pairing interaction,

Vpair (r1, r2) = V0

[
1 − η

(
ρ(r)

ρ0

)]
δ(r1 − r2), (11)

where ρ(r) is the particle density, and ρ0 = 0.16 fm−3 is
the density at nuclear saturation. The parameter η represents
the pairing type. When η is either 1.0, 0.5, or 0.0, it means
a surface, mixed or volume pairing interaction. The mixed
pairing interaction is used in our calculations, as it is very ef-
fective in describing many properties of finite nuclei [63–65].
The pairing strength V0 is adjusted to reproduce the empirical
neutron gap in 120Sn (
n = 1.392 MeV). Then the same value
is adopted for the calculations of other Sn isotopes.

In order to investigate the effect of pairing on the M1
strength distribution, as an example, the filling approximation
[66,67] and QRPA calculations are performed for 120Sn using
SLy5 with tensor force, and the results are shown in Fig. 1.
In the filling approximation, pairing is neglected completely,
that is, the p-p interaction is also dropped in the QRPA matrix.
The M1 strength distribution given by the filling approxi-
mation shows a unimodal structure with a peak at energy
around 9.6 MeV, which is mainly coming from the proton
configuration π1g9/2 → π1g7/2. In the QRPA result, the main
peak is shifted downward to 9.2 MeV. Besides the M1 main

FIG. 1. The M1 strength distributions of 120Sn in filling ap-
proximation and QRPA, respectively. The calculated strengths are
convoluted by a Lorentzian shape with a width of 2.0 MeV.

peak, two additional M1 pygmy resonance states emerge at
energies around 5.0 and 12.3 MeV, respectively. The word
pygmy state is often used for a low-lying E1 state with smaller
strength than giant dipole resonances. On the other hand,
many authors employ this word without implying any special
multipole, but just referring to the fact that the strength is
smaller with respect to giant resonances [68]. Thus it can be
used even for low-lying M1 or other multipoles. We find that
the low-lying state comes from the neutron quasiparticle con-
figuration ν2d5/2 → ν2d3/2 while the high-energy state is due
to the ν1h11/2 → ν1h9/2 neutron quasiparticle configuration.
The discrepancy between the results of filling approximation
and QRPA stems from the particles scattering around the
Fermi surface, i.e., the neutron state 2d3/2 changes from fully
occupied to partially occupied, while the neutron 1h11/2 state
turns from being empty to being partially filled. Notice that the
states 2d5/2 and 2d3/2 are below the Fermi level while 1h11/2

and 1h9/2 are above that. These changes by the pairing cor-
relations allow the relatively strong transitions from ν2d5/2 to
ν2d3/2 and ν1h11/2 to ν1h9/2. The above discussion shows that
the effect of pairing on the M1 resonance is substantial and
make appreciable difference from the filling approximation.

III. RESULTS AND DISCUSSIONS

In the present study, all the calculations assume a spherical
shape for the even-even Sn isotopes. The quasiparticle states
are obtained by solving HF + BCS in coordinate space with
a box boundary condition and the size of the box is 24 fm.
We have checked that the predicted ground state properties
of Sn isotopes, such as binding energies, charge radii, agree
well with the experimental data. After solving the HF + BCS
equation in coordinate space, we build up a model space of
two-quasiparticle configurations for M1 excitation, and then
we solve the QRPA matrix equations in the model space. The
major shell configurations up to 
N = 8 are adopted to build
up the QRPA model space, which is large enough to allow the
convergence of the results.
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FIG. 2. The QRPA strength distributions of 124Sn calculated by using several Ti j and other Skyrme EDFs. In (a)–(d), the Ti j EDFs are
employed: (a) by changing α for a fixed value β = −60 MeV fm5. (b) by changing β for a fixed value α = −60 MeV fm5. (c) by fixing
α = β = (−60, 60, 180) MeV fm5 that corresponds to i = j = (1, 3, 5). (d) for the cases α �= β that are not shown in (a)–(c), including T24,
T42, T35, T53, T46, and T64, except T11. (e) and (f) show commonly used Skyrme EDFs without the tensor terms, except SLy5 which
includes the tensor terms. Experimental data are taken from Bassauer et al. [32].

A. Skyrme interactions for M1

We adopt various commonly used Skyrme EDFs for the
M1 calculations of 124Sn to examine both the model depen-
dence and the role of tensor interaction. The adopted Skyrme
EDFs with tensor terms are SLy5 with the tensor force [36]
and some of the Ti j interactions [40]. As representatives
without the tensor terms, we employ SLy4 and SLy6 [69], SIII
[70], SGII [71], SkM* [72], SkP [73], KDE0v and KDEv1
[74], SkT6 [75], MSK1 [76], MSK9 [77], SKb [78], and LNS1
[79] interactions. The calculated and experimental strength
distributions are shown in Fig. 2. Figure 2(a) [Fig. 2(b)] shows
the results of Ti j family specified by T1 j (Ti1) sets, in which

the indices i and j refer to the coefficients of the proton-
neutron (β) and like-particle (α) spin-orbit densities in Eq. (7),

α = αC + αT = 60 ( j − 2) MeV fm5,

β = βC + βT = 60 (i − 2) MeV fm5. (12)

These Ti j family members are chosen to investigate the evo-
lution of the strength distributions by increasing the α (β)
value at a given β (α) value. Figure 2(c) shows results of the
T11, T33, and T55 sets, which are chosen to investigate the
strength evolution given by the parameter sets of the i = j
family members. Figure 2(d) shows the results of other Ti j
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parameter sets, including T24, T42, T35, T53, T46, and T64.
The results of other Skyrme EDFs without the tensor terms
(except SLy5 with the tensor) are shown in Fig. 2(e) and 2(f).

The protocols for the determination of these Skyrme EDFs
are as follows. SLy5 is a Skyrme EDF given by Lyon group,
and the detailed information can be found in Ref. [69]. The
list of constraints used to construct the cost function χ2 for the
minimization reads: the binding energies and the charge radii
of 16O, 40,48Ca, 56Ni, 132Sn, and 208Pb; the spin-orbit splitting
of the neutron 3p state in 208Pb; the energy per particle in the
nuclear matter (E/A 
 −16 MeV) at the saturation density
(ρ0 
 0.16 fm−3), the incompressibility modulus (K∞ 
 230
MeV), and the symmetry energy coefficient (as 
 32 MeV) at
the saturation density of nuclear matter; the equation of state
of neutron matter predicted by Wiringa et al. in Ref. [80];
the enhancement factor κ of the Thomas-Reiche-Kuhn sum
rule (κ = 0.25); x2 was fixed to be −1.0. The SLy5 func-
tional can be considered as a “standard” Skyrme functional
that performs well for many observables like masses, natural
parity non-charge-exchange excitations, predictions of drip
lines, and the structure of neutron stars. It is employed here as
a benchmark of what can be obtained for M1 while the fit of
the EDF has not been focused on spin properties. Later, Colò
et al. included the tensor terms perturbatively in the SLy5 in-
teraction in order to reproduce the evolutions of single-particle
energies of Z = 50 isotopes and N = 82 isotones [36].

The Ti j parametrizations were proposed in Ref. [40],
where indices i and j refer to the proton-neutron (β) and
like-particle (α) coupling constants given in Eq. (12). The fit
protocol of Ti j sets is similar to that of the SLy5 parametriza-
tion, but has three differences: (a) the values for α and β

were fixed beforehand for each Ti j member and then other
parameters were optimized for the protocol. This means that
the tensor terms were excluded in the fit procedure but fixed a
priori; (b) the binding energies of 90Zr and 100Sn were added
to the set of data; (c) the constraint x2 = −1 imposed on the
SLy5 parametrization was released and the parameter x2 had
been included in the optimization process. By using these Ti j
EDFs, we aim at pinpointing the specific effect of tensor terms
on M1: since tensor terms affect the spin-orbit splitting, the
effect of the point (a) on M1 is clear, while (b) and (c) are to
some extent details that do not matter too much in the present
context.

B. Correlations between M1 unperturbed energies and the
spin-orbit strength W0 as well as the tensor terms

In order to clarify the role of the tensor terms of the Skyrme
EDFs, we study first the correlation between the unperturbed
energies of M1 states and the spin-orbit strength W0 in the
case of 124Sn. When the tensor force is not involved, it is
expected that the spin-orbit splitting is mainly governed by
the spin-orbit strength W0 together with some contributions
from αC and βC in Eq. (9). Since the M1 unperturbed ex-
citation energy is mainly given by the p-h type excitation
between the spin-orbit partners, the excitation energies of M1
peaks are sensitive to the spin-orbit strength W0. In Fig. 3, we
show the unperturbed low-lying and high-lying M1 states for
50 different Skyrme EDFs. There are two main unperturbed

FIG. 3. The energies of unperturbed M1 peaks for 124Sn as a
function of W0. In the calculations, the Skyrme EDFs without tensor
terms are employed. The computed data points are labeled, here and
in what follows, by numbers: 1 = T11, 2 = T12, 3 = T13, 4 =
T14, 5 = T15, 6 = T16, 7 = T21, 8 = T22, 9 = T23, 10 = T24,
11 = T25, 12 = T26, 13 = T31, 14 = T32, 15 = T33, 16 = T34, 17 =
T35, 18 = T36, 19 = T41, 20 = T42, 21 = T43, 22 = T44, 23
= T45, 24 = T46, 25 = T51, 26 = T52, 27 = T53, 28 = T54,
29 = T55, 30 = T56, 31 = T61, 32 = T62, 33 = T63, 34 = T64, 35
= T65, 36 = T66, 37 = SLy4, 38 = SLy5, 39 = SGII, 40 = SKM*,
41 = SKP, 42 = SIII, 43 = KDE0v, 44 = KDEv1, 45 = SKb, 46 =
SKT6, 47 = MSK1, 48 = LNS1, 49 = MSK9, 50 = SLy6. The grey
lines correspond to the results of the linear fits.

configurations in 124Sn: the proton configuration 1g9/2 →
1g7/2 and the neutron one 1h11/2 → 1h9/2. The former corre-
sponds to the low-lying M1 state, while the latter corresponds
to the high-lying one. As displayed in Fig. 3, it is found
that there are clear linear correlations between the energies of
unperturbed M1 peaks and W0. The correlation coefficients are
r f it = 0.86 and 0.91 for the low-lying and high-lying states,
respectively.

FIG. 4. The energies of low-lying and high-lying unperturbed
M1 peaks for 124Sn as a function of W0, calculated by using Ti j sets
with tensor force.
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FIG. 5. The energies of low-lying and high-lying unperturbed
M1 peaks for 124Sn are shown as a function of α by fixing β.

Next we demonstrate what happens in the case of EDFs
with tensor terms, i.e., for the Ti j family. The W0 dependence
of the energies of low-lying and high-lying M1 states is shown
for all the parameter sets of the Ti j family in Fig. 4. Here, we
do not see any clear correlation between the energies and the
spin-orbit coupling strength W0, in contrast to Fig. 3. Curi-
ously, even a weak anticorrelation between the energies and
W0 appears in Fig. 4. This is because the spin-orbit splitting
of the like-particle has two contributions, from W0 and the
like-particle spin-orbit density weighted by α in Eq. (7). In
the optimization process, the value W0 is optimized for a given
α value to reproduce the empirical spin-orbit splitting in the
protocol. Because of this cross-talk feature of W0 and α, the
results of the M1 energies do not show any linear dependence
with positive slope on W0.

We have also calculated how the excitation energies of the
unperturbed M1 peaks depend on the strength of the tensor
terms, α or β. We find an anticorrelation between α and the
energies of the low-lying M1 states, as shown in Fig. 5, but
a very weak correlation between the M1 energies and β. The
anticorrelation on α is due to the feature of this like-particle
term, which has an opposite sign with respect to the spin-orbit

FIG. 7. The difference of the centroid energies of the QRPA and
unperturbed response for 124Sn as a function of G0 + G′

0. All sets
of Ti j family members and other Skyrme forces are adopted in the
QRPA calculations. The grey line corresponds to the result of linear
fit.

strength W0, i.e., the larger the value of α the smaller the spin-
orbit splitting is.

C. QRPA correlations and tensor terms

We now study how the QRPA energies correlate with
the tensor terms and also with the main part of the QRPA
residual interactions, which are associated with the Landau
parameters G0 and G′

0. Figures 6(a) and 6(b) shows the
correlations between the low-lying and high-lying M1 states
and the tensor terms α and β, respectively. In panel (a), the
low-lying M1 peaks show a clear anticorrelation with the
value of α, which can be understood because of a smaller
spin-orbit splitting caused by a larger α value, as discussed
in the previous subsection. On the other hand, the correlation
is rather weak for the high-lying states. It might be due to the
strong QRPA correlations for the high-lying states as will be
discussed below. In the right panel, the correlations between
the M1 energies and β value is very modest, showing a small
anticorrelation effect.

In Fig. 7, we study the correlation between the sum of the
Landau parameters G0 + G′

0 and the difference of centroid en-
ergies of QRPA and unperturbed strengths, where the centroid

FIG. 6. The QRPA energies of low-lying and high-lying M1 peaks for 124Sn as a function of α for each fixed β (figure (a)), and as a
function of β for each fixed α (b). The theoretical values are calculated by using the Ti j parameter sets with tensor force.
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energy is defined by the ratio of the energy-weighted sum rule
m1 to the non-energy-weighted sum rule m0. (m1/m0)QRPA

and (m1/m0)UNP in the figure are the calculated centroid en-
ergies of QRPA and unperturbed strengths, respectively. We
can see a clear linear correlation between the sum of Landau
parameters and the centroid energies. This correlation can be
understood within a simple two levels model in the following.

In the QRPA response, there are two main unperturbed
configurations in 124Sn: the proton configuration 1g9/2 →
1g7/2 and the neutron one 1h11/2 → 1h9/2, as already men-
tioned in the previous subsection. The energy of the
proton (neutron) two-quasiparticle configuration can be rep-
resented as εp(εn). The QRPA matrix is, then, schematically
expressed as (

εp + v0 v1

v1 εn + v0

)
,

where v0 = G0 + G′
0 is the pp or nn interaction while v1 =

G0 − G′
0 is the pn interaction. We remind that G0 and G′

0
represent the Landau parameters in the spin channel �σ1 · �σ2

and spin-isospin channel (�σ1 · �σ2)(�τ1 · �τ2), respectively. If we
diagonalize the matrix, the two eigenvalues can be written as

h̄ω1 = εp + εn

2
+ v0 −

√
(εp + εn)2 + 4v2

1

2
,

h̄ω2 = εp + εn

2
+ v0 +

√
(εp + εn)2 + 4v2

1

2
.

On the other hand, according to the definition of the centroid
energy (

m1

m0

)
QRPA

= 1

2
(h̄ω1 + h̄ω2),

(
m1

m0

)
UNP

= 1

2
(εp + εn).

Therefore, there is a correlation expressed by(
m1

m0

)
QRPA

−
(

m1

m0

)
UNP

= G0 + G′
0.

This positive correlation is clearly demonstrated in Fig. 7.
We will now compare the calculated M1 strength distribu-

tions of 124Sn with the experimental data obtained by (p, p′)
scattering in Ref. [32]. The QRPA strength distributions of
124Sn calculated by using several Ti j and other Skyrme EDFs
are shown in Fig. 2. In Fig. 2(a)–2(d), the Ti j EDFs are em-
ployed: (a) changing α for a fixed value β = −60 MeV fm5;
(b) changing β for a fixed value α = −60 MeV fm5; (c) in
the case α = β = (−60, 60, 180) MeV fm5, corresponding
to i = j = (1, 3, 5); (d) in the cases α �= β that are not shown
in (a)–(c), including T24, T42, T35, T53, T46, and T64, ex-
cept T11. Figures 2(e) and 2(f) correspond instead to the case
of commonly used Skyrme EDFs without the tensor terms,
except SLy5 which has the tensor terms.

As expected from Fig. 6(a), the peak position of the M1
strength becomes lower for larger α. The same trend can be
seen also in Fig. 6(b) when varying the value of β, while the
change of peak energy is rather modest. One can find the same

TABLE I. Parameters of the tensor terms and J terms in units of
MeV fm5.

T U α β αC βC αT βT

SLy5 888.0 −408.0 −89.8 51.1 80.2 −48.9 −170.0 100.0
T11 258.9 −342.8 −60.0 −60.0 82.8 −42.5 −142.8 −17.5
T15 −500.9 173.3 180.0 −60.0 107.8 8.3 72.2 −68.3

trend also in Figs. 2(a) and 2(b), i.e., the larger tensor terms
give lower peak energies. In Figs. 2(e) and 2(f), the results
depend on both the Landau parameters and the spin-orbit
coupling W0.

Eventually, from Fig. 2, it is found that the sets T11 and
SLy5 with tensor force give better description of the strength
distribution in 124Sn compared to the other parameter sets, in
terms of the peak height and the peak position. Because of
this reason, in the following, the T11 and SLy5 Skyrme EDFs
with and without tensor terms [36,40,69] will be studied in
more detail. Table I displays the values of T , U , α, β, αC , βC ,
αT , and βT in Eqs. (7), (9), and (10) for the Skyrme parameter
sets T11 and SLy5. It is found that the values of α of the two
parameter sets are negative. α can be positive in some Ti j sets,
by definition, from Eq. (12). As a counter example to T11 and
SLy5, the T15 parameter set is also chosen in the following
calculations for M1 states.

D. M1 of 112–120,124Sn

As discussed in the Introduction, the RPA or QRPA with
Skyrme interactions has been used for many years in the
description of M1 resonance in finite nuclei. Previously, we
have systematically studied the effect of tensor terms on the
magnetic dipole resonances in 48Ca and 208Pb with various
Skyrme interactions [45,46]. Recently, the strength distribu-
tions of magnetic dipole resonances in even-even 112–120,124Sn
isotopes have been measured at RCNP [31,32]. This work
extends our study to the magnetic dipole resonances in Sn
isotopes using the QRPA approach with the SLy5 and T11
parameter sets. In Figs. 8 and 9, the M1 strength distributions
of 112–120,124Sn are shown, respectively. The results with and
without tensor interaction are both compared with the avail-
able experimental data [31,32].

From the figures, basically, one can find that the calculated
response functions with and without tensor force in 112–120Sn
both display three resonance peaks, namely, the low-lying
M1 pygmy state, the M1 main peak, and the one appear-
ing at higher energy. The three states are mainly formed by
the neutron ν2d5/2 → ν2d3/2, proton π1g9/2 → π1g7/2, and
neutron ν1h11/2 → ν1h9/2 configurations, respectively. For
112–116Sn, M1 main peaks with a shoulder are found. The state
that forms the shoulder comes from the neutron ν1g9/2 →
ν1g7/2 configuration, and its strength is reduced and disap-
pears in 118Sn because the occupation probability of neutron
state ν1g7/2 is becoming larger and the transition probabil-
ity of neutron ν1g9/2 → ν1g7/2 configuration is becoming
smaller with increasing mass number. The magnetic dipole
strength distribution of 124Sn displays the strong M1 peak aris-
ing from the proton π1g9/2 → π1g7/2 configuration and the
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FIG. 8. The QRPA strength distributions of 112–120,124Sn, calculated by using the SLy5 Skyrme interaction. The results with and without
tensor terms are both shown, and compared with the experimental data [31,32]. Calculated strengths are convoluted by a Lorentzian shape with
a width of 2.0 MeV.

higher energy state based on the neutron ν1h11/2 → ν1h9/2

configuration, while the pygmy state in the low energy region
is not evident.

As for the experimental results shown in the figures, the
current researches [31,32] on 112–120,124Sn have only provided
the magnetic dipole strength distributions between 6.0 MeV
and 12.0 MeV for all studied nuclei. Our calculations reveal
some pygmy strengths emerging below 6.0 MeV in 112–120Sn,
which mainly arise from the neutron configuration ν2d5/2 →
ν2d3/2. It is seen that the strengths of these pygmy states
become weaker with increasing mass number. This is because
the occupation probabilities of neutron states ν2d3/2 in these
nuclei are becoming larger, and the transition probabilities be-
tween ν2d5/2 and ν2d3/2 are reduced along the Sn isotopes. As
expected, the positions of the predicted pygmy peaks depend
on the energy splittings of the two spin-orbit partners. In the

Skyrme HF-BCS calculation, the spin-orbit potential Us.o. has
the dominant contributions from the spin-orbit strength W0

as well as the spin-orbit densities J weighted by the tensor
parameters αT and βT , as shown in Eqs. (7) and (10). SLy5
and T11 interactions with tensor terms had been successfully
applied to predict the spin-orbit splittings of finite nuclei. For
example, in Refs. [36,81], it is shown that SLy5 interaction
with tensor terms can fairly well explain the isospin depen-
dence of energy differences ε(π 1h11/2) − ε(π 1g7/2) along
Sn isotopes, and ε(ν 1i13/2) − ε(ν 1h9/2) along N = 82 iso-
tones, as well as ε(π 2s1/2) − ε(π 1d3/2) along Ca isotopes.
Furthermore, the 1 f spin-orbit splittings in 40,48Ca calculated
by T11 show reasonable agreement with the measurements
as mentioned in Ref. [82]. From these good features of the
spin-orbit splittings, we expect that SLy5 and T11 EDFs with
tensor terms can give reasonable predictions of the spin-orbit
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FIG. 9. The same as Fig. 8, but calculated with T11.

splittings of neutron states 2d5/2 and 2d3/2 in Sn isotopes. It
would be quite interesting if these pygmy distributions could
be further confirmed by the experiments in the future.

E. Effect of tensor force on M1 of 112Sn and 124Sn

Although the experimental results have large error bars at
high energy, and in a few cases (the lighter 112–114Sn isotopes)
the main peaks do not emerge clearly, still it is clear from
Figs. 8 and 9 that the results calculated by SLy5 and T11
with tensor can give a better description of the experimental
strength distributions of 112–120,124Sn as compared to the re-
sults without the tensor force. To understand how the tensor
force changes the strength distribution, we will take 112Sn
and 124Sn as an example to show the mechanism. The effects
of tensor force on the Hartree-Fock and QRPA peaks have
been discussed in Refs. [45,46], and we will follow the same
method in present analysis. The effect of tensor force on

QRPA states can be estimated by the following formula where

EQRPA represents the difference between the QRPA results
with and without tensor force


EQRPA ≈ 
EHF + 〈Vtensor〉. (13)

The first term in the right describes the change in the HF
peak(s), and the second term is the average of the effect
from the residual tensor interaction in QRPA calculation. The
calculated Hartree-Fock and QRPA M1 strength distributions
of 112Sn and 124Sn obtained by using the SLy5 and T11
parameter sets with and without tensor force are shown in
Figs. 10 and 11, respectively. The corresponding numerical
data are shown in detail in Tables II and III. For the Hartree-
Fock strengths of 112Sn shown in Fig. 10(a), the results are
obtained using the SLy5 interaction with and without tensor
force. The unperturbed state associated with the configuration
π1g9/2 → π1g7/2 is pushed upward from 6.57 MeV to 8.18
MeV when the tensor force is included in the calculation.
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FIG. 10. The M1 Hartree-Fock and QRPA strength distributions of 112Sn obtained using the SLy5 and T11 parameter sets in the cases with
and without tensor force.

FIG. 11. The M1 Hartree-Fock and QRPA strength distributions of 124Sn obtained using theSLy5 and T11 parameter sets in the cases with
and without tensor force.
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TABLE II. The Hartree-Fock and QRPA energies, the two-quasiparticle configurations which give the main contribution to the excited
state, and X 2

ν − Y 2
ν (only for QRPA state). The results are calculated for 112Sn with SLy5 and T11 interactions with and without tensor force.

without tensor with tensor

force Hartree-Fock QRPA Hartree-Fock QRPA

SLy5 Eν config. Eν config. X 2
ν -Y 2

ν Eν config. Eν config. X 2
ν -Y 2

ν

3.70
(
2d 5

2
2d−1

3
2

)ν
4.15

(
2d 5

2
2d−1

3
2

)ν
99.1 4.37

(
2d 5

2
2d−1

3
2

)ν
4.19

(
2d 5

2
1g−1

7
2

)ν
62.0

(2d 5
2
2d−1

3
2

)ν 36.2

6.57
(
1g 9

2
1g−1

7
2

)π
8.51

(
1g 9

2
1g−1

7
2

)π
99.5 8.18

(
1g 9

2
1g−1

7
2

)π
4.84

(
2d 5

2
1g−1

7
2

)ν
37.2(

2d 5
2
2d−1

3
2

)ν
59.8

9.42
(
1g 9

2
1g−1

7
2

)ν
10.25

(
1g 9

2
1g−1

7
2

)ν
99.0 9.74

(
1g 9

2
1g−1

7
2

)ν
9.31

(
1g 9

2
1g−1

7
2

)π
78.4(

1g 9
2
1g−1

7
2

)ν
15.7

T11 Eν config. Eν config. X 2
ν -Y 2

ν Eν config. Eν config. X 2
ν -Y 2

ν

3.75
(
2d 5

2
2d−1

3
2

)ν
4.15

(
2d 5

2
2d−1

3
2

)ν
98.8 4.14

(
2d 5

2
2d−1

3
2

)ν
4.34

(
2d 5

2
1g−1

7
2

)ν
53.4(

2d 5
2
2d−1

3
2

)ν
46.2

5.01
(
1g 9

2
1g−1

7
2

)π
6.95

(
1g 9

2
1g−1

7
2

)π
99.6 7.76

(
1g 9

2
1g−1

7
2

)π
4.78

(
2d 5

2
1g−1

7
2

)ν
46.3(

2d 5
2
2d−1

3
2

)ν
52.0

8.78
(
1g 9

2
1g−1

7
2

)ν
9.41

(
1g 9

2
1g−1

7
2

)ν
99.5 9.81

(
1g 9

2
1g−1

7
2

)ν
9.43

(
1g 9

2
1g−1

7
2

)π
96.6

10.67
(
1g 9

2
1g−1

7
2

)ν
97.2

Similarly, the tensor force moves the low-lying state related to
ν2d5/2 → ν2d3/2 configuration from 3.70 MeV to 4.37 MeV.
For the higher energy state arising from ν1g9/2 → ν1g7/2

configuration, its energy is slightly shifted upward from 9.42
MeV to 9.74 MeV. This means that the spin-orbit splittings
of partner levels are enlarged when the tensor force is in-
volved, with this choice of parameters. In fact, it should
be noticed by looking at Eq. (7) that the negative value of
U (αT ) is essential to enlarge the spin-orbit splitting, and pro-
duces a better agreement with the experimental data as a net
result.

The effect of tensor force on the QRPA strengths based on
SLy5 interaction is shown in Fig. 10(b). Without including
the tensor interaction, the main M1 resonance state coming
from the proton configuration 1g9/2 → 1g7/2 lies at 8.51 MeV,
and the low-lying state formed from the neutron configuration
2d5/2 → 2d3/2 appears at 4.15 MeV. When the tensor force is
taken into account, the M1 main resonance peak is pushed
up to 9.31 MeV, being this peak mainly composed of the
proton π1g9/2 → π1g7/2 configuration with an admixture of
the neutron ν1g9/2 → ν1g7/2 configuration. As for the low-
lying QRPA states, there are two states located at energies

TABLE III. The Hartree-Fock and QRPA energies, the two-quasiparticle configurations which gives the main contribution to the excited
state, and X 2

ν − Y 2
ν (only for QRPA state). The results are calculated for 124Sn with SLy5 and T11 interactions with and without tensor force.

without tensor with tensor

force Hartree-Fock QRPA Hartree-Fock QRPA

SLy5 Eν config. Eν config. X 2
ν -Y 2

ν Eν config. Eν config. X 2
ν -Y 2

ν

6.06
(
1g 9

2
1g−1

7
2

)π
7.95

(
1g 9

2
1g−1

7
2

)π
99.5 7.63

(
1g 9

2
1g−1

7
2

)π
8.85

(
1g 9

2
1g−1

7
2

)π
92.2

10.63
(
1h 11

2
1h−1

9
2

)ν
11.35

(
1h 11

2
1h−1

9
2

)ν
97.9 11.02

(
1h 11

2
1h−1

9
2

)ν
11.61

(
1h 11

2
1h−1

9
2

)ν
92.2

T11 Eν config. Eν config. X 2
ν -Y 2

ν Eν config. Eν config. X 2
ν -Y 2

ν

4.68
(
1g 9

2
1g−1

7
2

)π
6.56

(
1g 9

2
1g−1

7
2

)π
99.7 7.05

(
1g 9

2
1g−1

7
2

)π
8.72

(
1g 9

2
1g−1

7
2

)π
96.8

9.37
(
1h 11

2
1h−1

9
2

)ν
10.05

(
1h 11

2
1h−1

9
2

)ν
99.3 10.77

(
1h 11

2
1h−1

9
2

)ν
11.41

(
1h 11

2
1h−1

9
2

)ν
96.1

014321-11



SHUAI SUN et al. PHYSICAL REVIEW C 109, 014321 (2024)

4.19 MeV and 4.84 MeV, which are formed by the neutron
configurations 2d5/2 → 1g7/2 and 2d5/2 → 2d3/2, where each
configuration gives different contribution to the QRPA states
as shown in Table II.

From Table II, one can extract that 
EQRPA is 0.80 MeV
and 
EHF equals to 1.61 MeV for the M1 main peak of 112Sn
with the SLy5 interaction. Therefore, this leads to 〈Vtensor〉 =
−0.81 MeV. Since the low-lying state is separated into two
states when the tensor force is included, we use the average
value as the QRPA result, that is, 4.52 MeV. 
EQRPA is about
0.37 MeV and 
EHF is equal to 0.67 MeV for the low-lying
state, so that the value of 〈Vtensor〉 is extracted to be −0.30
MeV. The extracted values of 〈Vtensor〉 disclose that the tensor
force is attractive. This is consistent with the conclusion in
Ref. [45].

For the results of 112Sn with the T11 interaction, both the
Hartree-Fock and QRPA strengths are pushed upward when
the tensor force is included in the calculations, as shown
in Fig. 10(c) and 10(d). From Table II, one can obtain that
the unperturbed states associated with the ν2d5/2 → ν2d3/2,
π1g9/2 → π1g7/2, and ν1g9/2 → ν1g7/2 configurations move
upward by 0.39, 2.75, and 1.03 MeV, respectively, as an effect
of the tensor force. In the QRPA strengths, the energy changes
of the low-lying, main M1, and higher energy states are 0.41,
2.48, and 1.26 MeV with the tensor force, respectively. Using
Eq. (13), we can extract that 〈Vtensor〉 = 0.02, −0.27, and 0.23
MeV, respectively. One can see that, in comparison with the
results of SLy5 interaction, the residual tensor force of T11
interaction shows attraction for main peak but repulsion for
the low-lying and high-lying states.

We now analyze the results of 124Sn obtained using SLy5
and T11, with and without tensor force. At variance with
the case of 112Sn, there are only two Hartree-Fock or QRPA
states shown in Fig. 11 and Table III: one low-lying and
one high-lying state, which are formed mainly from the pro-
ton π1g9/2 → π1g7/2 configuration and neutron ν1h11/2 →
ν1h9/2 configuration, respectively. In the unperturbed strength
obtained by SLy5 without the tensor force in Fig. 11(a),
the low-lying unperturbed state lies at 6.06 MeV, while the
high-lying state is at 10.63 MeV. As mentioned previously,
when the tensor force is included, the spin-orbit splittings
are enlarged, and the corresponding states are pushed upward
to 7.63 and 11.02 MeV, respectively. For the QRPA states
without the tensor force in Fig. 11(b), one can find that the
low-lying state is located at 7.95 MeV while the high energy
state is at 11.35 MeV, and they are pushed upward to 8.85 and
11.61 MeV by the tensor, respectively. According to Eq. (13)
and Table III, the extracted values of 〈Vtensor〉 for low-lying
and high-lying states are −0.67 and −0.13 MeV, respectively.
These results also reveal that the residual tensor force as-
sociated with the SLy5 set provides attractive contributions.
In the case of the T11 interaction, the results obtained with
and without tensor force are shown in Fig. 11(c) and 11(d)
and Table III. Because the tensor force enlarges the spin-orbit
splittings also in the case of the T11 interaction, the calculated

EHF of the unperturbed low-lying and high-lying states are
2.37 and 1.40 MeV, respectively. For the QRPA strengths,
the values of 
EQRPA for the two states are about 2.16 and
1.36 MeV. So, the contributions of the residual tensor force in

Eq. (13) for the low-lying and high-lying states are extracted
to be −0.21 and −0.04 MeV. Similar to the situation in 112Sn,
the residual tensor force of T11 interaction for 124Sn shows
weak attraction in the QRPA calculation.

In summary, SLy5 and T11 interactions with tensor force
provide reasonable description of the experimental magnetic
dipole data in 112–120,124Sn in comparisons with other Ti j
members and also the cases without tensor force. In other
terms, we have checked that other forces, like those without
tensor terms and the other Ti j sets, are less good when com-
pared with experimental data. This is shown in Fig. 2 (cf. also
the discussion). By looking at Table I, one can easily see that
these results strongly suggest negative values of α, whereas no
clear constraint emerges for β. We remind that α is associated
with the tensor interaction between like-particle, while β is
associated with the tensor interaction between protons and
neutrons.

There are indeed other parameter sets with positive αT , like
the T15 interaction shown in Table I, which give an opposite
effect on the M1 resonance. We take 112Sn and 124Sn as an
example to explore the role of tensor force with the T15
interaction. Figures 12(a) and 12(b) show the Hartree-Fock
and QRPA strength distributions of 112Sn, while Fig. 12(c)
and 12(d) do the same for the Hartree-Fock and QRPA
strength distributions of 124Sn. As shown in Fig. 12(a), the
M1 main peak in 112Sn coming from the proton configuration
π1g9/2 → π1g7/2 has a clear downward shift, 
EHF = −0.43
MeV, with the tensor interaction. This could be understood as
follows: in the proton states in the Z = 50 core, only the 1g9/2

orbital gives positive contribution to the spin density Jp > 0
[36]. On the other hand, the neutron states 1g9/2, 2d5/2, 1g7/2,
2d3/2, 3s1/2, and 1h11/2 are partially occupied, and the neutron
spin density Jn is positive but smaller than Jp. According to
Eqs. (7) and (10), and together with the values of αT and βT

of T15 (shown in Table I), the tensor force provides a positive
contribution to the proton spin − orbit potential U (p)

s.o. , which
makes U (p)

s.o. weaker. As a result, the spin-orbit splittings of pro-
ton states are reduced, so one gets negative 
EHF. This leads
to the downward shift of the main peak. In the QRPA case,
based on Eq. (13) and Table IV, we can extract that 
EQRPA

is about −0.98 MeV, so the contribution of the residual tensor
force 〈Vtensor〉 is equal to −0.55 MeV. A similar pattern is also
seen in the case of 124Sn with the T15 interaction. The shift
of the M1 main state in the Hartree-Fock response is −0.41
MeV, while 
EQRPA and 〈Vtensor〉 are −0.96 and −0.55 MeV,
respectively.

F. Quenching factor

Finally, we will discuss the quenching problem for M1
resonances. Table V shows the experimental total transition
strengths [32], the calculated total QRPA transition strengths
and corresponding quenching factors for 112–120,124Sn iso-
topes. The results are calculated by using the Skyrme
interactions SLy5 and T11 with and without tensor force. The
values in the parentheses are obtained in the case of without
tensor force. On the one hand, as shown in Table V, the
calculated total QRPA transition strengths

∑
Bth.

M1 with and
without tensor both overestimate the experimental data. On
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FIG. 12. The M1 Hartree-Fock and QRPA strength distributions of 112Sn and 124Sn obtained using the T15 parameter set in the cases with
and without tensor force.

the other hand, although the SLy5 and T11 interactions with
tensor force can describe well the strength distributions of M1
resonances for all nuclei, the summed transition probabilities
obtained by SLy5 and T11 interactions deviate from the ex-
perimental data even when the tensor terms are included.

The total M1 transition strengths predicted by QRPA are
in general larger than experimental data when the free values
of the g factors are used. Therefore the free values are often
modified by taking implicity into account many-body effects,
mesonic currents, and 
-hole excitations, to obtain better

TABLE IV. The Hartree-Fock and QRPA energies, the two-quasiparticle configurations which gives the main contribution to the excited
state, and X 2

ν − Y 2
ν (only for QRPA state). The results are calculated for 112Sn and 124Sn with T15 interaction with and without tensor force.

without tensor with tensor

Hartree-Fock QRPA Hartree-Fock QRPA

112Sn Eν config. Eν config. X 2
ν -Y 2

ν Eν config. Eν config. X 2
ν -Y 2

ν

3.63
(
2d 5

2
2d−1

3
2

)ν
4.10

(
2d 5

2
2d−1

3
2

)ν
99.3 3.54

(
2d 5

2
2d−1

3
2

)ν
3.44

(
2d 5

2
1g−1

7
2

)ν
68.6(

2d 5
2
2d−1

3
2

)ν
29.7

6.24
(
1g 9

2
1g−1

7
2

)π
8.17

(
1g 9

2
1g−1

7
2

)π
99.7 5.81

(
1g 9

2
1g−1

7
2

)π
3.78

(
2d 5

2
1g−1

7
2

)ν
30.3(

2d 5
2
2d−1

3
2

)ν
67.0

9.25
(
1g 9

2
1g−1

7
2

)ν
10.01

(
1g 9

2
1g−1

7
2

)ν
99.1 9.39

(
1g 9

2
1g−1

7
2

)ν
7.19

(
1g 9

2
1g−1

7
2

)π
97.9

9.93
(
1g 9

2
1g−1

7
2

)ν
98.5

124Sn Eν config. Eν config. X 2
ν -Y 2

ν Eν config. Eν config. X 2
ν -Y 2

ν

5.79
(
1g 9

2
1g−1

7
2

)π
7.68

(
1g 9

2
1g−1

7
2

)π
99.7 5.38

(
1g 9

2
1g−1

7
2

)π
6.72

(
1g 9

2
1g−1

7
2

)π
96.5

10.38
(
1h 11

2
1h−1

9
2

)ν
11.11

(
1h 11

2
1h−1

9
2

)ν
98.5 10.53

(
1h 11

2
1h−1

9
2

)ν
10.95

(
1h 11

2
1h−1

9
2

)ν
97.8
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TABLE V. The total QRPA transition strengths
∑

Bth.
M1 in μ2

N for the Sn isotopes, calculated by using the Skyrme interactions SLy5 and T11
with and without tensor force. The values in the parentheses are obtained in the case of without tensor terms. The calculations are performed
in the energy regions which are consistent with the experimental data in Table V of Ref. [32]. The experimental

∑
Bexp.

M1 from Ref. [32] are
also shown for comparison. The quenching factors geff/gfree for M1 resonances in each case are displayed. The calculated quenching factors
are also compared to the values of the RQRPA model in Ref. [21].

112Sn 114Sn 116Sn 118Sn 120Sn 124Sn

Exp. 14.7 ±1.4 19.6 ±1.9 15.6 ±1.3 18.4 ±2.4 15.4 ± 1.4 19.1 ±1.7∑
Bth.

M1 SLy5 27.76(26.84) 24.84(24.58) 23.07(22.78) 22.60(20.42) 25.35(20.36) 25.85(27.41)

T11 28.86(24.58) 26.11(22.81) 23.94(21.44) 22.37(20.46) 25.88(22.60) 21.88(26.50)

geff/gfree SLy5 0.73(0.74) 0.89(0.89) 0.82(0.83) 0.90(0.95) 0.78(0.87) 0.86(0.83)

T11 0.71(0.77) 0.87(0.93) 0.81(0.85) 0.91(0.95) 0.77(0.83) 0.93(0.85)

RQRPA 0.80 0.93 0.83 0.89 0.81 0.86

description of the experimental data (details can be found in
Ref. [83]). The empirical quenching factor is defined by

q =
√∑

Bexp.
M1

/∑
Bth.

M1, (14)

where
∑

Bexp.
M1 (

∑
Bth.

M1) is the total experimental (theoreti-
cal) transition strength. The extracted quenching factors are
about 0.73–0.90 (0.74–0.95) for SLy5 with (without) the
tensor terms. Similar values of quenching factors are ob-
tained for T11 with (without) tensor force, and are 0.71–0.93
(0.77–0.95). In Ref. [21], the B(M1) strengths of 112–120,124Sn
isotopes were obtained in the framework of relativistic QRPA
(RQRPA), and compared with the experimental data. The
authors of that work also claimed that quenching factors were
needed to reproduce the data. The calculated quenching fac-
tors from relativistic EDFs are also listed in Table V and their
values, around 0.80–0.93, are similar to those found in our
work.

IV. SUMMARY AND PERSPECTIVES

In this paper, we have investigated the magnetic dipole
resonances of the even-even 112–120,124Sn isotopes, in the
framework of the self-consistent Skyrme HF + BCS plus
QRPA method. The Skyrme SLy5 and T11 interactions with
and without tensor terms are used in the present calculations
with a mixed type pairing interaction.

We have also checked other Skyrme sets and we have con-
cluded that the SLy5 and T11 Skyrme interactions, with the
tensor terms included, can give a better description of the ex-
perimental M1 strength distributions of 112–120,124Sn [31,32],
as compared with others. Taking 112Sn and 124Sn as examples,
we have studied the role of tensor force in Hartree-Fock and
QRPA response in detail. It is found that magnetic dipole res-
onances of 112–120,124Sn are sensitive to the tensor parameter
αT . A negative αT leads to reproducing the experimental data.
On the other hand, a tensor force with positive αT , like that
of the T15 interaction, gives an opposite contributions to the
excitation energies of M1 resonances (compared to the case
of SLy5 and T11), and the agreement with the experimental
data is poorer. This conclusion is not in conflict with that of
previous works [33], in which the tensor coupling constant

β is well constrained by the Gamow-Teller and spin-dipole
states, while the coupling constant α has a large ambiguity.
In fact, the present study of M1 strength provides a compli-
mentary constrain on the tensor coupling, the α value is rather
well determined, but not the β value. Thus, we definitely need
more observables to constrain the tensor terms.

The quenching problem is also discussed in the present
work. In our calculations with the tensor terms in the EDFs,
we find that a quenching factor of about 0.71–0.93 is needed
to reproduce the total experimental transition probabilities for
the nuclei we have studied. Without the tensor term, we need
quenching factors of more or less similar magnitude.

The calculated results show that low-lying magnetic dipole
strength appears in the energy region below 6.0 MeV. It
is mainly coming from the neutron configuration ν2d5/2 →
ν2d3/2. However, no clear evidence of low energy M1 strength
has been found so far in experiments. It would be highly
desirable to have further experimental investigations of the
M1 strength. On the one hand, we would like to confirm or
disprove our prediction regarding the low-lying M1 strength
below 6.0 MeV. On the other hand, there is still some
discrepancy between the theoretical results and the exper-
imental results, while the experimental results have some
non-negligible error bars at higher energy than 10 MeV. Ad-
ditional efforts should be envisioned in the future, both on
the experimental side and theoretical side. Eventually, it may
reveal necessary to further improve the Skyrme energy density
functional in the spin-isospin channel.

In Ref. [21], the evolution of magnetic dipole strength of
Sn isotopes had been studied in the RQRPA model. The quasi-
particle configurations of M1 states are essentially the same
as those of our calculations; they are mainly the proton con-
figuration π1g9/2 → π1g7/2 and the neutron configurations
ν2d5/2 → ν2d3/2, ν1g9/2 → ν1g7/2, and ν1h11/2 → ν1h9/2.
The importance of neutron configurations depends on whether
the spin-orbit partners are fully occupied or not. The energy
dependence of the RQRPA strength is similar to ours, but the
energy location of the main M1 peak is different because of
the different nuclear EDFs adopted. The RQRPA also pre-
dicted low-energy M1 strengths below 6.0 MeV in 112,116Sn
(see Fig. 2 of Ref. [21]), but the strengths are relatively small,
which may be due to different occupation probabilities of the
orbitals involved in the pygmy states, in the RQRPA calcula-
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tion of those nuclei. In Table II of Ref. [21], the total RQRPA
transition strengths for M1 excitations in 112–120,124Sn were
compared with the experimental data from inelastic proton
scattering in Ref. [32]. It has been shown that the calculated
values are larger than the experimental data, and in order to
reproduce the experimental data, quenching factors of about
0.80–0.93 are needed in RQRPA. These quenching factors are
similar to the extracted ones in our case, as shown in Table V.

We should clarify the role of the correlations of beyond
mean field. The HF + RPA model has been a very successful
model to describe collective states such as low-lying collective
states and giant resonances, not only in spherical nuclei but
also in deformed nuclei. The width of Gamow-Teller (GT) res-
onances, and the missing GT strength, cannot be accounted for
by the standard mean-field models and the description of these
features is much improved by models beyond mean-field like
second RPA or particle-vibration coupling models [84–86].

The shift of the excitation energies induced by models beyond
mean-field is not completely negligible but less important at
the level we discuss in this work. Moreover, the importance of
the tensor force was recognized in the splittings of spin-dipole
(SD) excitations, already at the RPA level [44]. Therefore, as
is done in the present study, the effect of tensor force on the
excitation energy of M1 state can be discussed at the QRPA
level in a solid manner.
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