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The five dimensional collective Hamiltonian (5DCH) implemented with Gogny force has been employed in
systematic calculations of electric monopole (E0) transitions in even-even nuclei with masses 30 < A < 310.
Significant improvements in the comparison between experimental data and calculations are achieved using (i)
stronger collective masses than those inferred from the Inglis-Beliaev approximation and (ii) the E0 transition
operator as defined by Church and Weneser [E. L. Church and J. Weneser, Phys. Rev. 103, 1035 (1956)].
Main emphasis has been placed on the square of the E0 transition strength, ρ2(E0; 0+

2 → 0+
1 ), for transitions

between the first 0+ excited state and ground state levels. The dimensionless parameter X (E0/E2) has also
been considered in 5DCH calculations covering the rare earth and actinide regions where sparse data are
available. Finally, the quasiparticle random-phase approximation (QRPA) implemented with Gogny force has
been considered as a complementary model for the interpretation of ρ2(E0; 0+

i → 0+
1 ), i �= 2, data available

for 166Er and 238U. The 5DCH model provides a reasonable description of collective E0 transitions, but fails
otherwise. Specific shell effects are not considered in the present modeling. Global improvements in ρ2(E0)
and X (E0/E2) predictions would be achieved by implementing the energy density functional with quasiparticle
components.

DOI: 10.1103/PhysRevC.109.014320

I. INTRODUCTION

The nature of the first excited 0+ state of even-even nuclei
spread over the periodic table has remained a topic of vivid
interest in nuclear structure physics. These 0+ excited states
display structure properties which so far have escaped full
understanding. The reason is that low-lying 0+ levels may be
formed in many different ways.

Among the models proposed to describe the structure of
the excited 0+ states, that proposed several decades ago by
Bohr and Mottelson [1] rests on the picture of quadrupole
shape vibration taking place along the nuclear symmetry axis
in deformed nuclei. The concept of β vibration associated
with 0+

2 levels was thus highlighted. The validity of this model
has essentially been challenged in the rare-earth region. It
has been shown that 0+

2 excited states generally are not β

vibrations [2].
Progress in the understanding of 0+

2 states and related
electric monopole E0(0+

2 → 0+
1 ) transitions was achieved

based on the interacting boson model (IBA) [3]. For exam-
ple, it was shown using IBA calculations that sharp rises
observed for the ρ2(E0; 0+

2 → 0+
1 ) transition strengths in

the mass regions A ≈ 100 and A ≈ 150 are related to shape
and phase transitions [4]. Shape transition and shape coexis-
tence as well as phase transition pictures are the hallmarks
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of present day understanding of E0(0+
2 → 0+

1 ) transitions
and related phenomena [5–8]. The present work provides a
systematic comparison between experimental data available
for ρ2(E0; 0+

2 → 0+
1 ) transition strengths in even-even nu-

clei, and five-dimensional collective quadrupole Hamiltonian
(5DCH) calculations based on the Gogny force. The calcu-
lated ρ2(E0) values reported in [9] are generally too strong,
as pointed out in [10] and [11]. Modeling has been improved
following prescriptions and methods outlined below.

The paper is organized as follows. Sec. II first includes a
reminder of 5DCH formalism. Next we outline a method [12]
which takes into account symmetry properties of the Bohr
Hamiltonian [13] to build the 5DCH kinetic tensor. As a con-
sequence, vibrational mass parameters get stronger than those
inferred from the Inglis-Beliaev (IB) approximation and are
considered here as “renormalized.” Finally, the Church and
Weneser (CW) E0 transition operator is introduced [14]. Sen-
sitivity calculations are discussed in Sec. III. These include
comparisons between predictions based on (i) D1S [15] and
D1M [16] Gogny forces, (ii) IB and renormalized collective
masses, and (iii) CW and standard (S) prescriptions for the E0
transition operator. Once the best strategy is adopted, system-
atic investigations of ρ2(E0; 0+

2 → 0+
1 ) values are performed

from neutron number N running from drip line to drip line and
for nuclei with proton numbers 10 � Z � 100. This leads to
the identification of regions where ρ2(E0; 0+

2 → 0+
1 ) values

calculated over (Z, N ) display a maximum. Sections IV and V
are devoted to systematic analyses of ρ2(E0) and X (E0/E2)
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data, respectively. In Sec. VI we discuss the E0 decay prop-
erties of the 0+

2 and 0+
3 levels in 238U. This study has been

an opportunity to combine 5DCH and quasiparticle random
phase approximation (QRPA) approaches. Section VII is de-
voted to ρ2(E0) properties of the 0+

2 → 0+
1 , 0+

3 → 0+
1 ,

and 0+
4 → 0+

1 transitions in 166Er using both microscopic
methods. E2 transitions are discussed too in the context of the
5DCH model, in an attempt to elucidate structure properties
of this Er isotope. Finally, a summary as well as sugges-
tions intended to globally achieve improved ρ2(E0; 0+

2 →
0+

1 ) and X (E0/E2) microscopic model predictions are offered
in Sec. VIII.

II. REMINDER OF THE 5DCH FORMALISM AND
ELECTRIC MONOPOLE TRANSITION

A. 5DCH Hamiltonian

The collective Hamiltonian in five quadrupole coordinates
results from the generator coordinate method treated in the
Gaussian overlap approximation. For details, see Refs. [9,17].
The 5DCH Hamiltonian is written as

Ĥ = − h̄2

2

∑
i j

∂

∂qi

[M−1(q)]i j
∂

∂q j

+ V (q) (1)

with qi = (q0, q2), where q0 and q2 stand for axial and triaxial
deformations, respectively, and with the three Euler angles.
M−1(q) and V (q) are the tensor of inertia and potential
energy surface corrected for zero-point energy [17]. The col-
lective masses Bi j (q) and moments of inertia Jk (q) entering
the tensor of inertia were initially calculated in the crank-
ing approximation [18,19]. Remarkably the collective masses
and moments of inertia calculated in the Inglis-Beliaev (IB)
approximation fulfill symmetry properties of the collective
Hamiltonian Ĥ on its symmetry axes [13]. These properties
are discussed in [12].

B. Collective masses

It is an important goal of the present work to release the IB
approximation in the determination of collective masses. This
is achieved by taking advantage of the symmetry properties
of the collective Hamiltonian Ĥ , in which the IB moments of
inertia are now replaced by those determined in self-consistent
cranking calculations [9,20]. Such cranking moments of iner-
tia are equivalent to Thouless-Valatin (TV) moments of inertia
[21]. As the TV moments of inertia are stronger than those
based on the IB approximation, it is anticipated that the val-
ues of renormalized collective masses will get stronger. The
process by which renormalized collective masses are built is
explained in [12]. Such stronger collective mass values result-
ing from controlled approximations lead to minor effects on
5DCH predictions for the first 0+ excited state energies (E0+

2 )
calculated in [9]. These (E0+

2 ) energies were systematically
50% high. The renormalized masses (Re) do not modify this
general feature, except for deformed rotational nuclei [12]
where 0+

2 excitation energies get reduced by typically 10%.

C. E0 transitions

According to Church and Weneser [14] the electric
monopole strength, labeled as CW in the following discus-
sions, has the general form

ρ2(E0; 0+
2 → 0+

1 ) =
∣∣∣∣∣ 〈0

+
2 | ∑Z

i=1 (eiri )2|0+
1 〉

R2

∣∣∣∣∣
2

− σ

∣∣∣∣∣ 〈0
+
2 | ∑Z

i=1 (eiri )2|0+
1 〉

R2

∣∣∣∣∣
4

, (2)

where R is an effective radius, R = 1.2A1/3 fm, ri the radius
of the ith proton, and ei the effective charge. In this work
no effective charge is assumed, i.e., ei = 1.0. The numerical
coefficient σ was estimated to take on the value � 0.1 [14].
The actual value we have adopted throughout the calculations
is σ = 0.1. Equation (2) reduces to the well known form

ρ2(E0; 0+
2 → 0+

1 ) =
∣∣∣∣∣ 〈0

+
2 | ∑Z

i=1 (eiri )2|0+
1 〉

R2

∣∣∣∣∣
2

(3)

when σ is assumed to be null, the choice made earlier in [22].
In the following, this form, Eq. (3), is designated as standard
(S).

The dimensionless parameter X (E0/E2) is often taken in
current literature as a measure of E0 transition strength. X is
defined as the ratio between reduced transition probabilities
for monopole (E0) and quadrupole (E2) transitions. Accord-
ing to Rasmussen [23], this ratio is written as

X (E0/E2) = e2R4 ρ2(E0; 0+
2 → 0+

1 )

B(E2; 0+
2 → 2+

1 )
, (4)

where 2+
1 is the first 2+ excited state in a nucleus. The value

e = 1.0 is adopted.

III. SENSITIVITY STUDIES

As the ρ2(E0) values calculated in [9] are known to be
much larger than experiment [10,11], sensitivity calculations
have been performed. These tests are intended to identify
which inputs to 5DCH model are keys for lowering the values
taken by the calculated E0 transition strengths.

A. D1S versus D1M

The first sensitivity tests focused on changing Gogny
force parametrization from D1S [15,24] to D1M [16] in the
calculations. D1M is an effective force that displays an incom-
pressibility modulus K∞ stronger than that of D1S, namely
K∞ = 203 MeV and K∞ = 225 MeV for D1S and D1M,
respectively. The influence of changing force is displayed in
Figs. 1 and 2, showing illustrations for Z = 40 isotopes and
N = 40 isotones, respectively. Panels (a) and (b) in the two
figures are for excitation energies of first 0+ excited states and
for ρ2(E0) values, respectively. Full circles are for experimen-
tal values [25], blue and green symbols are for D1S and D1M
calculations, respectively.

It is seen in Fig. 1(a) that experimental and calculated
values display a maximum at the N = 50 shell closure. As
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FIG. 1. Z = 40 isotopes. (a) Excitation energies (MeV) of first
0+ excited states as functions of neutron number N . (b) Squares
of monopole transition strengths times 1000, 1000ρ2(E0), for the
0+

2 → 0+
1 transition as functions of N . In both panels, red circles are

for experimental data. Blue and green curves are for 5DCH calcula-
tions involving the D1S and D1M forces, respectively. Calculations
are performed using collective masses determined at the level of the
Inglis-Beliaev approximation. The E0 transition operator is that of
Church and Weneser reduced to its first component.

anticipated from 5DCH calculations performed at and in the
vicinity of closed shells, calculated energies are much larger
than experiment for N ≈ 50. The experimental ρ2(E0) values
display a sharp increase at N = 60. In contrast, the ρ2(E0)
values calculated using D1S and D1M forces display a gradual
increase with increasing N values, and show a maximum for
N = 60. This feature displayed by the blue and green curves is
the signature of a nuclear transition from spherical (N = 50)
to deformed (N = 60) shapes, also named the first-order phase
transition [6,7]. In Fig. 1(b) one can also observe colored
curves showing increases with N decreasing below N = 50.
The maximum of ρ2(E0) values takes place for N ≈ 40, that

28 32 36 40 44

Z

0

100

200

300

400

0001
2

)0
E( 

Exp
D1S
D1M

(b)

28 32 36 40 44

Z

0

1

2

3

)
Ve

M( 
E

(a)

N=40 isotones

FIG. 2. N = 40 isotones. (a) Excitation energies (MeV) of first
0+ excited states as functions of charge number Z . (b) Squares
of monopole transition strengths times 1000, 1000ρ2(E0), for the
0+

2 → 0+
1 transition as functions of Z . In both panels, red circles

are for experimental data. Blue and green curves are for 5DCH
calculations involving the D1S and D1M forces, respectively. For
other information see caption of Fig. 1

is for the isotope 80Zr which is strongly deformed [26] and
located near the proton drip line.

Panel (a) in Fig. 2 shows the five 0+ excitation energies for
the N = 40 isotopes [25] as red symbols. The blue and green
symbols are for calculations performed using the D1S and
D1M forces, respectively. The two colored curves are much
higher than experiments for the isotones with proton numbers
Z = 30, 32, and 34. This feature, already discussed in [27],
most likely is related to the fragile nature of the N = 40
subshell closure. Figure 2(b) shows experimental and calcu-
lated ρ2(E0) values. The experimental values (red symbols)
increase gradually with increasing Z , as do the two sets of
calculated values.

On the basis of (i) ρ2(E0) calculated values and com-
parisons with experimental data [28] shown above, and (ii)
similar comparisons performed in higher mass regions, we
conclude that the D1S and D1M forces lead to similar pre-
dictions. However, smaller ρ2(E0) values calculated using
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FIG. 3. Zr isotopes. (a) Excitation energies (MeV) of first 0+

excited states as functions of neutron number N . (b) Squares of
monopole transition strengths times 1000, 1000ρ2(E0), for the
0+

2 → 0+
1 transition as functions of N . In both panels, red circles are

for experimental data. Blue curves are for 5DCH calculations per-
formed involving collective masses determined in the Inglis-Beliaev
approximation, and the E0 transition operator reduced to its first
component. Green triangles in panels (a) and (b) are for 5DCH cal-
culations performed using renormalized collective masses (see main
text) and the E0 transition operator reduced to its first component.
Green triangles in panel (b) are for 5DCH calculations performed
using renormalized collective masses and full E0 transition operator.

D1M seem directly related to the higher stiffness content of
the force. Here, we will perform all the following 5DCH
calculations using only D1S.

B. Evaluation of vibrational mass parameters and E0 operator

We next discuss the way collective masses renormalization
influences the strength of calculated ρ2(E0), assuming either
the standard E0 transition operator, Eq. (3), or the Church
and Weneser E0 operator, Eq. (2). Illustrations are provided
in Figs. 3 and 4 for the Zr isotopes and for N = 82 isotones,

FIG. 4. N = 82 isotones. (a) Excitation energies (MeV) of first
0+ excited states as functions of proton number Z . (b) Squares of
monopole transition strengths times 1000, 1000ρ2(E0; 0+

2 → 0+
1 ),

as functions of Z . In both panels, red circles are for experimental
data. Blue curves are for 5DCH calculations performed involving
collective masses determined in the Inglis-Beliaev approximation
and the E0 transition operator reduced to its first component. Pink
triangles in panels (a) and (b) are for 5DCH calculations performed
using renormalized collective masses (see main text) and the E0
transition operator reduced to its first component. Green triangles are
for renormalized collective masses and full E0 transition operator.

respectively. The figures are organized in a manner similar to
that adopted for Figs. 1 and 2.

Figures 3(a) and 3(b) show experimental data as red circles.
Blue symbols and curves are for 5DCH calculations in which
Inglis-Beliaev (IB) collective masses and the standard E0
transition operator [E0(S)] are involved. Brown symbols and
curves are for renormalized masses (Re) and E0(S) opera-
tor. Finally, green symbols and curves are for renormalized
masses and the Church and Weneser (CW) E0 transition
operator. In Fig. 3(a) we see that renormalized masses are
systematically lowering the excitation energies (E0+

2 ). The
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FIG. 5. Excitation energies (MeV) of first 0+ excited states in
N = 60 and N = 90 isotones are shown in panels (a) and (b), re-
spectively. Experimental values (red circles) and results from 5DCH
calculations (green squares) involving renormalized masses that are
labelled as Masses (Re).

reduction in ρ2(E0) values, see Fig. 3(b), is at a maximum
when using renormalized masses and full E0 transition oper-
ator. Similar 5DCH calculations are shown in Figs. 4(a) and
4(b) for N = 82 isotones. As expected, all the predicted (E0+

2 )
energies stand much higher than measurements at this neutron
shell closure. The red, blue, brown, and green symbols have
the same meaning as in Fig. 3. Again, renormalized masses
and full E0 transition operator lead to maximum reduction in
the predicted ρ2(E0) values. These values are representative
of the average value taken by data, which display large error
bars.

As a final comment on sensitivity studies, data for ex-
citation energies of first excited states (0+

2 ) in N = 60 and
N = 90 isotones are shown as red circles in panels (a) and
(b), respectively, of Fig. 5. For open-shell nuclei, the calcu-
lated 0+

2 values (green squares) based on 5DCH calculations
performed with renormalized masses match rather well the
measurements.

C. (E0+
2 ) energy distribution over Z and N

The 5DCH calculations based on D1S force were per-
formed for (E0+

2 ) energies and ρ2(E0) strengths in even-even

FIG. 6. Energies (MeV) of first 0+ excited states from 5DCH
calculations over proton numbers 10 < Z < 100 and neutron num-
bers N < 220. The color code is for calculated excitation energies.
Panels (a) and (b) are for 5DCH calculations involving Inglis-Beliaev
collective masses and normalized collective masses, respectively.

nuclei with masses spreading from proton to neutron drip line.
Our aim was the identification of minima present in energies
and maxima in ρ2(E0)’s over the (Z, N ) mass region defined
by the proton number 10 � Z � 100.

The predictions obtained for energies are shown in Fig. 6.
Panels (a) and (b) are for calculations conducted assuming
the standard E0 transition operator. Panel (a) is for predic-
tions based on Inglis-Beliaev collective masses, and panel (b)
for calculations performed using renormalized masses. The
two sets of energy predictions are similar. The distribution
of color symbols indicates energy range, from (E0+

2 ) < 1
MeV (dark blue) to (E0+

2 ) > 5 MeV (magenta). The regions
where energies are lowest are predicted for (Z, N ) ≈ (38, 40),
(38, 62), (60, 72), (60, 90), (76, 100), and (96, 134). These
groups in excitation energies more or less coincide with those
in the classification provided in Table VII of [6]. The lowest
calculated energies located in the group (Z, N ) ≈ (60, 72)
were identified previously by the present authors [29] in neu-
tron deficient Nd isotopes. For these isotopes, the calculated
1000ρ2(E0) strengths take on large values in the vicinity of
the neutron drip line.

D. ρ2(E0) strength distribution over Z and N

Figure 7 shows predictions for ρ2(E0) obtained using
the standard E0 transition operator in calculations similar
to those presented in Fig. 6 for energies. Panels (a) and
(b) are for results based on Inglis-Beliaev collective masses
and renormalized masses, respectively. The color symbols
are for strengths ranging from small (blue color) to strong
(red) values. Strong values, with 1000ρ2(E0) > 150, are seen
in several groups, namely for (Z, N ) ≈ (38, 40), (38, 60),
(60, 64), (60, 90), (76, 100), and (96, 148), in panels (a) and
(b). The maxima identified in 1000ρ2(E0) values over Z and
N closely coincide with minima located in excitation ener-
gies (E0+

2 ) for similar Z and N values. Systematic ρ2(E0)
calculations over Z and N , involving the full CW E0 transition
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FIG. 7. Squares of E0 transition strength times 1000,
1000ρ2(E0; 0+

2 → 0+
1 ), as provided by 5DCH calculations

performed for nuclides with 10 < Z < 100 and N < 220. Panels
(a) and (b) are for 5DCH calculations involving Inglis-Beliaev
collective masses and normalized collective masses, respectively.
The color code is intended to indicate strength magnitudes.

operator, have not been performed. In spite of this fact, the var-
ious sensitivity studies presented so far lead to the conclusion
that (i) renormalized collective masses in combination with
(ii) the Church and Weneser E0 transition operator system-
atically reduce and improve ρ2(E0) value predictions when
implemented in the 5DCH calculations. It is this combination
of collective masses and E0 operator that will be adopted
below in systematic 5DCH calculations performed for many
ρ2(E0; 0+

2 → 0+
1 ) and X (E0/E2) values.

IV. ANALYSES OF ρ2(E0) DATA

We focus on detailed comparisons between the experimen-
tal 1000ρ2(E0) values with our calculations performed for the
following regions: (i) the medium-mass Se, Kr, Zr, Mo, Pd,
and Cd isotopes and (ii) isotopes in the rare-earth region as
well as those with higher charge numbers Z < 72. The 238U
isotope is also considered. The database, which comprises
52 nuclei, was formed based on the compilation [28]. It also
includes the publication [30] for 238U.

A. Se, Kr, Zr, Mo, Pd, and Cd isotopes

Panels (a) to (f) of Fig. 8 show 1000ρ2(E0) data (red
symbols) and 5DCH predictions (green curves) for Se, Kr,
Zr, Mo, Pd, and Cd isotopes, respectively. The predicted
1000ρ2(E0) values are generally high compared to data.
This is especially relevant to the Kr isotopes, where the
peak seen at N = 38 in experimental and calculated values
for the E0 transition strength is associated with a transi-
tion from prolate to oblate shapes when N decreases from
N = 40 to N = 36 [22]. Symmetry-conserving configuration-
mixing calculations dedicated to ρ2(E0) values for the Kr
isotopes also overshoot measurements [31]. The nucleus 72Kr
is the isotope for which the 1000ρ2(E0) value from 5DCH
calculation now matches the data. Panel (c) for Zr iso-
topes includes 1000ρ2(E0) values calculated for ten neutron

FIG. 8. 1000ρ2(E0; 0+
2 → 0+

1 ) experimental values for Se, Kr,
Zr, Mo, Pd, and Cd isotopic chains are shown in panels (a), (b),
(c), (d), (e), and (f), respectively. The green symbols are for 5DCH
calculations performed using renormalized collective masses and full
E0 transition operator.

numbers N , with 48 � N � 66. Both data and calculations
clearly illustrate the occurrence of the phase transition at
N = 60. This phase transition at N = 60 does not take place
for the adjacent Mo isotopes, as can be seen in panel (d).
These features indicate that the phase transition in the medium
mass region is specific to the Z = 40 isotopes. Panel (f)
shows 1000ρ2(E0) data and calculated values for Cd iso-
topes. Only the experimental value at N = 64 is reasonably
well described by prediction. Cd isotopes are known to
display shape coexistence phenomena, as discussed in exten-
sive comparisons between recent B(E2) measurements and
symmetry-conserving configuration-mixing calculations [32].
In particular, the collective band built on top of the first 0+ ex-
cited state is found to be more deformed than that based on the
ground state. 5DCH calculations for the Cd isotopes lead to
similar nuclear structure properties [9,33]. Taking 112Cd as an
illustration, the calculated mean axial and triaxial quadrupole
deformations 〈β〉 and 〈γ 〉, respectively, are 〈β〉 = 0.21 and
〈γ 〉 = 26◦ for the ground state. For the 0+

2 level, the mean
deformations are 〈β〉 = 0.33 and 〈γ 〉 = 16◦, which means
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that this excited 0+ state is ≈57% more deformed and also
less triaxial than the ground state.

The qualitative agreement between ρ2(E0) data and cal-
culations for Pd isotopes is poor; see panel (e). It is also
puzzling since Pd isotopes, as seen above for Cd isotopes, also
display shape coexistence in the present 5DCH predictions.
For example, the mean 〈β〉 and 〈γ 〉 deformations calculated
for ground state and 0+

2 levels of 110Pd are 〈β〉 = 0.27, 〈γ 〉 =
23◦ and 〈β〉 = 0.32, 〈γ 〉 = 20◦, respectively. The degree of
coexistence in Pd isotopes might be considered lower when
compared to that in Cd, since the difference in mean 〈β〉 de-
formations associated with the 0+

1 and 0+
2 levels is of the order

of 20%. This smaller degree of coexistence might explain why
the experimental ρ2(E0) data for Pd isotopes are smaller than
those for Cd isotopes. On the other hand we do not understand
the reasons why the calculated ρ2(E0) values for Pd, with
four protons less than Sn at the shell closure Z = 50, are
stronger than those for Cd. We suggest that the Gogny energy
density functional would lead to improved predictions if it
were implemented with two-quasiparticle (2qp) components.
We will refer to this suggestion, aimed at improving various
predictions, later in this study.

B. Sn, Nd, Sm, Gd, Er, and Yb isotopes

Panels (a) to (f) of Fig. 9 show 1000ρ2(E0) data (red
symbols) and 5DCH predictions (green curves) for Sn, Nd,
Sm, Gd, Er, and Yb isotopes, respectively. The ρ2(E0) data
and predictions for proton- closed shell Sn isotopes are shown
in panel (a). When comparing the Sn and Cd data we notice
similarity in trends versus increasing N , and lower values for
N > 64 (N = 64 is at mid neutron shell). Like Cd isotopes,
Sn isotopes display shape coexistence [34]. The calculations
reproduce reasonably well ρ2(E0) data for N < 66, but stand
too high for higher N values. This feature is similar to that
observed for Cd isotopes. This caveat points again to a defi-
ciency in the present modeling. The calculated ρ2(E0) values
(green curves) for Nd, Sm, and Gd isotopes display similar
characteristics in the vicinity of N = 90: a maximum followed
immediately by a lower value for N = 92. In the three iso-
topic chains, transitions from spherical to deformed shapes
take place when the neutron number increases above N = 82.
This feature indicates a quantum phase transition at N = 90
[35,36]. It is interesting to note that, for the Nd isotopes, our
calculated ρ2(E0) values look similar in shape and magni-
tude to those calculated using a relativistic effective force as
published in [37]. The Gd isotopes display similar features
in measured and calculated ρ2(E0) values in the vicinity of
N = 90.

For the Nd isotopes, ρ2(E0) measurements are needed to
strengthen the picture of quantum phase transition at N = 90.
A phase transition at or near this neutron number is well
established based on quadrupole transition properties [38].
In the present work, we have considered as complementary
information the ratio between 5DCH values B(E2; 2+

1 →
0+

1 )/B(E2; 2+
2 or 2+

3 ) → 0+
2 ) among reduced transition prob-

abilities determined for N = 88, 90, and 92 isotopes of the
elements Nd, Sm, Gd, Dy, and Er. The calculated B(E2; 2+

3 →
0+

2 ) value is ignored whenever B(E2; 2+
2 → 0+

2 ) is stronger,

FIG. 9. 1000ρ2(E0; 0+
2 → 0+

1 ) experimental values for Sn, Nd,
Sm, Gd, Er, and Yb isotopic chains are shown in panels (a), (b),
(c), (d), (e), and (f), respectively. The green symbols are for 5DCH
calculations performed using renormalized collective masses and
full E0 transition operator. The blue symbol is for the experimental
ρ2(E0; 0+

4 → 0+
1 ) value.

and the reverse otherwise. The calculated B(E2) ratios, shown
in Table I, display a maximum greater than unity for N ≈ 90.

Panels (e) and (f) display ρ2(E0; 0+
2 → 0+

1 ) data (red cir-
cles) obtained at a few neutron numbers: N = 98 and N =
102, 104 for Er and Yb nuclei, respectively. These values are
very small as compared to predictions, which peak at values
1000ρ2(E0) ≈ 220. It is tempting to suggest that the E0
strengths as obtained from 5DCH calculations in this higher
mass region are fragmented over several excited 0+ levels tak-
ing place at a few MeV of excitation energy. In recent years,
many (p, t ) pickup reactions aimed at the identification of 0+
levels below approximately 3 MeV have collected unprece-
dented numbers of such excitations in rare-earth nuclei [39].
An alternative suggestion would be that the experimental data
(red circles) in panels (e) and (f) stem from 2qp excitations, a
picture that is not compatible with that conveyed by the 5DCH
model. Instead, systematic QRPA calculations based on D1S
might be suitable to describe the low ρ2(E0; 0+

2 → 0+
1 ) values

measured in the rare-earth region.
Figure 9(e) shows a second ρ2(E0) measurement, again for

the 166Er isotope. The ρ2(E0) value, namely 1000ρ2(E0) =
127(60), is represented by a blue square and large error bar.
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TABLE I. The third column shows 5DCH values (in Weisskopf units) of E2 reduced transition probabilities B(E2; 2+
1 → 0+

1 ), B(E2; 2+
2 →

0+
2 ), and/or B(E2; 2+

3 → 0+
2 ) for the Nd, Sm, Gd, Dy, and Er isotopes with neutron numbers N = 88, 90, 92. B(E2) ratios B(E2; 2+

i →
0+

2 )/B(E2; 2+
1 → 0+

1 ), i = 2 or 3, between calculated values are given in the fourth column. Experimental ratio values are shown in the fifth
column.

Nucleus Transition B(E2 ↓) (W.u.) B(E2) ratio D1S B(E2) ratio expt.

148
60 Nd88

2+
1 → 0+

1

2+
3 → 0+

2

64.92
78.44

0.83

150
60 Nd90

2+
1 → 0+

1

2+
2 → 0+

2

117.39
117.20

1.00 1.38 (15)

152
60 Nd92

2+
1 → 0+

1

2+
2 → 0+

2

155.54
142.98 1.09

150
62 Sm88

2+
1 → 0+

1

2+
3 → 0+

2

76.95
83.58

0.92

152
62 Sm90

2+
1 → 0+

1

2+
2 → 0+

2

146.16
132.73

1.10 1.17 (21)

154
62 Sm92

2+
1 → 0+

1

2+
2 → 0+

2

175.63
148.14 1.19

152
64 Gd88

2+
1 → 0+

1

2+
3 → 0+

2

85.33
89.38

0.95

154
64 Gd90

2+
1 → 0+

1

2+
2 → 0+

2

158.46
143.32

1.11 0.62 (7)

156
64 Gd92

2+
1 → 0+

1

2+
3 → 0+

2

189.97
180.89 1.05

154
66 Dy88

2+
1 → 0+

1

2+
3 → 0+

2

84.24
124.68

0.68

156
66 Dy90

2+
1 → 0+

1

2+
2 → 0+

2

157.76
143.67

1.10

158
66 Dy92

2+
1 → 0+

1

2+
3 → 0+

2

202.36
192.90 1.05

156
68 Er88

2+
1 → 0+

1

2+
3 → 0+

2

75.89
130.78

0.58

158
68 Er90

2+
1 → 0+

1

2+
3 → 0+

2

115.94
157.43

0.74

160
68 Er92

2+
1 → 0+

1

2+
2 → 0+

2

190.95
183.55

1.05

It is related to the E0(0+
4 → 0+

1 ) transition from the third
excited level (Ex = 1.934 MeV) to the ground state [40]. This
strong value points to the existence of a β vibration, and is
compatible with our 5DCH prediction for the E0(0+

2 → 0+
1 )

transition strength. A dedicated model interpretation of the
ρ2(E0; 0+

4 → 0+
1 ) measurement will be discussed in Sec. VII.

V. ANALYSES OF X (E0/E2) DATA

The database considered for the X (E0/E2) model analyses
conducted for the rare-earth and actinide regions comprises
50 values extracted from [28]. As the X data are built as
ratios between B(E0) and B(E2) values, we first perform a
comparison of B(E2; 0+

2 → 2+
1 ) values from measurements

with those from the 5DCH calculations.

A. B(E2) values

The B(E2) experimental database includes 41 values,
taken mostly from the compilation [25] as of March 30, 2020.
Additional values are for 94Zr [41], 106Pd [42], 150Nd [43],

and 170Yb [44]. For 152Gd, we superseded the data with a
more recent value; see [45]. Finally, the experimental B(E2)
value for 168Yb as quoted in [2] is adopted. The comparison
between the B(E2) data and calculated values is shown in
Fig. 10. The horizontal axis in panel (a) is for calculations
(Th1) performed using IB collective masses. In panel (b), the
calculations (Th2) are made using renormalized collective
masses. The two models adopted for collective masses do
not significantly change the agreement between data and
calculations. As can be seen, the calculated values often fall
below or above data. The worst situation is for Sn isotopes
(brown symbols). It is plausible that present 5DCH modeling
for B(E2)’s relevant to the single-close-shell Sn isotopes
misses consideration of 2qp components.

The deviation between the Th2 values calculated for
B(E2) and the experimental data is made by forming the ra-
tio between B(E2; 0+

2 → 2+
1 )(Th2) − B(E2; 0+

2 → 2+
1 )(exp)

and B(E2; 0+
2 → 2+

1 )(Th2) for each nucleus under consid-
eration in Fig. 10. Values taken by the ratio are shown in
Fig. 11. It can be seen that their mean value over N , 〈Ratio〉,
is approximately equal to 0.6.
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FIG. 10. Comparison between reduced transition probability
B(E2; 0+

2 → 2+
1 ) from measurements and from 5DCH calculations.

Panel (a) shows experimental data compared with calculations (Th1)
involving collective masses determined at the Inglis-Beliaev ap-
proximation. Panel (b) illustrates similar comparisons, but adopting
normalized collective masses in the 5DCH calculations (Th2). The
color code is for the identification of proton numbers.

FIG. 11. Difference between the calculated and measured
B(E2; 0+

2 → 2+
1 ) values, divided by the calculated B(E2) values.

This quantity, labeled Ratio, is plotted as a function of neutron
number N . The color code is for identification of proton number.

FIG. 12. X (E0/E2) values for Gd, Dy, Er, Yb, Hf, W, Os, and
Pt isotopic chains are shown in panels (a) to (h), respectively. Data
are shown as red dots. Green curves are for 5DCH calculations per-
formed using renormalized collective masses and full E0 transition
operator.

B. X (E0/E2) values for Gd, Dy, Er, Yb, Hf, W,
Os, and Pt isotopes

The large uncertainties attached to the calculated
B(E2; 0+

2 → 2+
1 ) values do not spoil the reasonably good

agreements between the X data (red circles) and predictions
(green points and circles) for the N < 94 Gd isotopes, as
shown in Fig. 12(a). The X (E0/E2) data increase with N ,
increasing as do the calculated values until N reaches the
value N = 92. Agreements of similar quality are obtained
for Dy and Er isotopes for neutron numbers N < 96 and
N < 98, in Figs. 12(b) and 12(c), respectively. For higher
neutron numbers in these isotopes, the calculated X (E0/E2)
values increase and reach a maximum. This pattern is in sharp
contrast with the data, whose values drop significantly. For the
isotopic chains with higher Z values, the calculated X values
form bell shapes over N increasing beyond N = 92. In panels
(d), (e), (f), (g), and (h) of Fig. 12, we see that reasonable
agreement between data and calculations takes place on rare
instances. The present 5DCH modeling for X (E0/E2) seems
totally inadequate for Yb, Hf, W, Os, and Pt isotopes.
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FIG. 13. X (E0/E2) values for Th, U, Pu, Cm, and Cf isotopic
chains are shown in panels (a) to (e), respectively. Data are shown as
red dots. Green curves are for 5DCH calculations performed using
normalized collective masses and full E0 transition operator.

C. X (E0/E2) values for Th, U, Pu, Cm, and Cf isotopes

In contrast to the predictions in the medium-mass nuclei,
that often fail, we have found reasonable agreements for the
actinide region. The experimental data available there are just
a few, as can be seen in panels (a), (b), (c), (d), and (e) of
Fig. 13 for Th, U, Pu, Cm, and Cf isotopes, respectively. The
worst situation is found for Cm isotopes where the experi-
mental values, X ≈ 2, seem far too strong. For 240Pu, we note
that the experimental X value, X = 0.048(16), is very small
compared to that measured for the adjacent isotope 238Pu. We
noted that 240Pu displays its first excited 0+ state, which is
interpreted as being made of two octupolar phonons coupled
to null spin [46]. It would be interesting to perform measure-
ments for E0(0+

2 → 0+
1 ) and E0(0+

3 → 0+
1 ) transitions in this

Pu isotope.

VI. E0 TRANSITIONS IN 238U

In the actinide mass region we observed two close lying 0+
excited states, 0+

2 and 0+
3 , respectively. They were present in

Th and U isotopes at energies near 1 MeV. The actual nature

of such excited states is the topic of an ongoing debate. On
the one hand, either one of the two 0+ excited levels can be
interpreted as a two-octupole phonon excitation, according to
the spdf interacting boson model [46–48]. On the other hand,
predictions based on the heavy shell model suggest for the
230,232Th and 232,234,236U isotopes as well as for 240Pu that the
0+

3 excited state are 2qp excitations [49]. The 0+
2 levels would

then be collective excitations.
As a consequence, it is expected that the E0 decay

strengths of 0+
2 and 0+

3 excited states to 0+
1 will reflect rather

different properties. Such is the case of 238U, for which
ρ2(E0) magnitudes have been measured for the 2+

2 → 2+
1 and

2+
3 → 2+

1 transitions. Here, the 2+
2 and 2+

3 levels are members
of the deformed bands built upon the 0+

2 and 0+
3 levels, respec-

tively. The experimental ρ2(E0) and excitation energy values
are as follows [30]: 1000ρ2(E0) = 175(26), E (2+

3 ) = 1.037
MeV and 1000ρ2(E0) = 9.9(18), E (2+

2 ) = 0.966 MeV for
the 2+

3 → 2+
1 and 2+

2 → 2+
1 transitions, respectively. The en-

ergy of the 2+
1 level is E (2+

1 ) = 44.9 keV [25].
In the present work, these experimental data are analyzed

using the 5DCH model as well as the quasiparticle ran-
dom phase approximation (QRPA). Here they are used as
complementary spectroscopic tools. In recent years, QRPA
calculations based on the Gogny force have been per-
formed for dipole transitions [50] and for 0+

1 → Iπ transitions
with higher multipolarities [51]. E0 predictions based on
QRPA and 5DCH have different figures of merit. 5DCH and
QRPA calculations turn out to provide best predictions for
ρ2(E0; 2+

3 → 2+
1 ) and ρ2(E0; 2+

2 → 2+
1 ) experimental data,

respectively.

A. The strong (2+
3 → 2+

1 ) E0 transition

With using the 5DCH approach, we find that
1000 ρ2(E0; 0+

3 → 0+
1 ) = 143. We have also calculated

ρ2(E0; 2+
3 → 2+

1 ), and found ρ2(E0; 2+
3 → 2+

1 ) =
ρ2(E0; 0+

3 → 0+
1 ) to within a fraction of a percent.

The calculated value 1000ρ2(E0; 2+
3 → 2+

1 ) = 143 is
close to 1000ρ2(E0; 2+

3 → 2+
1 ) = 175(26) that is obtained

from measurements [30].

B. The weak (2+
2 → 2+

1 ) E0 transition

QRPA calculations based on the D1S Gogny force were
performed for the first time using the Church and We-
neser E0 transition operator. For that purpose, the QRPA
wave functions calculated previously for 238U in [52] are
adopted. The results for ρ2(E0) and excitation energy
are 1000 ρ2(E0; Kπ = 0+

2 → Kπ = 0+
1 ) = 34 and E (0+

2 ) =
1.261 MeV. Here K is the projection of angular momentum on
the third axis, and π is the parity. This 0+

2 excitation energy
is approximately 0.3 MeV higher than the experimental value,
namely E (0+

2 ) = 0.966 MeV.
Assuming that (i) ρ2(E0; Kπ = 0+

2 → Kπ = 0+
1 ) is rep-

resentative of ρ2(E0; Iπ = 0+
2 → Iπ = 0+

1 ) and that (ii)
ρ2(E0; 2+

2 → 2+
1 ) = ρ2(E0; 0+

2 → 0+
1 ) in the analysis, we

deduce that the calculated ρ2(E0; 2+
2 → 2+

1 ) is 73% weaker
than that provided by the 5DCH calculations for ρ2(E0; 2+

3 →
2+

1 ). Furthermore, the 1000ρ2(E0) = 34 calculated value is
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approximately three times stronger than the experimental
value: 1000ρ2(E0) = 9.9(18). This mismatch between data
and calculation is even stronger considering the revised ex-
perimental value [53]: 1000ρ2(E0; 2+

2 → 2+
1 ) = 5.6(22).

We conclude that the E0 transition associated with the
weak 2+

2 → 2+
1 transition measured for 238U most likely is

a 2qp transition.

VII. E0 AND E2 TRANSITIONS in 166Er

A. E0 transitions

We first consider available ρ2(E0) data and compar-
isons with present 5DCH as well QRPA predictions. As
can be seen in Fig. 9(e), the calculated ρ2(E0; 0+

2 → 0+
1 ),

i.e., 1000ρ2(E0; 0+
2 → 0+

1 ) = 154.4, is 50 times stronger
than the experimental value: 1000ρ2(E0; 0+

2 → 0+
1 ) = 2.2

(8), shown as a red dot. Also shown on this figure is the
experimental 1000ρ2(E0; 0+

4 → 0+
1 ), i.e., 1000ρ2(E0; 0+

4 →
0+

1 ) = 127(60), deduced from recent measurements [40]. This
latter experimental value is of the same magnitude as, and
consistent with, the calculated 1000ρ2(E0) = 154.4 for the
0+

2 → 0+
1 transition. These comparisons are puzzling. On the

one hand, the experimental 0+
2 level is usually interpreted as

having a dominant pair excitation character [54], while the 0+
4

level would be the head of a β vibration [54].
To shed additional light on E0 transitions in 166Er, the

QRPA calculations provide the following information on 0+
excitation energies and ρ2(E0; 0+

i → 0+
1 ) values, with i =

2, 3, and 4, namely

(i) Calculated excitation energies: E (0+
2 ) = 1724 keV,

E (0+
3 ) = 1956 keV, and E (0+

4 ) = 2068 keV. These
values are shifted by approximately 200 keV toward
higher energies when compared to those measured:
1460, 1713, and 1934 keV, for the 0+

2 , 0+
3 , and 0+

4
levels, respectively.

(ii) Calculated 1000ρ2(E0) = 3.15 for the 0+
2 → 0+

1 tran-
sition. This value is much weaker than that obtained
from the 5DCH calculations. 1000ρ2(E0) = 3.15 is a
value in agreement with that quoted in the Kibedi and
Spear compilation [28], 1000ρ2(E0) = 2.2(8), and
with the value 1000ρ2(E0) = 5.3(23) deduced from
new measurements [40].

For the 0+
3 → 0+

1 transition, we have obtained
1000ρ2(E0; 0+

3 → 0+
1 ) = 0.16, a weak value consistent

with the interpretation that 0+
3 is a dominant pair excitation

[54]. The calculated E0 strength for the 0+
4 → 0+

1 transition
suggests a collective strength, with magnitude five times
stronger than that for the 0+

2 → 0+
1 transition, namely

1000ρ2(E0; 0+
4 → 0+

1 ) = 15.0. This magnitude is weaker
than that measured [40].

While the structure of 0+
2 and 0+

3 excited states seems rea-
sonably well understood, that of 0+

4 is here matter of concern.
The reason because the experimental energy E (0+

4 ) = 1934
keV is high if this level were to be interpreted as a β vibration
[54].

FIG. 14. Level scheme and band structure in 166Er. Experimental
data versus 5DCH predictions.

B. E2 transitions: Band structure

In order to strengthen the discussion, we extended
our 5DCH analyses to the reduced transition probabilities
B(E2; Ii → I f ) measured for 166Er. Experimental data are
taken from the BNL compilation [25] as well as from [54].
The experimental collective levels organized in bands are
compared with predictions in Fig. 14. Tables II and III gather
B(E2) data and calculations for intraband and interband tran-
sitions, respectively.

The overall agreement between measured and calculated
level schemes is fairly good. So is the agreement for the
B(E2) values, except for transitions between the 0+

2 and 2+
1

levels; more precisely, the calculated B(E2; 0+
2 → 2+

1 ) value,
B(E2) = 17 W.u., is approximately six times stronger than the
measured value: B(E2) = 2.7(10) W.u. According to discus-
sions offered in [2], the experimental B(E2; 0+

2 → 2+
1 ) value

is too weak to identify the 0+
2 (1460 keV) level as the β

bandhead level. We next sought a 0+ level (i.e., 0+
4 ) calculated

at higher excitation energy, which would actually be a β vi-
bration according to criteria given in [2]. However, none have
been identified among the 5DCH results. A fourth 0+ level
that does not show character of β vibration is actually calcu-
lated at an excitation energy of 2.793 MeV. This calculated 0+

4
excited state primarily decays to the 2+

3 (1.570 MeV) K = 0
band member; this decay proceeds through a strong B(E2):
B(E2; 0+

4 → 2+
3 ) = 26.2 W.u. Furthermore, we have found no

evidence in the 5DCH predictions for a calculated 0+ excited
state that would be a double-β vibration. Based on present
microscopic model analyses of collective quadrupole modes
in 166Er, the 0+

2 level observed at 1460 keV and calculated at
1488 keV is here interpreted as a quadrupole vibration built
on the ground state. The 0+

2 level is not identified as a β

vibration. The 0+
4 (1934 keV) level reported in Ref. [54] and

interpreted as a β vibration has no counterpart identified in the
5DCH spectrum. An attempt has been made to provide a new
microscopic modeling which would shed light on the 0+

4 level
collective properties. Briefly, it is suggested that this level is
rooted in the coupling between quadrupole and hexadecupole
collective modes, both having axially symmetric character.
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TABLE II. B(E2) values in Weisskopf units (W.u.) for intraband transitions in 166Er. Comparisons between experimental data and 5DCH
calculations using the D1S force.

Ii I f Expt. 5DCH/D1S Ii I f Expt. 5DCH/D1S

gs band → gs band γ band → γ band

2+
1 0+

1

4+
1 2+

1

6+
1 4+

1

8+
1 6+

1

217 (5)
312 (11)
370 (20)
373 (14)

227.6
327.7
365.7
389.7

3+
1 2+

2

4+
2 2+

2

4+
2 3+

1

5+
1 3+

1

5+
1 4+

2

6+
2 4+

2

138 (9)
370 (30)
300 (40)
310 (40)
225 (16)

398.9
134.8
297.0
218.0
212.7
270.2

β band → β band
2+

3 0+
2

4+
3 2+

3

6+
3 4+

3

252.4
365.3
410.8

The potential energy surface calculated for 166Er as a function
of the β20 and β40 deformations is shown in Fig. 15. This sur-
face is obtained from constrained Hartree-Fock-Bogoliubov
calculations similar to those adopted in [55]. Details of calcu-
lations are given in Appendix. As can be seen on the figure,
this surface displays smooth variations against β20 and β40.
Finally, the potential minimum takes place at deformations
(β20, β40) = (0.35, 0.06).

The next step in the modeling would be solving a two-
dimensional collective Hamiltonian, followed by calculation
of E0 transitions strengths. Such a study is out of the scope of
present work.

VIII. SUMMARY AND CONCLUSION

A comprehensive study of E0 transitions in nuclei was
done. It relied upon extensive microscopic model calculations
devoted to even-even nuclei spanning a broad mass region
with A > 30. Many experimental data for ρ2(E0) strengths
and X (E0/E2) dimensionless parameters served as test cases,
mainly to challenge the predictive power of the 5DCH theory
implemented with the Gogny force, and to identify weak-
ness in predictions. Several calculations conducted using the
QRPA theory were also performed as complementary tests
for the 166Er and 238U. isotopes. Our study offers the oppor-
tunity to test performance of the Church and Weneser E0

TABLE III. B(E2) values in Weisskopf units (W.u.) for interband transitions in 166Er. Comparisons between experimental data and 5DCH
calculations using the D1S force.

Ii I f Expt. 5DCH/D1S Ii I f Expt. 5DCH/D1S

γ band → gs band β band → gs band
2+

2 0+
1

2+
2 2+

1

2+
2 4+

1

3+
1 2+

1

3+
1 4+

1

4+
2 2+

1

4+
2 4+

1

4+
2 6+

1

5+
1 4+

1

5+
1 6+

1

6+
2 4+

1

6+
2 6+

1

5.17 (21)
9.6 (6)

0.78 (4)

11.1 (7)
1.98 (12)
11.1 (7)

2.01 (14)
8.9 (11)

12.4 (15)
0.88 (6)
9.9 (7)

6.8
12.1
0.8

12.2
7.5
2.9

15.0
2.0
9.4

10.5
1.6

15.7

0+
2 2+

1

2+
3 0+

1

2+
3 2+

1

2+
3 4+

1

4+
3 2+

1

4+
3 4+

1

4+
3 6+

1

2.7 (10)
0.66 (8)

17.0
2.8
4.3
9.8
3.5
3.7
9.6

β band → γ band γ γK=4 band → γ band
0+

2 2+
2

2+
3 3+

1

2+
3 4+

2

4+
3 2+

2

4+
3 3+

1

4+
3 4+

2

4+
3 5+

1

4+
3 6+

2

0.12
0.04
0.17
0.02
0.13
0.04
0.10
0.18

4+
4 2+

2

γ γK=0 band → γ band

0+
3 2+

2

8 (3)

21 (6)

18.1

36.0
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FIG. 15. 166Er Potential energy surface (MeV) as a function of
β20 and β40 deformations. The white isolines on the surface are
separated by 1 MeV.

transition operator. To our knowledge, this is the first time
that such an operator has been adopted in nuclear structure
calculations.

In order to cure the predictions for ρ2(E0) values that were
systematically found to be too strong in a previous publication
[9], sensitivity calculations have shown that collective masses
stronger than those based on the Inglis-Beliaev approxima-
tion lead to weaker strength of ρ2(E0) predictions. Such
renormalized masses are based on phenomenological recipes
and symmetry properties inherent to the 5DCH Hamiltonian.
They considerably help lower the magnitude of the ρ2(E0)
predictions, as does the Church and Weneser E0 transition
operator. It is evident that stronger collective masses need be
built based on theory. The QRPA approach may be a way
to proceed, since this theory leads to collective masses at
the minimum of potential energy that are approximately 30%
stronger than Inglis-Beliaev masses [56]. The local quasi-
particle QRPA (LQRPA) method would also be an asset to
calculate collective masses at triaxial deformations. See for
exemple, Ref. [57]. Finally, we have tested that the D1M force
does not help reduce the strength of E0 transitions. This is
the main reason why the D1S force was adopted throughout
present study.

In general, ρ2(E0; 0+
2 → 0+

1 ) predictions are in good
agreement with patterns displayed by data along isotopic and
isotonic chains. The present D1S calculations support in a
satisfactory way the well known picture of phase transition
predicted for the Zr isotopic chain in the vicinity of neutron
number N = 60. A similar conclusion holds for the Nd, Sm,
and Gd isotopes near N = 90.

Weakness in 5DCH model predictions is seen in many
instances where experimental X (E0/E2) values abruptly drop
from strong to weak values. This feature is observed in the
rare-earth region, that is in the vicinity of N = 96 among
the Dy and Er isotopes. Strong mismatch is also observed
between 1000ρ2(E0) data and calculated values available for

a nucleus. As an illustration, see Fig. 9(f). The E0 transition
operator cannot be blamed for such features.

Instead, we suspect that the 5DCH theory is not appropriate
in these particular instances. A plausible strategy to make
improvements in predictions would be to enrich the energy
density functional by implementing 2qp components, and to
use the generator coordinate method (GCM). Such a theory
has been implemented and tested with success for interpret-
ing E0 transitions in the Er isotopes [58]. It is the extended
functional which operates in such a way that the eigenstates
possess complex structures, which evolve from collective to
quasiparticle character along the isotopic chain. This extended
GCM theory has been implemented using the pairing plus
quadrupole (PPQ) model [59] and the standard E0 transi-
tion operator [58]. If the Church and Weneser E0 operator
were to be implemented in the theory insread, the proton and
neutron effective charges would have to be modified. As an
additional comment, we suggest the above extended GCM
theory as the best approach adopt in systematic analyses of E0
transition strengths over the Segrè chart. Such a tremendous
task would be made manageable by running calculations on
exaflop computers of the next generation. Of course, the hope
would be that the Gogny energy density functional would be
implemented in such extended GCM studies.

APPENDIX: 166Er POTENTIAL ENERGY SURFACE

The variational principle is applied to minimize the energy
functional

δ〈φ(q)|Ĥ − λN N̂ − λZ Ẑ −
∑
i, j

λi jQ̂i j |φ(q)〉 = 0, (A1)

where Q̂i j is an external field operator aimed at constraining
the nuclear mean field to adopt a deformed shape, and λN ,
λZ , and λi j are Lagrange multipliers. Equaiton (A1) is solved
for Q̂20 and Q̂40, external fields generating axially symmetric
quadrupole and hexadecapole deformations, respectively. The
ket |φ(q)〉 is the quasiparticle vacuum state. Ĥ , N̂, and Ẑ are the
nuclear Hamiltonian built using the D1S force and the neutron
and proton numbers, respectively.

The constraints

〈|N̂|〉 = N, 〈|̂Z|〉 = Z, 〈|Q̂mn|〉 = qmn (A2)

serve in the determination of the Lagrange multipliers.
The potential energy surface V (q20, q40) is calculated as

V (q20, q40) = 〈φ(q)|Ĥ|φ(q)〉. (A3)

This surface is shown in Fig. 15 as a function of axial
quadrupole and hexadecupole deformation parameters β20

and β40, respectively. These deformation parameters are de-
fined as

β20 =
√

π

5

q20

A〈r2〉 , (A4)

β40 = 3
q40

r4
0 A

7
3

= 27

25

q40

A〈r2〉2 , (A5)

and

〈r2〉 = 3
5 (r0 A

1
3 )2 with r0 = 1.2 fm. (A6)
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