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In stellar environments nuclei appear at finite temperatures, becoming extremely hot in core-collapse su-
pernovae and neutron-star mergers. However, due to theoretical and computational complexity, most model
calculations of nuclear properties are performed at zero temperature, while those existing at finite temperatures
are limited only to selected regions of the nuclide chart. In this study we perform the global calculation of nuclear
properties for even-even 8 � Z � 104 nuclei at temperatures in range 0 � T � 2 MeV. Calculations are based on
the finite-temperature relativistic Hartree-Bogoliubov model supplemented by the Bonche-Levit-Vautherin vapor
subtraction procedure. We find that near the neutron-drip line the continuum states have significant contribution
already at moderate temperature T ≈ 1 MeV, thus emphasizing the necessity of the vapor subtraction procedure.
Results include neutron emission lifetimes, quadrupole deformations, neutron-skin thickness, proton and neutron
pairing gaps, entropy and excitation energy. Up to the temperature T ≈ 1 MeV, the nuclear landscape is
influenced only moderately by the finite-temperature effects, mainly by reducing the pairing correlations. As
the temperature increases further, the effects on nuclear structures become pronounced, reducing both the
deformations and the shell effects.
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I. INTRODUCTION

Highly excited (hot) nuclei can be described as compound
nuclei, characterized only by their excitation energy E∗ and
angular momentum J , according to Bohr’s hypothesis [1].
Such nuclei have no memory regarding their formation, and if
in thermodynamical equilibrium, they decay by a slow particle
or gamma evaporation, having a short lifetime of the order
10−22 s. The temperature T defines the statistical decay prop-
erties of a compound nucleus. One can find very hot nuclei
in extreme stellar environments, such as core-collapse super-
novae (CCSNe), where the temperatures exceed 2 MeV [2].
Furthermore, temperatures can be even higher in neutron-star
mergers, one of the prime candidates for the r-process site
[3], identified as possible source of a considerable amount of
the chemical elements heavier than iron. Therefore, there is a
strong motivation for studying the properties of finite nuclei
at high temperatures.

Experimentally, the study of hot nuclei is a very challeng-
ing task. Primarily, nuclei at finite temperatures are studied
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by compound nucleus formation, either by the nuclear fu-
sion reactions [4], studying their decay products [5], or by
measuring the temperature from relative population of excited
states [6,7]. Concerning the investigation of decay products,
especially important is the study of excited nucleus giant
dipole resonance (GDR) decay [8–13]. Considering a simple
complete fusion reaction, the laboratory beam energy can be
related to the nuclear masses and excitation energy E∗. A
compound nucleus is formed, which then decays mostly by
the emission of light particles or photons, as dictated by the
density of states. Assuming a highly excited nucleus, a sim-
ple Fermi gas description of the excitation yields E∗ = aT 2,
where a is the density of states parameter [14]. The decay is
described by a level density being proportional to exp(

√
aE∗).

Of course, such a simple model is not realized in practice since
the fusion reactions are usually incomplete, complicating the
kinematics of the model by introducing the residual nucleus.
Furthermore, only at very high temperatures (T � 3 MeV) is
the Fermi relation approximately valid. On the practical side,
additional difficulties arise from the necessity of detecting
all decayed particles. For temperature to be well defined,
the compound nucleus has to be in a metastable state, i.e.,
thermalized, and decay has to be in equilibrium.

Theoretically, the study of hot nuclei is concerned with ei-
ther static or dynamic properties. Starting from the mean-field
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picture of a nucleus, time-evolution of the density operator
is achieved by solving the time-dependent finite-temperature
Hartree-Fock (TDFT-HF) equations, allowing for the study
of the dynamic effects, which are of importance in nuclear
reactions such as heavy-ion collisions [15,16]. By solving
the static FT-HF equations, one obtains the picture of a
thermalized compound nucleus at finite temperature. If the
temperature is high enough, the main properties of a nu-
cleus at finite temperature can be well described by a simple
semiclassical or Thomas-Fermi approximation instead of a
quantum treatment [17,18]. The finite temperature is usually
introduced within either canonical or grand-canonical ensem-
ble through a noninteracting HF density matrix. In the HF
basis, diagonal matrix elements correspond to the temperature
dependent Fermi-Dirac distribution function. Therefore, the
nucleons can scatter above the Fermi level, and temperature
smears the Fermi surface. This leads to a nonvanishing num-
ber of single-particle states found in the particle continuum.
A continuum state is characterized by positive single-particle
energy and wave functions that do not asymptotically vanish
at large distances from the nucleus. Theoretical treatment of
continuum states requires special care, either by explicitly
constructing the many-body Green’s function in the spectral
representation [19,20] or approximately within the Thomas-
Fermi approximation [21]. Such methods are numerically
expensive and impractical for large-scale studies of static
nuclear properties. Almost 40 years ago, Bonche, Levit, and
Vautherin developed a method that allows for vapor subtrac-
tion in a straightforward way [22,23]. It is based on the fact
that static FT-HF equations correspond to solving a system
consisting of a nucleus surrounded by its external vapor. A
prescription is given on how to separate the contribution of the
continuum, by subtracting the vapor from the FT-HF solution.
Once the vapor is removed, the results of the main observables
become independent of the basis size. Later, the subtrac-
tion procedure was also justified within the Green’s function
formalism [24].

The introduction of pairing correlations in the FT-HF can
be realized by performing the Bogoliubov transformation of
the single-particle operators, yielding the FT-HF Bogoliubov
(FT-HFB) equations. Approximately, it can be also realized
within the FT-HF Bardeen-Cooper-Schrieffer (FT-HFBCS)
theory, where the mean-field and pairing interactions are de-
coupled [25]. It is well known that finite-temperature effects
lower the strength of the pairing correlations, which can
be expressed as reduction of pairing gaps with increasing
temperature, resulting eventually in the pairing collapse at
the critical temperature [25–27]. Furthermore, temperature
influences the single-particle energies, leading to a shape tran-
sition from a deformed to a spherical shape. Most nuclei at
T > 3 MeV, being highly excited, are in a normal state (no
pairing correlations) and have a spherical shape [27,28]. With
the advent of the nuclear energy density functional (EDF)
theory, systematic calculations of finite-temperature proper-
ties across the nuclide chart have become feasible. At zero
temperature, a significant amount of work has been done with
the nonrelativistic EDFs such as Skyrme or Gogny within
the HFB theory [29–31]. On the other hand, results at finite-
temperature are somewhat more scarce, restricted to selected

nuclei and observables. The investigation was performed on
the temperature dependence of neutron-skin thickness [32],
the evolution of pairing gaps with temperature [33,34], the
influence of temperature on fission barriers [35,36], as well as
clustering phenomena [37], while the Bonche-Levit-Vautherin
(BLV) vapor subtraction was only considered in calculat-
ing the neutron emission lifetimes [38] and the properties
of some selected nuclei [39]. Recently, a global study of
finite-temperature properties has been performed across the
nuclide chart within the nonrelativistic EDF, however, without
treatment of the continuum [40]. The extension to relativistic
EDFs is achieved through the relativistic FT-HFB theory (FT-
RHFB), or the FT-RHB theory, if the Fock terms are omitted
[41,42]. The starting point in defining the relativistic EDFs
is the Lagrangian density in which Dirac particles (nucleons)
can be written either as exchanging a set of different mesons
(meson-exchange) [43] or as a sum of bilinear covariants of
Dirac fields (point-coupling) [44]. The ground-state properties
at zero-temperature have been thoroughly investigated across
the nuclide chart by employing multiple relativistic EDFs
in Refs. [45–47]. At finite temperature, pairing properties
were investigated by assuming spherical nuclei within the
FT-RH(F)B theory in Refs. [33,48]. Shape transitions were
studied at the FT-HF mean-field level [49] and by using
the FT-HBCS theory [50,51], confirming that nuclei collapse
to spherical configurations above T > 3 MeV. In Ref. [52]
multiple observables were studied by including the BLV
vapor subtraction. Only recently, in Ref. [53], have the finite-
temperature drip lines been thoroughly mapped within the
relativistic EDF framework using a proper vapor subtraction.

The aim of this work is to conduct a global study of nuclear
properties at finite temperatures for even-even 8 � Z � 104
nuclei. Calculations are performed within the framework of
the finite-temperature relativistic Hartree-Bogoliubov model
supplemented by Bonche-Levit-Vautherin vapor subtraction
procedure. Although the effects of the triaxial deformations
can be significant at finite temperatures [50,51], computa-
tional cost of such calculations still precludes systematic
large-scale calculations. Therefore, axial symmetry is as-
sumed throughout this work.

To assess the robustness of our results, calculations are
performed with three state-of-the-art relativistic EDFs: the
meson-exchange DD-ME2 functional [43] and the point-
coupling DD-PC1 [44] and DD-PCX functionals [54].
Throughout this work, we also compare our results with those
obtained in a similar recent study based on the nonrelativistic
EDFs [40]. Such comparisons should be very useful from
the aspect of uncertainty quantification, since it is important
to have many different calculations stemming from different
theoretical models to better assess theoretical uncertainties.
We notice that the present study is more complete because
the calculations performed in Ref. [40], and the majority of
the previous studies at finite temperature [32–34,48,50,51,55],
omit the continuum contributions, which are shown to be es-
sential for nuclei near the drip line (see Ref. [53]). Therefore,
by comparing with our calculations both with and without the
continuum subtraction, we can get a better understanding of
the importance of the particle continuum in finite-temperature
studies.
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The paper is organized as follows: In Sec. II we present
the FT-RHB model supplemented with the vapor subtraction
procedure. The importance of the proper continuum treatment
is demonstrated in Sec. III. The large-scale calculation of
neutron emission lifetimes is presented in Sec. IV. Global cal-
culations of bulk properties of even-even 8 � Z � 104 nuclei
at finite-temperature are given in Sec. V. A brief summary and
outlook for future studies are presented in Sec. VI.

II. THEORETICAL FORMALISM

Nuclei at finite temperature can be treated as open systems
that exchange both heat and particles described within the
grand-canonical ensemble. Such a system is characterized
by its grand potential �. To calculate the thermal prop-
erties of nuclei, we employ the relativistic EDF approach
[41,42,56], described by the generalized Bogoliubov-Valatin
density R, being a statistical mixture of excited states at finite-
temperature [25,57]. It assumes a form

R =
(

ρkk′ κkk′

−κ∗
kk′ 1 − ρ∗

kk′

)
, (1)

where ρ is the particle density and κ is the pairing tensor. They
are defined as thermal averages 〈·〉T of quasiparticle (q.p.)
operators [25,57]

ρkk′ = 〈β†
k′βk〉T , κkk′ = 〈βk′βk〉T . (2)

The set of indices (k, k′) spans a 2M × 2M dimensional space
of Bogoliubov quasiparticles (q.p.) (βk, β

†
k ), M being the

number of q.p. states. To account for a nonvanishing number
of particles in the continuum at finite temperature, we have
implemented the BLV subtraction procedure (for details about
the BLV procedure, we refer the reader to Refs. [22,23]). The
subtracted grand potential is introduced as

�̄ = �[R] − �[R̃] + Ec[ρp, ρ̃p], (3)

where R indicates the generalized density of the Nucleus
+ Vapor system (Nuc + Vap) and R̃ corresponds to the
vapor-only system (Vap). To account for the vapor-nucleus
Coulomb interaction, the BLV prescription proposes a form of
the Coulomb term Ec[ρp, ρ̃p] which subtracts the long-range
vapor contribution on the nucleus [22,23]. Here, ρp, ρ̃p are the
proton particle densities of the Nuc + Vap and Vap systems,
respectively. Variation of �̄ with R leads to the FT-RHB
equation for the Nuc + Vap system:(

h − λ �

−�∗ −h∗ + λ

)(
U
V

)
= E

(
U
V

)
, (4)

where (U,V ) is a set of q.p. wave functions with energy E .
On the other hand, by performing variations with R̃ we get
the FT-RHB equation for the Vap system(

h̃ − λ �̃

−�̃∗ −h̃∗ + λ

)(
Ũ
Ṽ

)
= E

(
Ũ
Ṽ

)
, (5)

with its corresponding set of wave functions (Ũ , Ṽ ) and ener-
gies Ẽ . The chemical potential λ is defined to reproduce the

total particle number (either neutron or proton)∫
dr[ρ(r) − ρ̃(r)] = N. (6)

The single-particle Dirac Hamiltonian is labeled by h, h̃, and
the pairing field is �, �̃, for the Nuc + Vap and Vap systems,
respectively. The Dirac Hamiltonian can be written in terms
of the scalar (S) and vector (V ) potentials [58]:

h = −iα∇ + β[m + S(r)] + V (r), (7)

which depend on the chosen form of the relativistic EDF,
m being the bare nucleon mass. For the relativistic meson-
exchange (ME) interaction, they are functions of sigma,
omega, and rho-meson fields obtained by solving the cor-
responding Klein-Gordon equations [58]. By assuming the
point-coupling functionals (PC), where meson propagators
are replaced with δ functions, and the fields are expanded in
terms of scalar (ρs), vector (ρv), and isovector (ρtv) densities
[44]. Both interactions include a Coulomb field which satisfies
the Poisson equation. The introduction of density-dependent
couplings in vertices of relativistic interactions also yields a
rearrangement term in vector potential [42]. In this work, we
employ the density-dependent ME functional DD-ME2 [43]
and two sets of density-dependent point-coupling functionals:
DD-PC1 [44] and DD-PCX [54]. The difference between the
Nuc + Vap Dirac field h and Vap fields h̃ is in the initial-
ization of the scalar and vector fields. While for the Nuc +
Vap system we assume an initial Woods-Saxon form of the
potentials, the Vap system is only initialized with the Coulomb
field. Due to the special treatment of the Coulomb field in
Eq. (3) within the BLV prescription, the Poisson equation for
the Coulomb field Vc of both Nuc + Vap and Vap systems has
the form

−∇2Vc = e[ρp(r) − ρ̃p(r)]. (8)

Such a term results in a coupling between the Nuc + Vap and
Vap FT-RHB equations. The pairing field is calculated as

�ll ′ = 1

2

∑
kk′

V pp
ll ′kk′κkk′ , �̃ll ′ = 1

2

∑
kk′

V pp
ll ′kk′ κ̃kk′ , (9)

for Nuc + Vap and Vap systems, respectively. Here, V pp is the
matrix element of the pairing interaction for which we adopt
a separable form [59]

V (r1, r2, r′
1, r′

2) = −Gδ(R − R′)P(r, a)P(r′, a) 1
2 (1 − Pσ),

(10)

where R = 1
2 (r1 + r2) and r = r1 − r2 denote the center-of-

mass and relative coordinate, respectively, while P(r, a) =
(4πa2)−3/2e−r2/4a2

is the Gaussian form factor. Parameters G
and a describe strength and range of the pairing interaction.
For DD-ME2 and DD-PC1 parametrizations we use values
defined in Ref. [59], while for the DD-PCX interaction, pa-
rameters from Ref. [54] are used.

We assume axially deformed reflection-symmetric nuclei,
for which the time-reversal invariance holds. This means that
angular-momentum projection on the z axis � together with
parity π is a good quantum number, with levels ±� being
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degenerate. The optimal configuration is obtained by perform-
ing the constrained FT-RHB calculations on the quadrupole
deformation β2, and minimizing the free energy F = E − T S,
where E is the total binding energy and S entropy [see
Eq. (21)]. We use a mesh of 11 equidistant β2 points between
β2 = −0.7 and β2 = 0.6. Constrained calculations are per-
formed for the first 20 iterations, after which the constraint
is lifted and calculations converge to the corresponding lo-
cal minima in the (F, β2) plane. If there are multiple local
minima, the one which minimizes the total free energy is
selected (global minimum). No proton-neutron mixing is as-
sumed, allowing only for the isovector (T = 1) component
of the pp interaction. The FT-RHB equations (4) and (5)
are solved in a basis of axially deformed harmonic oscillator
expanded in Nosc = 20 shells for fermion (and boson) states.
We have verified that such a basis yields converged binding
energies within 1 MeV for neutron-rich nuclei considered
in this work. The Coulomb equation (8) is solved by direct
integration using Green’s function approach. Within one self-
consistent iteration, the FT-RHB equations are solved twice,
for the Nuc + Vap system and Vap system, supplemented
with the chemical potential subsidiary condition in Eq. (6).
Global calculations are performed for nuclei in the range
8 � Z � 104. Going above Z = 104, we notice the existence
of superdeformed minima, in agreement with results from
Ref. [46]. Since our model is not suited for the treatment
of those states, we perform our calculations up to the limit
of Z = 104.

As a finite-size system, the nucleus is also influenced by
fluctuations around the thermal average. Although quantal
fluctuations are less relevant at finite-temperature, thermal
fluctuations can play a significant role in the description
of nuclei by removing the sharp transitions in pairing and
deformation properties of nuclei [60,61]. If one assumes
the Gaussian approximation, the thermal averages of the
main observables (e.g., excitation energies, deformation, and
pairing) are weighted by corresponding Boltzmann factors
over many thermal configurations [62,63]. However, per-
forming large-scale calculations by taking into account the
thermal fluctuations is currently not feasible. Therefore,
we did not take into account thermal fluctuations in our
calculations.

III. INFLUENCE OF THE PARTICLE CONTINUUM
ON THE WEAKLY BOUND NUCLEI

In this section we discuss the convergence issues that orig-
inate from the continuum contribution to the particle density
once we introduce the finite temperature. If single-particle
states reach the particle continuum, i.e., acquire positive
single-particle energy, their energies will not converge with
respect to increasing number of basis states. Already at zero
temperature, one faces a similar problem, which occurs if
the pairing correlations are improperly treated [64]. At fi-
nite temperature, even without pairing correlations, such a
problem is more pronounced since more single-particle states
get scattered across the Fermi level. Often, the contribution
of particle continuum is said to be significant for nuclei at
T � 4 MeV [17,23]. However, as we demonstrate, nuclei

near the neutron drip lines show convergence problems at
much lower temperatures. It is imperative to achieve proper
convergence of binding energies to determine the drip lines,
which are calculated from the neutron separation energies,
defined as the difference between the total binding energies of
neighboring nuclei.

First, we perform the axially deformed constrained FT-
RHB calculation to determine the potential-energy curve
(PEC) and obtain the equilibrium state (defined as the min-
imum of the free energy F at finite temperature). In this
example, we choose two nuclei: 160Gd near the stability val-
ley and 210Gd, which is predicted as a drip line nucleus by
using the DD-ME2 interaction, and calculate their PECs at
T = 0, 1, and 2 MeV. Results are presented in Figs. 1(a)–1(f)
for several dimensions of oscillator basis: Nosc = 20, 24, and
28. We find that the convergence of 160Gd at T = 0 and
T = 1 MeV is quite satisfactory. For the prolate minimum,
the difference in free energy between calculations using 20
and 28 harmonic-oscillator shells is 201 keV. This differ-
ence is somewhat higher for T = 2 MeV and around 514
keV. However, it is more important to note the trends. While
increasing the number of shells at T = 0 and T = 1 MeV
tends to improve the convergence, it actually deteriorates it for
T = 2 MeV. Therefore, even for a nucleus near the stability
valley such as 160Gd, accurate evaluation of the free-energy
at temperatures around T = 2 MeV necessitates the use of
the continuum subtraction procedure. The effects of particle
continuum become more pronounced for nuclei near the drip
line. For 210Gd at T = 0 MeV in Fig. 1(d), the difference in
the binding energy of the predicted minimum at β2 ≈ 0.35
between 20 and 28 shells is around 50 keV. However, in
Fig. 1(e) at T = 1 MeV, the PEC does not converge since
adding four additional oscillator shells results in a decrease
of energy by more than 1 MeV. The situation is even more
obvious at T = 2 MeV in Fig. 1(f), where adding four oscil-
lator shells shifts the position of the minimum by more than 6
MeV. Therefore, for weakly bound nuclei, we can conclude
that significant problems with convergence appear already
at T = 1 MeV, much lower than the 4 MeV stated in the
literature [17,23,65].

To illustrate the impact of the continuum states, we calcu-
late the number of states in the continuum Ncont .. To determine
the single-particle energy spectrum, we perform the finite-
temperature canonical transformation of the q.p. basis. Notice
that, at finite temperature, canonical transformation is just an
approximation since the particle density matrix is not local-
ized [35,64]. The number of states in the continuum is defined
as the number of single-particle states with positive canoni-
cal single-particle energies, εi > 0. This amounts to Ncont. =
2

∑
εi>0 v2

i , where v2
i denotes the occupation factor in the

canonical basis. The results for neutron states of 210Gd, cal-
culated for β2 which minimizes the free energy, are displayed
in Fig. 2. Starting from zero temperature, we found approx-
imately four neutrons in the continuum part of the energy
spectrum. However, due to the specific structure of the RHB
wave functions and continuum coupling, the number of states
in the continuum is independent of the basis size and results
converge well. Once the temperature is increased, the number
of continuum states increases with the basis size. At T = 1

014318-4



GLOBAL PROPERTIES OF NUCLEI AT … PHYSICAL REVIEW C 109, 014318 (2024)

(a) (b) (c)

(d) (e) (f)

FIG. 1. Potential-energy curves (F, β2) of (a)–(c) 160Gd and (d)–(f) 210Gd, calculated for T = 0, 1, and 2 MeV. Results are shown for
different numbers Nosc of harmonic-oscillator shells without the BLV prescription for vapor subtraction procedure. The insets in panels (c) and
(d) display enlarged regions around the corresponding minima. Calculations are performed with the DD-ME2 interaction.

MeV, the number of neutrons in the continuum increases
from approximately 5.4 for Nosc = 20 shells to approximately
7.1 for Nosc = 28 shells. Of course, an increasing number of
particles in the continuum contributes to the tail region of
the particle density. Hence, with increasing dimension of the
basis, the density tail grows and observables can display sig-
nificant dependence on the basis dimension. At T = 2 MeV,

FIG. 2. Number of neutron continuum states Ncont. in 210Gd for
different numbers of harmonic-oscillator shells Nosc at T = 0, 1, and
2 MeV.

the number of neutrons in the continuum increases signifi-
cantly and depends linearly on the number of oscillator shells.
The tail region of the density is now even larger and behaves as
a nuclear vapor, which inflates with increasing Nosc. We notice
that a similar behavior is found within the BCS theory in the
vicinity of neutron drip lines, as demonstrated in Ref. [64].
Our results clearly show that the proper treatment of contin-
uum is essential in the description of weakly bound nuclei
nearby the drip lines, and special care must be taken at finite
temperatures.

Finally, the converged results can be obtained within the
BLV prescription by isolating the continuum states which
contribute to nucleon vapor and subtracting them from the cal-
culated observable. In this case, the free energy F is replaced
by the subtracted free energy F̄ , defined as

F̄ = FNuc+Vap − FVap, (11)

where FNuc+Vap and FVap are the free energies of the Nuc + Vap
and Vap systems, respectively. Results are shown in Figs. 3(a)
and 3(b), for 210Gd, at T = 1 and 2 MeV, and converge very
well with respect to the increasing size of the basis. Indeed,
since the change in free energy obtained when increasing
the basis size from 20 to 28 HO shells is around 100 keV,
such results can be used to determine the nuclear drip lines
with precision below those occurring due to systematic model
uncertainties.

IV. NEUTRON EMISSION LIFETIMES

Atomic nuclei at finite-temperature are found in highly
excited metastable states that can decay either by particle
emission, provided that the excitation energy is above the
particle-decay threshold, or by gamma emission [17]. In
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(a)

(b)

FIG. 3. (a), (b) Same as in Fig. 1, shown for 210Gd at tempera-
tures T = 1 and 2 MeV, but with subtracted free energy F̄ calculated
using the BLV prescription.

particular, as the temperature increases, more and more
nuclei gain a finite width for neutron emission. The neutron
emission width �n can be obtained from the nucleosynthesis
formula [23]

�n

h̄
= ngas〈σv〉, (12)

where σ is the neutron capture cross section, 〈v〉 is the
average velocity of particles in the external nucleon gas, and
ngas is the neutron vapor density calculated as number of
neutrons in the vapor divided by the discretization volume.
We point out that, although the number NVap of neutrons
in the vapor and the discretization volume Vmax depend on
the number of shells, ngas is independent of the basis size
because it is obtained by using their ratio. However, due
to the nature of HO basis functions and boundary effects,
there is a small basis-dependence, which is much less
significant than the temperature effects on the lifetimes. We
approximate the neutron cross section as σ = πR2, where the
root-mean-square radius R = (〈r2〉)1/2 of the atomic nucleus
is obtained from the FT-RHB calculations. Finally, the
neutron emission lifetime can be calculated as τn = h̄/�n. The
statistical velocity is calculated from the finite-temperature
canonical single-particle neutron energies εn assuming the

Fermi-Dirac distribution of neutrons f (εn), therefore [38]

〈v〉 =
∫ ∞

0 f (εn)v(εn)
√

εndεn∫ ∞
0 f (εn)

√
εndεn

, v(εn) =
√

2εn

mn
, (13)

where mn is the neutron mass. We obtain the canonical
single-particle neutron vapor states by diagonalizing the
neutron vapor density ρ̃n and transforming the corresponding
quasiparticle energies in this basis. This procedure is
approximately valid at finite-temperature.

We present our calculations for even-even nuclei with
8 � Z � 104. Calculations are performed with the DD-ME2
functional at T = 1 and 2 MeV and are displayed in Figs. 4(a)
and 4(b). We choose relatively high values of temperatures
because Eq. (12) is valid for highly excited nuclei. The density
of states for those nuclei is described by a simple Bethe’s
formula [14]. Indeed, as we demonstrate later, once both
pairing and deformation effects collapse [cf. Sec. V A and
V C], the nucleus approximately behaves as a Fermi gas.
We calculate the even-even nuclear landscape from the two-
proton, up to the two-neutron drip line. The drip lines are
defined as [53]

S2n = F̄ (Z, N ) − F̄ (Z, N − 2) � 0, (14)

S2p = F̄ (Z, N ) − F̄ (Z − 2, N ) � 0, (15)

where S2n (S2p) is the two-neutron (two-proton) separation
energy, and F̄ (Z, N ) the subtracted free energy of nucleus.
This definition is a straightforward generalization of the zero-
temperature drip line, obtained by substituting the binding
energy E (Z, N ) with the subtracted free energy F̄ (Z, N ) =
Ē (Z, N ) − T S̄(Z, N ), where S̄ is the subtracted entropy [53].
In Fig. 4(a) we show the distribution of the neutron emission
lifetimes in the nuclide map calculated at T = 1 MeV. All
even-even nuclei between two-proton and two-neutron drip
lines are included. It is interesting to notice that nuclei on
the proton-rich side of the nuclide map also acquire a finite
width for neutron emission at T = 1 MeV. Only a handful
of proton-rich nuclei with Z � 52 are stable against neutron
emission (shown as black squares). As the neutron number is
increased, the neutron emission widths also increase, reducing
the lifetimes by many orders of magnitude. This result is easy
to explain in terms of more neutrons being scattered into the
vapor states, thus increasing the neutron vapor density. At
T = 1 MeV, pairing effects collapse, while a significant num-
ber of nuclei still display deformation properties. The shell
effects are still present thus increasing the stability against
neutron emission compared with neighboring nuclei. The
two-neutron drip line nuclei have lifetimes of the order 10−21–
10−22 s, comparable to the nuclear thermalization timescale.
By increasing the neutron number, τn decreases below the
thermalization time, resulting in a nonequilibrated emission
of nucleons [66]. To be more precise, the two-neutron drip
line at finite temperature should be interpreted as a region that
separates the equilibrated neutron emission from the violent
multiparticle emission beyond the finite-temperature drip line.
At T = 2 MeV in Fig. 4(b) the distribution of neutron emis-
sion lifetimes across the nuclear chart looks much smoother
because the shell effects vanish at this temperature. The
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(a) (b)

FIG. 4. Distribution of the neutron emission lifetimes τn for even-even nuclei with proton number in range 8 � Z � 104 at temperatures
(a) T = 1 MeV and (b) T = 2 MeV. Black dotted lines denote the shell closure numbers, while black squares represent nuclei stable with
respect to neutron emission. Calculations are performed with the DD-ME2 interaction.

two-neutron drip line is approximately linear function of the
neutron number, while the two-proton drip line departs from
the simple linear behavior due to Coulomb repulsion. Nuclei
at such high temperatures are well described by the hot liquid-
drop model, requiring no shell-correction terms. Therefore,
our results tend to agree with those from Refs. [18,66] above
T = 2 MeV. The neutron lifetimes increase almost monoton-
ically with the neutron number. However, in comparison to
the calculation at T = 1 MeV, the average neutron emission
lifetimes at the neutron drip line are closer to 10−22 s. We

notice that, at T = 2 MeV, no stable nuclei exist with respect
to neutron emission.

V. SELECTED BULK PROPERTIES
AT FINITE TEMPERATURE

Within the BLV subtraction procedure, the mean value of
an observable 〈O[ρ̄]〉T at temperature T is a function of the
subtracted density (ρ̄), defined as the difference between the
density of the Nuc + Vap system (ρ) and Vap system (ρ̃).

FIG. 5. Distribution of the isoscalar quadrupole deformation β IS
2 for even-even nuclei with proton number 8 � Z � 104 at temperatures

T = 0, 0.5, 1, and 2 MeV. Calculations are performed with DD-ME2 (left panels), DD-PC1 (middle panels), and DD-PCX (right panels)
interactions.
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For the relativistic EDFs, the baryonic density is equal to the
vector density ρ̄v , which satisfies Eq. (6). In the following, we
present the results for the temperature evolution of isoscalar
quadrupole deformation, neutron-skin thickness, pairing gap,
entropy, and excitation energy, for even-even 8 � Z � 104
nuclei.

A. Quadrupole deformation

Starting from the proton (neutron) subtracted vector den-
sity ρ̄

p
v (ρ̄n

v ) the proton (neutron) quadrupole moment is
defined as [46]

Qp
20 =

∫
d3rρ̄ p

v (r)(2z2 − r2
⊥),

Qn
20 =

∫
d3rρ̄n

v (r)(2z2 − r2
⊥), (16)

where (r⊥, z) are the cylindrical coordinates. It is more
customary to express the results in terms of dimensionless
variable β

p
2 (βn

2 ) defined as

β
p
2 = 1

2

√
5

4π

3

4π
Z (N )R2

0Qp
20, (17)

βn
2 = 1

2

√
5

4π

3

4π
Z (N )R2

0Qn
20, (18)

where Z (N ) denotes the proton (neutron) number and R0 =
1.2A1/3 fm. The isoscalar quadrupole deformation is defined
as βIS

2 = β
p
2 + βn

2 . In Fig. 5, we show the distribution of
the isoscalar quadrupole deformation βIS

2 across the chart of
nuclides for three relativistic EDFs employed in this work:
DD-ME2, DD-PC1 and DD-PCX. Calculations are performed
at temperatures T = 0, 0.5, 1, and 2 MeV. At T = 0 MeV we
observe spherical shapes in the vicinity of closed shells and
deformed for midshell nuclei. Temperature effects at T = 0.5
MeV are too small to alter the shell structure and deformation
remains almost unchanged. At T = 1 MeV, we observe signif-
icant increase in number of spherical nuclei and by increasing
the temperature further (T = 2 MeV) most nuclei display
spherical shapes except those nuclei with large deformation
at T = 0 MeV. Apart from small differences mainly for light
nuclei, all employed functionals predict similar isoscalar de-
formations for all temperatures.

To study sudden changes in nuclear shape from T = 1
MeV to T = 2 MeV, in Figs. 6(a)–6(e) we show the distri-
bution of βIS

2 across the chart of nuclides on a more refined
temperature mesh: T = 1.0, 1.2, 1.5, 1.8, and 2.0 MeV. Cal-
culations were performed by using the DD-ME2 interaction,
but we notice that both DD-PC1 and DD-PCX interactions
follow the similar behavior. The change of nuclear shapes is
only moderate up to T = 1 MeV. However, by further increas-
ing the temperature, it is clearly observed how the islands
of axial-deformation gradually reduce in between the shell
closure numbers.

To investigate the mechanism behind the temperature
evolution of quadrupole deformation, we show the PEC for
150Nd in Fig. 7(a), together with deeply bound single-particle
canonical states shown in Fig. 7(b). The subtracted free energy

(a)

(b)

(c)

(d)

(e)

FIG. 6. Distribution of the isoscalar quadrupole deformation β IS
2

for even-even nuclei with proton number 8 � Z � 104 on a more re-
fined temperature mesh T = 1.0, 1.2, 1.5, 1.8, and 2.0 MeV. Results
are shown for the DD-ME2 interaction.

in Fig. 7(a) is calculated relative to the global minimum at
that temperature and denoted as �F̄ . Calculations are again
performed with the DD-ME2 interaction. At T = 0 MeV, the
PEC for 150Nd displays minima at oblate sides (located at
β2 = −0.22) and prolate sides (located at β2 = 0.29), with the
latter being the global minimum. We note that the spherical
configuration (β2 = 0) is located approximately 6 MeV above
the global minimum. At T = 1 MeV, both prolate and oblate
minima are found closer to the spherical configuration. The
oblate minimum is located at β2 = −0.17 and the prolate
minimum at β2 = 0.23. The excitation energy for the spher-
ical shape decreases by around 3 MeV. By further increasing
the temperature, at T = 2 MeV, the PEC displays a flat region
around β2 = 0, which is a signature of the phase transition.
Finally, at T = 3 MeV, the minimum is at spherical shape.
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(a) (b)

FIG. 7. (a) Potential-energy curves of 150Nd isotope for temperatures in range T = 0–3 MeV calculated with the DD-ME2 interaction. The
�F̄ represents the relative subtracted free energy with respect to the minimum energy. (b) The neutron single-particle canonical Nuc + Vap
states of 150Nd isotope at temperatures T = 0–3 MeV (blue lines) together with the corresponding spherical states at T = 3 MeV (red line).
The neutron chemical potential λn is indicated by a solid brown line.

The occurrence of phase shape transitions with increasing
temperature can be explained as follows: at finite
temperatures, the nucleus gains approximately kBT additional
excitation energy from the environment, and the population
of the single-particle levels changes around the Fermi level.
At high temperatures, the shell effects disappear, and with
the depopulation of the intruder states, which drive the
deformation, nuclei become spherical at higher excitation
energies [50,67–69].

To study the signature of the phase-transition at the mi-
croscopic level, in Fig. 7(b), we also display the neutron
single-particle canonical levels of the configuration that min-
imizes the free energy for temperatures up to T = 3 MeV,
starting from zero temperature with a step of 0.1 MeV.
Canonical single-particle levels up to the continuum threshold
(ε < 0) are shown in the figure. The canonical single-particle
states are characterized by the projection of the total an-
gular momentum on the z axis � and parity π . Although
only an approximation at finite temperatures, the canonical
single-particle states suffice to visualize the mechanisms that
drive the nucleus to spherical configuration. Starting from
low temperatures up to T = 0.5 MeV, we observe that states
corresponding to the same angular momentum J are broken
into multiple states represented by the angular momentum
projection � and parity π . The effect of the pairing col-
lapse around T = 0.5 MeV clearly leaves a signature on the
single-particle levels. As the temperature increases, the en-
ergy splitting between these states becomes reduced, finally
resulting in restored degeneracy at around T = 2 MeV. In the
last column in Fig. 7(b), we also show the energy spectrum at
T = 3 MeV as calculated by imposing the spherical symmetry
(red lines). We notice a perfect match between the spherical
and axially deformed calculations at T = 3 MeV. Therefore,

we anticipate a shape phase-transition in 150Nd at tempera-
tures around 3 MeV.

B. Neutron-skin thickness

The neutron-skin thickness, defined as the difference be-
tween the neutron and proton root-mean-square (rms) radii,

�Rnp =
√〈

R2
n

〉 − √〈
R2

p

〉
, (19)

provides a direct measure of the isospin asymmetry of the
system and is related to the isovector properties of the nuclear
matter [70–72]. The neutron (proton) rms radius is calculated
as 〈R2

n〉 = ∫ ∞
0 d3rr2ρ̄n

v (r) [〈R2
p〉 = ∫ ∞

0 d3rr2ρ̄
p
v (r)], where ρ̄n

v

(ρ̄ p
v ) denotes the subtracted neutron (proton) vector density.
For nuclei in the vicinity of drip-lines, it is important

to properly treat the continuum contribution with increasing
temperature. This is especially pronounced for neutron states
since there is no Coulomb repulsion to provide a potential
barrier for continuum states. Without the vapor subtraction,
one would get artificially increasing neutron radii when ap-
proaching the drip-line.

The distribution of the neutron-skin thickness across the
nuclide map, calculated at T = 0, 0.5, 1, and 2 MeV, is
shown in Fig. 8 for three functionals considered in this work:
DD-ME2, DD-PC1, and DD-PCX. First, we observe that the
scale is skewed towards positive �Rnp on the neutron-rich side
compared with the negative �Rnp on the proton-rich side. This
is simply a consequence of the Coulomb repulsion between
the protons. Results obtained for the DD-ME2 and DD-PC1
functionals are almost consistent, while the DD-PCX predicts
lower �Rnp for nuclei near the neutron drip-line. Such an
outcome is related to different isovector properties among the
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FIG. 8. Same as in Fig. 5, but for the neutron-skin thickness, defined as the difference between the neutron and proton root-mean-square
radii.

functionals. It is well established that �Rnp shows a linear
dependence on the symmetry energy (J) and its slope (L) at
saturation density, which is the smallest for DD-PCX. Such a
trend is maintained for all temperatures up to T = 2 MeV.

To better infer the finite-temperature effects on the neutron
skin, in Fig. 9, we display the temperature dependence of
the neutron-skin thickness for Z = 20, 60, and 82 isotopic
chains, calculated with the DD-ME2 interaction. We notice
that, for T = 0, 0.5, and 1 MeV, the neutron-skin thickness is
slightly influenced by the temperature. Only at T = 2 MeV,
for Z = 60 and 82 chains do we observe a more pronounced

departure from zero-temperature results, especially for
larger neutron numbers. This is a consequence of the shape
phase-transition which occurs at T ≈ 2 MeV. Starting from
the calcium chain (Z = 20) in Fig. 9(a) for T � 1 MeV, the
shell effects are clearly visible in �Rnp isotopic dependence,
especially around N = 28 and N = 40, for which our calcu-
lations predict pairing collapse. However, as the temperature
is increased, the pairing effects are washed out and isotopic
dependence of �Rnp becomes smoother. At T = 2 MeV all
calcium isotopes are in a normal state (no pairing correlations)
with spherical shape. This leads to linear dependence of �Rnp

(a) (b) (c)

FIG. 9. The neutron-skin thickness �Rnp as a function of the neutron number for (a) Z = 20, (b) Z = 60, and (c) Z = 82 isotopic chains
at temperatures T = 0, 0.5, 1.0, and 2.0 MeV. Calculations are performed with the DD-ME2 interaction.
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(a) (b) (c)

(d) (e) (f)

FIG. 10. The neutron-skin thickness �Rnp for Z = 20, 50, and 82 isotopic chains at (a)–(c) T = 1 and (d)–(f) T = 2 MeV. Calculations are
performed with the DD-PCX interaction both with (orange circles) and without BLV subtraction (green triangles). Also shown are the results
from Ref. [40] based on the nonrelativistic SkM∗ interaction (blue boxes).

on neutron number. The deviations from a linear trend for
N < 20 are due to the Coulomb effects. For the neodymium
chain [see Fig. 9(b)], up to N ≈ 82 the neutron-skin thickness
is almost temperature independent. For N > 82 one can
observe temperature effects starting already at T = 1 MeV.
These nuclei display strongly deformed prolate minima at
zero temperature. As the temperature is increased, their shape
changes from prolate deformed to spherical thus causing an
almost linear dependence of �Rnp on neutron number for
T = 2 MeV. We notice that, on average, the neutron-skin
thickness at T = 2 MeV is increased compared with lower
temperatures, as one would expect. Finite-temperature effects
smear the Fermi surface, which leads to the occupation of
higher-energy single-particle states, spreading the density tail.
Similar trends are also observed for the lead chain in Fig. 9(c).
We notice that in the region between N = 130 and N = 160,
where �Rnp is not a linear function of N , nuclei display
prolate shape (see Fig. 5). As the deformation effects are
washed out at T = 2 MeV, �Rnp attains linear dependence
on N . To conclude our analysis of temperature dependence of
neutron-skin thickness, increasing the temperature suppresses
the shell effects, thus causing a linear dependence of �Rnp

on neutron number N . On average, for neutron-rich nuclei
�Rnp increases with temperature, but only moderately. Our
results are also in agreement with the findings in Ref. [52],
in which proton and neutron radii stay almost constant up
to T = 2 MeV. Considering the strong correlation between
the neutron-skin thickness and the slope of the symmetry

energy L, such a result indicates the stability of the L for
temperatures up to T = 2 MeV, as remarked in Refs. [55,73].

Finally, in Fig. 10, we show a comparison of our results
with those from Ref. [40] for the isotopic chains of calcium
(Z = 20), tin (Z = 50), and lead (Z = 82). Since the nonrel-
ativistic calculations in Ref. [40] were performed without the
continuum subtraction procedure, we display results obtained
with the DD-PCX interaction both with and without the BLV
subtraction procedure for a fair comparison. We notice an
overall good agreement between all three calculations for
nuclei close to stability at T = 1 MeV [see Figs. 10(a)–10(c)],
and some differences are observed only for neutron-rich
isotopes towards the neutron drip-line. However, at T = 2
MeV [see Figs. 10(e) and 10(f)], the continuum contribu-
tion becomes much more pronounced. Both relativistic and
nonrelativistic calculations without the continuum subtraction
provide consistent results for the neutron skins that follow
an almost linear trend with neutron number. On the contrary,
calculations with the continuum subtraction display a clear
departure from the linear trend for moderately neutron-rich
isotopes. Therefore, in order to obtain an accurate description
of the neutron skin at finite temperature, the continuum sub-
traction has to be implemented even at temperatures around
T = 2 MeV.

C. Pairing gaps

One possible measure of the pairing correlations strength
is the neutron (proton) pairing gap �n(p). Although they can
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FIG. 11. Distribution of the neutron pairing gap �n for even-even nuclei with proton number in range 8 � Z � 104 at temperatures T = 0
and 0.5 MeV. Calculations are performed with DD-ME2 (left panels), DD-PC1 (middle panels), and DD-PCX (right panels) interactions.

be defined in multiple ways [46], in this work we employ the
definition containing the pairing tensor κ1

�n(p) =
∑

ik κik�ik∑
k κkk

, (20)

where �ik is the pairing field. Both the pairing field and the
pairing tensor are defined in Refs. [25,33].

The influence of the finite-temperature on the pairing prop-
erties for both relativistic and nonrelativistic functionals has
been thoroughly investigated in Refs. [25,32,33,49] and there-
fore we keep our discussions here brief. The main result is
that, with increasing temperature, one reaches a critical tem-
perature where a phase transition occurs from the superfluid
to a normal state. More complex multireference calculations
as well as the ensemble averaging procedures lead to nonvan-
ishing (although small) pairing gaps [62,63]. In this study, we
omit thermal averaging because it would be computationally
prohibitive for large-scale calculation. For all three function-
als employed here (DD-ME2, DD-PC1 and DD-PCX), we use
the same separable form of the pairing interaction defined in
Refs. [33,59]. For both DD-ME2 and DD-PC1 functionals, we
use the original values of the pairing interaction parameters G
and a, while for the DD-PCX functional these parameters have
been included in the optimization procedure [54]. As a result,
the pairing strength parameters of the DD-PCX interaction are
around 10% larger compared with the DD-ME2 and DD-PC1.

The distribution of neutron and proton pairing gaps �n(p)

across the nuclide map is shown for all three functionals in
Figs. 11 and 12. Calculations are performed for temperatures
T = 0 and 0.5 MeV. We observe that both the neutron and
proton pairing gaps vanish in the vicinity of closed shells
and increase towards the midshell nuclei. On average, the

1Within the BLV prescription we use the subtracted pairing tensor
κ̄ , but since the vapor contribution to pairing is negligible, κ ≈ κ̄ .

proton pairing gaps are larger in comparison with the neutron
pairing gaps. Due to the similar pairing strength, results for
DD-ME2 and DD-PC1 functionals are comparable, while the
DD-PCX predicts significantly larger pairing gaps. As the
temperature increases to T = 0.5 MeV, the neutron pairing
gaps vanish in a considerable number of nuclei for DD-ME2
and DD-PC1 functionals, while the results calculated with the
DD-PCX show a moderate decrease of the neutron pairing
gaps with temperature. Further increasing the temperature to
T = 1 MeV results in neutron pairing collapse for all consid-
ered functionals. The proton pairing gaps also decrease when
the temperature increases to T = 0.5 MeV, but not as dra-
matically as the neutron ones. Again, the DD-PCX shows the
least change with temperature due to the higher proton pairing
strength. By increasing the temperature to T = 1 MeV, only
very light nuclei (Z < 20) display nonvanishing proton pair-
ing correlations. Therefore, we can conclude that for the vast
majority of atomic nuclei, only deformation effects are rele-
vant above T = 1 MeV, for both proton and neutron states.

D. Entropy and excitation energy

Unlike the bulk properties discussed in the previous sec-
tion, entropy is not an observable in the sense that it could
be obtained from experiments. Nevertheless, it can provide
us with further guidance in interpreting our theoretical cal-
culations. The entropy is a direct measure of occupancy of
single-(quasi)particle orbitals and strongly correlates with the
underlying microscopic structure. It is defined as [25]

S = −kB

∑
i

[ filn fi + (1 − fi )ln(1 − fi )], (21)

where fi = [1 + exp(βEi )]−1 is the Fermi-Dirac factor for
q.p. state with energy Ei, and β = 1/kBT .

In Figs. 13(a)–13(c), we show the entropy as a function of
neutron number for selected isotopic chains Z = 20, Z = 60,
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FIG. 12. Same as in Fig. 11 but for the proton pairing gaps �p.

and Z = 100, calculated at T = 0.5, 1, and 2 MeV. Full and
dotted lines denote calculations assuming axial and spherical
symmetry, respectively. Starting from the calcium isotopic
chain in Fig. 13(a) at T = 0.5 MeV, we observe that the
entropy has highly irregular isotopic dependence. Dips ob-
served for N = 20, 28, and 40 correspond to the neutron shell
closures. From the definition of entropy in Eq. (21), it can
be inferred that only those levels with semi-occupied shells
around the Fermi level contribute to entropy. For closed shells,
all levels are almost fully occupied and only slightly smeared
around the Fermi level due to the finite-temperature effects.
Therefore, closed shells will be represented as dips when
studying the isotopic entropy dependence. As one moves
away from closed shells towards the midshell, the number
of neither completely empty nor completely occupied states
increases, resulting in entropy increasing as well. Also shown
are the results assuming spherical symmetry (dotted lines).
For the calcium isotopic chain, results between spherical and
axially symmetric calculations agree up to the two-neutron

drip line. At T = 1 MeV, the average entropy of the whole
chain increases, however, dips around magic neutron num-
bers are still pronounced. Again, we note that calculations
with assumed spherical symmetry agree well with axially de-
formed results up to N = 42. In addition to having a spherical
shape, pairing effects in calcium isotopes vanish at around
T = 1 MeV. By further increasing the temperature to T = 2
MeV, the entropy curve gets smoother since the tempera-
ture is high enough to scatter the nucleons above the closed
shells, reducing the dips at magic numbers. This is more
pronounced for heavier isotopes, where, due to the neutron
excess, nucleons can couple with the continuum more eas-
ily. In Fig. 13(b) we display the entropy as a function of
neutron number in the chain of Nd isotopes. At T = 0.5
MeV temperature, two dips in the entropy curve are visible
for magic numbers N = 82 and N = 126. By increasing the
temperature to T = 1 MeV, it is interesting to notice large
differences in entropy between axially deformed and spherical
calculations for midshell nuclei that can be explained by the

(a)

(b) (c)

FIG. 13. Entropy S as a function of neutron number for (a) Z = 20, (b) Z = 60, and (c) Z = 100 isotopic chains. The full line denotes the
axially deformed calculations while the dotted line represents calculations assuming spherical symmetry. Calculations are performed with the
DD-ME2 interaction.
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(a)

(b)

FIG. 14. Cumulative sum of the partial entropy S(εi ) of the Nuc
+ Vap system as a function of the single-particle energy εi for
(a) neutrons and (b) protons. Calculations are performed for spherical
(red circles) and prolate (blue squares) configurations in 150Nd at
T = 1 MeV with DD-ME2 interaction. Dashed vertical lines denote
corresponding Fermi levels for spherical (red) and prolate (blue)
configurations.

large prolate deformation of Nd isotopes. Since the defor-
mation effects induce degeneracy splitting between different
angular-momentum projections, there are more states among
which the occupation is scattered. This leads to a reduction in
entropy compared with the simple spherical geometry, where
the entropy is maximum at midshell. At T = 2 MeV, these
differences are still visible, although less pronounced since
the deformation splitting of single-particle levels is reduced
at higher temperature. To illustrate the origin of differences
between the entropy of spherical and axially deformed nuclei,
we investigate the changes in entropy when summation in
Eq. (21) is performed over different single-particle levels. In
particular, we express Eq. (21) as a sum over partial entropy
S(εi ) up to a certain single-particle level characterized by
energy εi. As an example nucleus, we select 150Nd at T = 1
MeV and perform calculations for spherical (β2 = 0) and
prolate (β2 = +0.3) configurations. Results for the cumula-
tive entropy

∑
εi

S(εi ) of the Nuc + Vap system are shown
in Fig. 14(a) for neutron states and in Fig. 14(b) for proton

states. As expected, the major contribution to entropy comes
from states near the Fermi level. While we observe a smooth
increase in entropy around the Fermi level for the deformed
configuration, we notice a sharp increase in entropy around
the Fermi level for the spherical configuration. In the case
of the spherical configuration, it is evident that degenerate
states near the Fermi level have a more pronounced impact
on increasing entropy compared with the respective prolate
configuration. For instance, let us suppose that a spherical
level with angular momentum j exists around the Fermi level
with occupation close to 0.5. The deformation effects would
break this level into (2 j + 1)/2 levels (assuming time-reversal
symmetry), with occupations either slightly above or below
0.5. Consequentially, since the maximum contribution to the
entropy stems from levels with occupation 0.5, the entropy for
the deformed levels will be lower than for the corresponding
spherical levels. For 150Nd, the effect is more pronounced for
the neutron states but is significant for the proton states as
well. Therefore, deformation tends to depopulate the states in
the vicinity of the Fermi level, thus decreasing entropy.

For the fermium chain in Fig. 13(c), the entropy shows
a dip around the N = 184 magic number. As the tempera-
ture is increased to T = 1 MeV, there is a region between
N = 176–192, where the entropy curve follows the spherical
calculation, indicating a widening region of spherical shape
around the shell closure number with increasing temperature.
At T = 2 MeV, this region is even wider, N = 168–198, with
additional two regions displaying spherical shapes around
proton and neutron drip-lines. Therefore, we conclude that de-
formation effects lead to a reduction of entropy compared with
simple spherical calculation, confirming that entropy probes
microscopic effects within nuclear structure calculations.

Contrary to entropy, the excitation energy, defined as the
difference between the total energy of the atomic nucleus at
finite and zero temperature E∗ = E (T ) − E (T = 0), is acces-
sible in the experiments. The nucleus at finite temperature
can be conceptualized as an ensemble average over the ex-
cited states, weighted by the Boltzmann factors. Therefore,
unlike zero-temperature calculations where the mean-field so-
lution yields the ground state, at finite-temperature we have a
mixture of excited states represented by excitation energy E∗.
In Fig. 15, we show the distribution of the excitation energy
E∗ across the nuclide map for three functionals: DD-ME2,
DD-PC1 and DD-PCX. Calculations are performed at T =
0.5, 1, and 2 MeV temperatures. Starting from T = 0.5 MeV,
we observe that the excitation energy varies rapidly across
the nuclide map. The nucleon shell-closure numbers can be
recognized as dips in excitation energy. By increasing the tem-
perature to T = 1 MeV, the doubly magic nuclei (and nuclei
in their vicinity) display smaller values of excitation energy in
comparison to deformed isotopes. An interesting phenomenon
occurs at T = 2 MeV where nuclei with shell-closure have
larger excitation energies compared with other midshell nu-
clei. Indeed, by examining the results for deformed nuclei at
T = 2 MeV in Fig. 5, their signature is clearly seen in the
lower panel of Fig. 15. Once the energy gap of the closed
shells has been surmounted by additional energy, spherical
nuclei in the vicinity of shell closure are more easily ex-
cited compared with the deformed nuclei. This result is in
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FIG. 15. Distribution of the excitation energy E∗ for even-even nuclei with proton number in the range 8 � Z � 104 at temperatures
T = 0.5, 1.0, and 2.0 MeV. Calculations are performed with DD-ME2 (left panels), DD-PC1 (middle panels), and DD-PCX (right panels)
interactions.

agreement with the corresponding nonrelativistic calculation
in Ref. [40].

Furthermore, it is interesting to study the temperature de-
pendence of entropy and excitation energy for some selected
nuclei. Calculations are performed for the 126Sn isotope with
a closed proton shell and the midshell 150Nd isotope. Results
are shown in Fig. 16 for temperatures in range T = 0–2 MeV
and calculations are performed by employing the DD-ME2
functional. First, we notice that both entropy and excitation
energy increase with temperature; however, the dependence
on temperature is not smooth but rather displays visible kinks.
For 150Nd shown in Fig. 16(a), two such kinks are visible,
first at T p

c ≈ 1.1 MeV and second at T s
c ≈ 1.4 MeV. They

correspond to the critical temperature of pairing and shape
phase transition, respectively. On the other hand, in Fig. 16(b),

126Sn displays only one kink related to the pairing collapse at
T p

c ≈ 0.7 MeV. This can be understood by taking into account
the spherical shape of the 126Sn isotope for all values of
temperature due to the proton shell closure.

Once the pairing and shape effects are washed out, nucleus
behaves approximately as an idealized Fermi gas. Therefore,
entropy should be proportional to temperature S = 2aT , while
the excitation energy depends quadratically on temperature as
E∗ = aT 2. The constant of proportionality a depends on the
density of states as well as the number of nucleons [1,74]. To
compare our results with the Fermi gas model, in Fig. 16 we
include a fit to temperature dependence of S and E∗ for the
Fermi gas model. Results of the fit for the parameter a using
two different definitions are shown in Table I. Since this model
is valid for high temperatures, only temperature values in

(a) (b)

FIG. 16. Entropy S (red line) and excitation energy E∗ (blue line) as a function of temperature for (a) 150Nd and (b) 126Sn isotopes. The
dotted lines denote the fits of the calculated values of entropy and excitation energy to the expression of the Fermi gas model S = 2aT and
E∗ = aT 2. Only points with T � 1.5 MeV are included in the fit.
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TABLE I. Values of constant a obtained by fitting entropy and
excitation energy calculated with the DD-ME2 interaction to temper-
ature dependence of S and E∗ for the Fermi gas model, i.e., S = 2aT
and E∗ = aT 2. Fit was performed for two isotopes, 150Nd and 124Sn,
leading to results that are consistent within 10%.

a(150Nd) [MeV−1] a(126Sn) [MeV−1]

S = 2aT 10.96 ± 0.04 8.24 ± 0.09
E∗ = aT 2 11.89 ± 0.02 9.23 ± 0.09

range T � 1.5 MeV were included in the fit. The fitted curves
are denoted by the dotted lines in Fig. 16. The fitted values
of level-density parameter a, either to entropy or excitation
energy, for the same nucleus agree within 10%. We observe
that, once T > Tc, where Tc = max{T p

c , T s
c }, both entropy and

excitation energy approach the temperature dependence of the
Fermi gas model. These results indicate the validity of an
independent-nucleon picture at high temperatures, when shell
effects are diminished.

Finally, we compare our calculations for the excitation
energy with those obtained in Ref. [40]. For a fair compar-
ison, we note that the calculations presented in Ref. [40]
assume spherical symmetry. At temperature T = 1 MeV [see
Figs. 17(a)–17(c)], we observe large differences in midshell
nuclei originating from deformation effects, as well as the
differences in the functionals included in our calculations. The
mechanism of deformation effects in calculating the excitation
energies is similar to the one previously discussed in the

case of entropy. As the neutron drip line is approached, we
notice a significant contribution from the continuum states,
as expected. At T = 2 MeV [see Figs. 17(d)–17(f)], all nuclei
included in the calculations become spherical, leading to more
consistent results between the nonrelativistic SkM∗ and rel-
ativistic DD-PCX functionals. For neutron-rich isotopes, we
notice the crucial role of the proper continuum subtraction
procedure, while for nuclei close to the valley of stability,
discrepancies can be attributed to different EDFs. Neverthe-
less, at T = 2 MeV, excitation energies of most nuclei in a
given isotopic chain are altered by the continuum contribution.
Therefore, for accurate calculation of excitation energies, one
has to include treatment of continuum for temperatures T ≈ 2
MeV for most nuclei and even at lower temperatures for nuclei
near the drip-line.

VI. SUMMARY AND OUTLOOK

The finite-temperature relativistic Hartree-Bogoliubov
model has been supplemented with the vapor subtraction
procedure using the BLV prescription. This approach has
been employed to study global bulk properties of even-even
8 � Z � 104 nuclei. The importance of the vapor subtrac-
tion in weakly bound nuclei has been analyzed by studying
examples of 160Gd and 210Gd isotopes. For 210Gd, without
the subtraction procedure, the potential-energy curve at finite
temperature depends strongly on the size of the basis used to
discretize the FT-RHB equation. By subtracting the contribu-
tion of the vapor, results become independent of the basis size.

(a) (b) (c)

(d) (e) (f)

FIG. 17. Same as in Fig. 10 but for excitation energy E∗.
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The bulk properties of nuclei with increasing temperature
are mainly influenced by (i) decrease of pairing gaps, leading
to a transition from a superfluid to a normal state, (ii) a
shape-phase transition from an axially deformed to a spherical
configuration, and (iii) reduction of shell gaps. The results of
this work can be summarized as follows:

(1) The neutron emission lifetimes τn decrease abruptly
towards the two-neutron drip line. Furthermore, when
increasing the temperature, the neutron emission life-
times are lower and display smoother behavior across
the isotopic chains due to the reduction of shell effects.

(2) The isoscalar quadrupole deformations βIS
2 show vis-

ible changes once the temperature is T � 0.5 MeV.
Shape-phase transitions occur initially in nuclei with
small deformations and extend towards the midshell
nuclei as the temperature increases. At temperature
around T = 2 MeV, most even-even nuclei are pre-
dicted to be spherical.

(3) Neutron-skin thickness �Rnp shows only moderate
changes with increasing temperatures. At around T =
2 MeV, the isotopic dependence of �Rnp becomes
almost linear for nuclei with neutron excess. On the
other hand, proton-rich nuclei show a departure from
the linear dependence due to the Coulomb interaction.

(4) The pairing gaps are reduced with increasing tempera-
ture. The precise temperature of transition between the
superfluid and normal phase depends on the strength
of the pairing interaction, but for temperatures T � 1
MeV, pairing properties vanish for almost all nuclei,
except the lightest ones.

(5) The isotopic dependence of entropy displays a
signature of the underlying microscopic structure.
Namely, the entropy decreases towards shell-closure
numbers and reaches its peak midshell. As the
temperature is increased, shell effects are reduced and
the isotopic dependence of entropy becomes smooth.
In comparison to entropy, excitation energy shows an

opposite behavior. Due to the higher density of states
in deformed nuclei, their excitation energy is lower as
compared with spherical isotopes. Both entropy and
excitation energy display kinks near the temperature
of the pairing and shape phase transition. At high
temperatures, nuclear properties begin to mirror those
of an idealized Fermi gas.

Once the continuum is properly treated, one could extend
the results to nuclei beyond the drip line. Those nuclei would
be characterized by a nonequilibrated emission of particles,
but their bulk properties at finite-temperature could still be
inferred. Furthermore, calculations in this work do not include
odd nuclei. Within the mean-field models, odd nuclei are
usually treated within the equal-filling approximation (EFA),
however, it remains questionable how to extend the EFA
to statistical averages within the FT-RHB. Nevertheless, we
leave the consideration of odd nuclei as well as nuclei beyond
the two-nucleon drip-line for future work.
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