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Within the nuclear shell model, we derive the exact expression for the isospin-symmetry breaking correction
to the nuclear matrix element of Fermi β decays. Based on a perturbation expansion in small quantities, such
as the deviation of the overlap integral between proton and neutron radial wave functions from unity and of
the transition density from its isospin-symmetry value, we demonstrate that δC can be obtained as a sum of six
terms. These terms comprise two leading order (LO) terms, two next-to-leading order (NLO) terms, one next-
to-next-to-leading order (NNLO) term, and one next-to-next-to-next-to-leading order (NNNLO) term. While
the first two terms have been considered in a series of shell-model calculations [J. C. Hardy and I. S. Towner,
Phys. Rev. C 102, 045501 (2020), and references therein], the remaining four terms have been neglected. A
numerical calculation has been carried out for 24 superallowed 0+ → 0+ transitions (18 isotriplets and six
isoquintets) and three non-0+ → 0+ transitions, across the p to p f shells. For most 0+ → 0+ transitions, the
higher-order contribution is of the order 10−3% or smaller, well below the typical theoretical errors quantified
within the shell model with Woods-Saxon radial wave functions given in the reference cited above. However, for
specific cases such as 70Br and 74Rb, where weakly bound effect dominates, it increases considerably, becoming
comparable to or even exceeding the errors in the isospin mixing component of the LO terms. In the cases of
20Mg and 48Fe, as well as in non-0+ → 0+ transitions, the higher-order contribution becomes more substantial.
Notably, it reaches as large as −4.460% in 31Cl and −2.027% in 32Cl, due to the concurrent effect of the weakly
bound and strong isospin mixing in their daughter nuclei. In contrast, for 26P, the NLO terms, despite their
substantial magnitude, effectively cancel each other out due to their opposite signs.
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I. INTRODUCTION

The standard-model description of Fermi β decay includes
only the vector currents of the electroweak interaction. This
important feature provides a very simple relationship between
the vector-coupling constant, GV , and the f t value with theo-
retical corrections of the order of a few percent being applied
to account for radiative effects and for isospin-symmetry
breaking between a parent and a daughter state (see a recent
review [1] and references therein). It is customary to define a
corrected Ft value via

Ft = f t (1+ δ′
R)(1− δC + δNS ) = K

|MF |2G2
V

(
1+ �V

R

) , (1)

where f t is the product of the statistical rate function
( f ) and the partial half-life (t) [2], K is a combination
of fundamental constants [1], δC is the correction for the
breaking of the isospin symmetry which is the main inter-
est of the present study. The quantities �V

R , δ′
R, and δNS

are the nucleus-independent, the (Z, QEC )-dependent, and
the nuclear-structure-dependent radiative corrections, respec-
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tively [1]. The Fermi matrix element in the isospin-symmetry
limit is model-independent and can be expressed as

|MF |2 = T (T + 1) − TziTz f , (2)

where T is the isospin quantum number of the multiplet, and
Tzi and Tz f are the isospin projection quantum numbers of the
initial and final nucleus, respectively. For an isospin triplet
(T = 1) we obtain |MF |2 = 2 and hence Ft should be a
nucleus-independent quantity.

As was discovered first by Cabibbo [3], and generalized
further by Kobayashi and Maskawa [4], the vector-coupling
constant, GV , governing a semileptonic weak process is
different from the universal Fermi coupling constant, Gμ, re-
sponsible for a purely leptonic weak decay [1,5]. The reason is
that quarks participating in the weak interaction are superpo-
sition of the quark mass eigenstates. This leads to appearance
of the quark mixing matrix, or Cabbibo-Kobayashi-Maskawa
(CKM) matrix, in the charge-changing weak interaction La-
grangian. For a nucleon weak decay,

GV = Gμ|Vud |, (3)

where Vud is the upper-left element of the CKM matrix.
Therefore, precise determinations of f t values together

with theoretical corrections provide crucial information on the
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electroweak force and put constraints on physics beyond the
standard model. For example, the constancy of Ft values for
all Jπ = 0+, T = 1 → Jπ = 0+, T = 1 decays would serve
as a direct test of the conserved vector current (CVC) hy-
pothesis. The current average Ft value for the 15 best-known
superallowed transitions of isotriplets over a mass region of
10 � A � 74 is [1]

Ft = 3072.24 ± 1.85 sec (4)

with χ2/ν = 0.47.
In addition, if CVC is confirmed, |Vud | can be extracted

with a great precision from Ft via Eqs. (3) and (1), which
is important for the unitarity tests of the CKM matrix. Those
tests would put stringent limits on possible physics beyond
the standard model, such as the presence of scalar terms or
right-handed currents. Further details and the current status of
the domain can be found in Ref. [1].

Although the δC correction is small, it is significant, and
its associated theoretical errors, at present, dominate the un-
certainty of |Vud | because of the very high precision reached
on the experimental side and in the calculation of radiative
corrections [1]. Within the shell-model approach [6–8], δC is
usually separated in two components, namely,

δC ≈ δC1 + δC2, (5)

where the first term on the right-hand side (r.h.s.) appears
due to isospin-symmetry breaking effects in the configura-
tion mixing induced by isospin-nonconserving forces in an
effective shell-model Hamiltonian, whereas the second term
accounts for a mismatch between neutron and proton single-
particle radial wave functions.

Calculations based on Eq. (5) have provided the best set
of δC values in eliminating the considerable scatters present
within the uncorrected f t values and, at the same time, excel-
lently supported the top-row unitarity of the CKM matrix (see
for example Refs. [1,9]). However, we recall that expression
(5) is only a lowest order approximation and its validity should
be tested numerically for a wide variety of nuclei. The split-
ting of the correction into two terms was criticized by some
authors, e.g., [10]. At the same time, direct calculation of the
realistic Fermi matrix element using isospin-nonconserving
shell-model Hamiltonian and realistic single-particle wave
functions is very slowly converging. In our previous study we
were limited to lighter nuclei [11]. It is the purpose of the
present study to derive a suitable formalism for missing higher
order terms and to estimate their values from a numerical
calculation in the framework of the shell model with Woods-
Saxon radial wave functions.

The paper is structured as follows. In Sec. II we present
our theoretical formalism based on the shell model. Namely,
starting from the basic definition of the Fermi β decay ma-
trix element within the closure approximation, we derive the
isospin-symmetry-breaking corrections, including the leading
order (LO) and the higher order terms, and we discuss their
properties. In the last part of this section, we generalize this
idea and derive expressions for corrections within the parent-
age expansion formalism. In Sec. III, we present numerical
calculations of the higher order terms and discuss their pos-
sible impact on the Fermi matrix element, as well as their

relevance for the tests of the standard model. Conclusions and
perspectives are given in Sec. IV.

II. GENERAL SHELL-MODEL FORMALISM

A. Closure approximation

As a first step for deriving the exact shell-model expression
of δC , we write the nuclear matrix element for a Fermi transi-
tion from an initial state |i〉 to a final state | f 〉 in the angular
momentum coupled form, namely,

M±
F =

∑
kakb

〈kaτa‖τ±‖kbτb〉OBTD(kaτakbτbi f λ), (6)

where |kaτa〉 ∈ | f 〉 and |kbτb〉 ∈ |i〉 with ka/b standing for the
set of spherical quantum number (nl j) of state a/b and τa/b

for the isospin projection quantum number (we use the isospin
convention of τp = − 1

2 for protons and τn = 1
2 for neutrons).

The ± sign corresponds to the nuclear β± decay and τ± is the
isospin raising (upper sign)/lowering (lower sign) operator.
The one-body transition density (OBTD) is defined as

OBTD(kaτakbτbi f λ) = 〈 f ‖[a†
kbτb

⊗ ãkbτb

]λ‖i〉√
2λ + 1

, (7)

where λ = 0(1) for Fermi (Gamow-Teller) β decay. The dou-
ble bars in the reduced matrix elements in Eqs. (6) and (7)
denote a reduction in angular momentum space.

The reduced single-particle matrix element in Eq. (6) can
be written in a close form as follows:

〈kaτa‖τ±‖kbτb〉 = θF (lalb ja jb)�τaτb
kakb

ξτaτb, (8)

where the first factor, θF (lalb ja jb), depends on the orbital and
total angular momenta of the single-particle states involved,
and therefore specifies information on the transition’s selec-
tion rule. For a Fermi operator, acting between the states of the
same isospin multiplet (isobaric analog states), the function
θF (lalb ja jb) has a very simple expression

θF (lalb ja jb) =
√

(2 ja + 1)δlalbδ ja jb . (9)

The second factor on the r.h.s. of Eq. (8), �
τaτb
kakb

, is the overlap
integral of single-particle radial wave functions:

�
τaτb
kakb

=
∫ ∞

0
Rτa

ka
(r)Rτa

kb
(r)r2dr < 1. (10)

Note that if one uses harmonic oscillator functions which
are isospin-invariant as employed in the conventional shell
model, �

τaτb
kakb

reduces to the normalization integral. How-
ever, with realistic single-particle wave functions, such as
the eigenfunctions of Woods-Saxon or Hartree-Fock poten-
tials with Coulomb and nuclear isovector terms included, the
integral �

τaτb
kakb

slightly deviates from unity. Furthermore, the
inclusion of an isospin-nonconserving term in the mean-field
potential leads to a nodal mixing in the eigenfunctions, and
hence transitions between orbitals with different numbers of
nodes are not strictly forbidden [12,13]. In general, this effect
cannot be taken into account in a straightforward manner,
because of the requirement of a huge model space.

The isospin component, ξτaτb , of Eq. (8) is given by

ξτaτb = 〈τa|τ±|τb〉 =
{

1 for τb = τa ∓ 1,

0 otherwise. (11)
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Within the framework of the shell model with a realistic
basis, isospin-symmetry breaking can impact the nuclear ma-
trix element of the Fermi operator in two different ways: i) it
creates differences in the structure of the initial and final states
due to isospin mixing induced by isospin-nonconserving com-
ponents of the effective shell-model Hamiltonian (this leads
to the deviation of one-body transition densities from their
isospin-symmetry-limit values), and ii) it causes deviation of
the overlap integrals (10) from unity due to Coulomb and
nuclear isovector terms present in a realistic mean-field po-
tential. Both effects lead to a reduction in absolute value of
the Fermi matrix element [6].

Therefore, it is natural to rearrange the M±
F expression as

M±
F =

∑
kakb

θF (lalb ja jb)ξτaτbOBTDT (kaτakbτbi f λ)

−
∑
kakb

θF (lalb ja jb)τaτb
kakb

ξτaτbOBTDT (kaτakbτbi f λ)

−
∑
kakb

θF (lalb ja jb)ξτaτbD(kaτakbτbi f λ)

+
∑
kakb

θF (lalb ja jb)τaτb
kakb

ξτaτbD(kaτakbτbi f λ), (12)

where OBTDT (kaτakbτbi f λ) stands for the isospin-
symmetry limit of the one-body transition density and
D(kaτakbτbi f λ) for its deviation from the corresponding
isospin-nonconserving value:

D(kaτakbτbi f λ) = OBTDT (kaτakbτbi f λ)

− OBTD(kaτakbτbi f λ). (13)

The quantity 
τaτb
kakb

denotes the deviation from unity of the
overlap integral, i.e.,


τaτb
kakb

= 1 − �
τaτb
kakb

. (14)

We remark that 
τaτb
kakb

is always positive, while D(kakbi f λ)
can be either positive or negative. In what follows we con-
sider transitions between states for which isospin-symmetry
is only weakly broken. In this case, 

τaτb
kakb

and D(kakbi f λ) are
sufficiently small quantities, so they can serve as perturbation
parameters.

The first term on the r.h.s. of Eq. (12) corresponds to the
Fermi matrix element in the isospin-symmetry limit, M±

F . We
can therefore use it to factorize Eq. (12) as

M±
F = M±

F

[
1 − 1

M±
F

∑
kakb

θF (lalb ja jb)τaτb
kakb

ξτaτb

× OBTDT (kaτakbτbi f λ)

− 1

M±
F

∑
kakb

θF (lalb ja jb)ξτaτbD(kaτakbτbi f λ)

+ 1

M±
F

∑
kakb

θF (lalb ja jb)τaτb
kakb

ξτaτbD(kaτakbτbi f λ)

]
.

(15)

The last three terms on the r.h.s. of Eq. (15) appear due to
isospin-nonconservation. If isospin symmetry is preserved,
those terms vanish and, hence, M±

F = M±
F .

At the next step, we square both sides of Eq. (15) and
rearrange the result in the following form:

|M±
F |2 = |M±

F |2(1 − δC ), (16)

where the total isospin-symmetry-breaking correction, δC ,
represents a sum of six terms:

δC = δC1 + δC2 + δC3 + δC4 + δC5 + δC6. (17)

Here, the bar indicates that the correction terms are evaluated
within the closure approximation. A more extended treatment
is present in Sec. II B.

The first and second terms on the r.h.s. of Eq. (17) are the
two usual LO terms. It is interesting to note that, at this lowest
order approximation, the isospin mixing and the radial mis-
match effects can be accounted for as two separate correction
terms. The isospin-mixing correction corresponds to δC1. This
correction term is calculated using an isospin-nonconserving
effective shell-model Hamiltonian and the harmonic oscillator
basis, such as

δC1 = 2

M±
F

∑
kakb

θF (lalb ja jb)ξτaτbD(kaτakbτbi f λ),

= 2 − 2

M±
F

∑
kakb

θF (lalb ja jb)ξτaτb

× OBTD(kaτakbτbi f λ). (18)

The radial mismatch correction corresponds to δC2. This
correction term is calculated using an isoscalar effective
shell-model Hamiltonian and realistic radial wave functions,
namely,

δC2 = 2

M±
F

∑
kakb

θF (lalb ja jb)τaτb
kakb

ξτaτb

× OBTDT (kaτakbτbi f λ),

= 2 − 2

M±
F

∑
kakb

θF (lalb ja jb)�τaτb
kakb

ξτaτb

× OBTDT (kaτakbτbi f λ). (19)

The third and the fourth terms on the r.h.s. of Eq. (17) are
the next-to-leading order (NLO) terms. The former depends
on both 

τaτb
kakb

and D(kaτakbτbi f λ), therefore it must be eval-
uated using both an isospin non-conserving Hamiltonian and
realistic radial wave functions. It can be expressed as

δC3 = − 2

M±
F

∑
kakb

θF (lalb ja jb)τaτb
kakb

ξτaτbD(kaτakbτbi f λ),

= −δC2 + 2

M±
F

∑
kakb

θF (lalb ja jb)τaτb
kakb

ξτaτb

× OBTD(kaτakbτbi f λ). (20)
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In contrast, the latter is simply a function of the two LO
terms, which can be written as

δC4 = − (δC1 + δC2)2

4
. (21)

The fifth and the sixth terms on the r.h.s. of Eq. (17) are
the next-to-next-to-leading order (NNLO) and next-to-next-
to-next-to-leading order (NNNLO) terms, respectively. δC5 is
determined by the two NLO terms,

δC5 = − (δC1 + δC2)δC3

2
= −δC3

√
|δC4|, (22)

while δC6 is determined only by δC3 as

δC6 = − (δC3)2

4
. (23)

Apparently, one only needs to perform shell-model calcu-
lations for the first three terms of Eq. (17) because the other
three terms are just combinations of them. It can be also
noticed that the LO terms are generally positive as can be seen
from the previous calculations [6,7], δC4 and δC6 are obviously
negative, δC3 can be negative or positive, while the sign of δC5

is opposite to the sign of δC3.

B. Parentage expansion formalism

The proton and neutron single-particle wave functions used
for the evaluation of the overlap integrals depend on the type
and parametrization of the realistic single-particle potential.
For example, Towner and Hardy [6] worked mainly with a
phenomenological Woods-Saxon potential, whereas Ormand
and Brown [8] employed a local equivalent potential based
on a self-consistent Hartree-Fock calculation with an effective
zero-range Skyrme interaction (see also a recent study in the
latter approach in Ref. [14]). In both cases, the chosen poten-
tial was thoroughly readjusted so that the energy eigenvalues
would match the experimental separation energies. This pro-
cedure ensures the robustness of radial wave functions in the
asymptotic region, as is clear from the following equation:

R(r) → exp

(
−

√
2m|ε|r

h̄

)

with ε and m denoting the single-particle energy and the
nucleon mass, respectively.

In order to specify separation energies needed to constraint
the potential depth we insert a complete set of states |π〉 of the
(A − 1)-nucleon system into the one-body transition densities
in Eq. (7) between the creation and annihilation operators. As
a result, δC2 takes the form

δC2 = 2

M±
F

∑
kakbπ

θF (lalb ja jb)τaτbπ
kakb

ξτaτb�( ja jbJiJf Jπλ)

× AT ( f ; πkaτa)AT (i; πkbτb), (24)

where AT ( f ; πkaτa) and AT (i; πkbτb) stand for the spec-
troscopic amplitudes obtained from an isoscalar effective

shell-model Hamiltonian. They are defined as

AT ( f ; πkaτa) = ( f ‖a†
kaτa

‖π )√
2Jf + 1

(25)

and

AT (i; πkbτb) = (i‖a†
kbτb

‖π )√
2Ji + 1

, (26)

where Ji and Jf are angular momenta of the initial and final
states, respectively.

Again, double bars in Eqs. (25) and (26) denote reduction
in angular momentum space. It should be also noted that
we use round brackets for an isospin-invariant many-particle
state. 

τaτb
kakb

in Eq. (24) contains an additional label π , indi-
cating that it is evaluated with radial wave functions whose
asymptotic form matches separation energies with respect to
excited states of the (A − 1)-nucleon system. More details can
be found in Ref. [6].

The function �( ja jbJiJf Jπλ) appearing in Eq. (24) is given
by

�( ja jbJiJf Jπλ) = √
(2Ji + 1)(2Jf + 1)(−1)Jf +Jπ + ja+λ

×
{

Ji Jf λ

jb ja Jπ

}
, (27)

where Jπ is the angular momentum of the intermediate state
|π〉.

In the same way, the expression of δC3 is evaluated as

δC3 = −δC2 + 2

M±
F

∑
kakbπ

θF (lalb ja jb)τaτbπ
kakb

ξτaτb

×�( ja jbJiJf Jπλ)A( f ; πkaτa)A(i; πkbτb). (28)

It can be remarked here that the structure of the second term
on the r.h.s. of Eq. (28) looks very similar to that of δC2,
except that AT ( f ; πkaτa) and AT (i; πkbτb) are replaced with
the spectroscopic amplitudes calculated using an isospin non-
conserving shell-model Hamiltonian (without superscript T ).
Furthermore, δC3 will be negative if this term is smaller than
δC2 and positive in the opposite case.

In contrast, the isospin-mixing correction [the first term on
the r.h.s. of Eq. (17)] is not affected by this expansion because
it does not depend on radial wave functions. Therefore, we
can write

δC1 = δC1. (29)

All the other correction terms must be re-evaluated, taking
into account the parentage expansion. In particular, δC4 be-
comes

δC4 = − (δC1 + δC2)2

4
, (30)

the new expression for δC5 reads

δC5 = − (δC1 + δC2)δC3

2
, (31)

and similarly for δC6 we have

δC6 = − (δC3)2

4
. (32)
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We notice that calculations in the full parentage expansion
formalism consume much more computational resources than
calculations in the closure approximation. In general, 100
intermediate states of each spin and parity must be included,
otherwise the corrections would not converge. The numerical
aspects of the calculation of δC2 for the superallowed Fermi
transitions of isotriplets in the sd shell have been discussed in
Ref. [7].

III. NUMERICAL CALCULATION
OF THE HIGHER ORDER TERMS

Within the shell-model formalism discussed in the previous
section, we have carried out a numerical calculation of the
higher order terms for three distinct types of Fermi transitions,
including

(i) Superallowed 0+ → 0+ transitions within isotriplets:
10C, 14O, 18Ne, 22Mg, 26mAl, 26Si, 30S, 34Cl, 34Ar,
42Ti, 46V, 46Cr, 50Mn, 50Fe, 54Co, 54Ni, 70Br, and
74Rb,

(ii) Superallowed 0+ → 0+ transitions within isoquin-
tets: 20Mg, 24Si, 28S, 32Ar, 44Cr, and 48Fe, and

(iii) Non-0+ → 0+ transitions, including those from the
first 3+, T = 2 state in 26P, the first 1+, T = 1 state
in 32Cl, and the first 3

2
+
, T = 3

2 state in 31Cl, where
a strong isospin mixing in their final states has been
observed [15–18].

We selected the Cohen-Kurath interaction [19] for nuclei
with a mass between 10 and 14. For the next heavier nuclei up
to A = 25, we chose the McGrory-Wildenthal-Reehal interac-
tion [20]. For nuclei in the range of 18 � A � 34, we utilized
the well-known universal sd-shell interaction of Wildenthal
[21], and for those with 42 � A � 74, we employed the
GXPF1A interaction developed by Honma and collaborators
[22]. The respective configuration spaces are the full p, p 1

2
sd 5

2
,

sd , and p f shells. To make our calculation tractable for 70Br,
a truncation has been imposed to the p f shell. The isospin
non-conserving counterpart of the above cited shell-model ef-
fective Hamiltonians is comprised of isovector single-particle
energies, the two-body Coulomb force between protons, and
phenomenological charge-dependent nucleon-nucleon poten-
tials of nuclear origin. Details of the fitting procedure are
described in Ref. [23]. Our large-scale diagonalizations have
been performed using the NUSHELLX@MSU [24] shell-model
code.

It can be noticed that in most cases, our chosen model
spaces are smaller than those used in the calculations by
Towner and Hardy [6]. We are aware that these reduced model
spaces might not produce all necessary configurations for the
initial and final states of the decays under consideration. Nev-
ertheless, they should be sufficient for our present study which
aims at exploring a relative magnitude of various subleading
terms of the isospin-symmetry breaking correction.

The overlap integrals were evaluated with eigenfunc-
tions of a phenomenological Woods-Saxon potential with the
parametrization of Bohr and Mottelson [25], supplemented
by modifications as described in Ref. [7]. In particular, the

potential depth has been readjusted case by case in order to
reproduce experimental separation energies, while accounting
for excitations of the intermediate (A − 1)-nucleon system. In
addition, the Woods-Saxon length parameter has been simul-
taneously readjusted to reproduce the measured value of the
charge radius of the parent nuclei. Note that, for a given transi-
tion, we have kept the length parameter the same for the initial
and final nuclei. More details on the parameter adjustment,
including our formalism for the charge radius calculation can
be found in Ref. [7].

For the reason of consistency, we did not use the existing
values of δC1 and δC2, but we have recalculated them on equal
footing with δC3. For the same reason, we did not scale δC1

with the energy separation between the analog and the nearest
nonanalog states in daughter nuclei as suggested by Towner
and Hardy [6]. Moreover, since we are interested only in the
relative magnitude between various correction terms, it is not
necessary to consider uncertainties from the use of several
effective shell-model Hamiltonians and from the charge radius
data, which can be quantified using the method described in
Refs. [6,26,27].

Our results for all correction terms are listed in Table I.
Although the theoretical analysis in the previous section sup-
poses that δC1 and δC2 are of the same order of magnitude, the
calculated δC1 values are generally considerably smaller than
δC2. It is clearly seen that, for most cases, our calculated values
for the two LO terms differ significantly from those of Towner
and Hardy [6], the reason is related to the difference in con-
figuration spaces, effective Hamiltonians, the Woods-Saxon
parametrization and the potential-adjustment procedure.

It is interesting to remark that the sign of δC3 varies from
transition to transition as expected from the theoretical inspec-
tion in the previous section. We obtained a negative δC3 value
for 14O, 34Cl, 34Ar, 50Mn, and heavier emitters of the super-
allowed 0+ → 0+ transitions of isotriplets, 48Fe (isoquintet),
31Cl and 32Cl (non-0+ → 0+); while a positive value for the
others. The primary reason is the non-monotonic nature of
the isospin-mixing effect on the transition densities, causing
the deviation D(kaτakbτbi f λ) to vary in sign and magnitude
depending on the nucleus and orbitals. The signs of the other
correction terms can be determined as follows. According
to our numerical results, the absolute value of δC3 is, on
average, one order of magnitude smaller than δC1 and two
orders of magnitude smaller than δC2. We also see that δC4

is, on average, of the same order of magnitude as δC3, but its
sign is always negative, allowing for potential cancellations
between these NLO terms in certain cases. As an illustration,
the individual NLO terms for 26P have substantial magnitudes
compared to the 0+ → 0+ transitions, but their opposite signs
lead to a negligible net contribution. Meanwhile, δC5 and δC6

are generally negligible, except for the cases of 31Cl and
32Cl due to very strong isospin mixing in the respective final
states.

It does not appear that the higher order terms would in-
crease dramatically with mass number. Nevertheless, they are
influenced by the magnitude of the LO terms. In general, δC2 is
very sensitive to the weakly bound effect, as evident in cases
such as 48Fe, 70Br, and 74Rb, as well as the non-0+ → 0+
transitions. On the other hand, δC1 can be substantial if the
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TABLE I. Calculated values of various terms of the isospin-symmetry-breaking correction in percent unit. Here, LO, NLO, NNLO, and
NNNLO are the abbreviations for leading order, next-to-leading order, next-to-next-leading order, and next-to-next-to-next-leading order,
respectively.

LO NLO NNLO NNNLO NLO+NNLO+NNNLO

Emitter δC1 δC2 δC3 δC4 δC5 δC6 δC3 + δC4 + δC5 + δC6

10Ca 0.03421939 0.18931000 0.00049200 −0.00012491 −0.00000055 −0.00000000 0.00036654
14Oa 0.01016209 0.28316400 −0.00234000 −0.00021510 0.00000343 −0.00000001 −0.00255168
18Nea 0.00796504 0.20549300 0.00377500 −0.00011391 −0.00000403 −0.00000004 0.00365702
22Mga 0.01987732 0.26357900 0.00073900 −0.00020087 −0.00000105 −0.00000000 0.00053708
26mAla 0.00793319 0.26326700 0.00021200 −0.00018387 −0.00000029 −0.00000000 0.00002784
26Sia 0.03037112 0.36937000 0.00058500 −0.00039948 −0.00000117 −0.00000000 0.00018435
30Sa 0.05890865 0.68247200 0.00514100 −0.00137411 −0.00001906 −0.00000007 0.00374776
34Cla 0.04336312 0.61015300 −0.00112700 −0.00106771 0.00000368 −0.00000000 −0.00219103
34Ara 0.00913932 0.70812600 −0.00055800 −0.00128617 0.00000200 −0.00000000 −0.00184217
42Tia 0.00577545 0.37658000 0.00068900 −0.00036549 −0.00000132 −0.00000000 0.00032219
46Va 0.03266025 0.34878700 0.00029300 −0.00036376 −0.00000056 −0.00000000 −0.00007131
46Cra 0.02236702 0.44804100 0.00068200 −0.00055321 −0.00000160 −0.00000000 0.00012719
50Mna 0.04100000 0.46533600 −0.00076300 −0.00064094 0.00000193 −0.00000000 −0.00140201
50Fea 0.03724220 0.47617300 −0.00118200 −0.00065899 0.00000303 −0.00000000 −0.00183796
54Coa 0.05146500 0.62774800 −0.00325900 −0.00115333 0.00001107 −0.00000003 −0.00440128
54Nia 0.08142300 0.67098900 −0.00164800 −0.00141531 0.00000620 −0.00000001 −0.00305712
70Bra 0.46458999 1.39983500 −0.02944400 −0.00869020 0.00027448 −0.00000217 −0.03786189
74Rba 0.12627115 1.41762800 −0.07445100 −0.00595906 0.00057472 −0.00001386 −0.07984919
20Mgb 0.13355259 0.70162193 0.06880904 −0.00174379 −0.00028734 −0.00001184 0.06676607
24Sib 0.46641189 0.37229754 0.00623583 −0.00175858 −0.00002615 −0.00000010 0.00445099
28Sb 0.33713340 0.64352755 0.00402712 −0.00240424 −0.00001975 −0.00000004 0.00160309
32Arb 0.61163740 0.84563256 0.00065256 −0.00530909 −0.00000475 −0.00000000 −0.00466129
44Crb 0.03179293 0.33403410 0.00516561 −0.00033457 −0.00000945 −0.00000007 0.00482152
48Feb 0.93194417 1.03991361 −0.53696654 −0.00972056 0.00529411 −0.00072083 −0.54211382
26Pc 5.70963044 0.61244307 0.03669127 −0.09992153 −0.00115982 −0.00000336 −0.06439345
31Cld 30.50150797 2.69278055 −2.03182179 −2.75465198 0.33722439 −0.01032075 −4.45957012
32Cle 7.08669086 2.62265734 −1.87381996 −0.23567861 0.09096785 −0.00877800 −2.02730872

aSuperallowed 0+ → 0+ Fermi β transition of isotriplets.
bSuperallowed 0+ → 0+ Fermi β transition of isoquintets.
c3+ → 3+ Fermi transition of isoquintet.
d 3

2

+ → 3
2

+
Fermi transition of isoquartet.

e1+ → 1+ Fermi transition of isotriplet.

initial or final states contain considerable isospin admixtures,
as seen in the case of 48Fe and the non-0+ → 0+ transitions.

Therefore, the higher order terms could be significant if
the LO terms are sufficiently large. In most cases of the su-
perallowed 0+ → 0+ transitions within isotriplets, We obtain
that the sum of all higher order terms (see the last column
of Table I) is generally smaller than the uncertainties in the
sum of the LO terms published in Ref. [6]. However, this
behavior undergoes a dramatic change for 70Br and 74Rb,
where the higher-order contribution becomes one to two or-
ders of magnitude larger. This increase is primarily attributed
to low proton separation energies and high occupancy in the
2p orbitals where centrifugal barrier is small. In these spe-
cific cases, the higher-order contribution is comparable to the
uncertainties in δC1 [6]. We emphasize that, in this theoreti-
cal approach, the precision of the dominant LO term, δC2 is
limited only by the charge radius data. For certain isoquintet
cases such as 20Mg and 48Fe, as well as the non-0+ → 0+
transitions, the higher-order contribution increases substan-
tially because of the concurrent effect of the weakly bound

and strong isospin mixing. In particular, it reaches −4.460%
and −2.027% in 31Cl and 32Cl, respectively. Nevertheless,
we cannot accurately quantify the theoretical uncertainties for
these special transitions due to the lack of charge radius data
for their emitter nuclei.

It is also interesting to emphasize that in the case of 32Ar,
both LO terms are also considerably larger than those in the
cases of isotriplets, namely δC1 ≈ 0.612% and δC2 ≈ 0.846%.
However, the NLO terms do not increase accordingly, as
observed in the other cases. This indicates a cancellation
between the radial mismatch and isospin mixing occurring
intrinsically within each individual NLO term.

IV. CONCLUSION AND PERSPECTIVE

We have developed a shell-model formalism for exact
calculation of isospin-symmetry breaking correction to Fermi-
transition matrix elements. Our special attention has been
focused on the higher-order terms of this correction which
were not considered in any of the previous shell-model
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calculations. A numerical calculation has been carried out for
24 superallowed 0+ → 0+ transitions (18 isotriplets and six
isoquintets) and three non-0+ → 0+ transitions, across the p
to p f shells. Our numerical results for the superallowed 0+ →
0+ transitions of isotriplets indicate that the higher-order con-
tribution is generally smaller than the typical uncertainty in
δC1 + δC2 published in Ref. [1]. This supports earlier cal-
culations that neglected these higher-order effects. However,
while generally insignificant, the higher-order contribution
increases by one to two orders of magnitude, becoming com-
parable with the uncertainties in δC1 [1] for the two heaviest
N = Z emitters in the upper p f shell, namely 70Br and 74Rb,
where the weakly bound effect dominates. A greater higher-
order contribution is observed for certain superallowed 0+ →
0+ transitions of isoquintets, such as 20Mg and 48Fe, as well as
for the three Fermi non-0+ → 0+ transitions. In these nuclei,
both the weakly bound effect and strong isospin mixing are
simultaneously prominent.

Generally, the magnitude of higher-order terms would
increase with increasing magnitude of the perturbation pa-
rameters (i.e., deviation of the overlap integrals from unity or
the deviation of the one-body transition densities from their
isospin-symmetry-limit values). Thus, higher-order terms, es-
pecially NLO terms, could be more substantial in the cases
where the LO terms are extremely large, such as Fermi
transitions of higher isospin multiplets, or when daughter
nuclei exhibit strong isospin mixing, as seen in the three non-
0+ → 0+ transitions considered in this study. The theoretical

formalism derived in this article can be easily generalized for
other nuclear weak processes, particularly Gamow-Teller β

decays whose mirror asymmetry is sensitive to the presence
of the second class tensor current. Our analysis of the higher-
order effects in Gamow-Teller β decays is under way and will
be published separately.

For completeness, we recall that there are other possi-
ble sources of uncertainties of isospin-symmetry breaking
correction, related to the certain ambiguity in the potential
parametrization and to the choice of the shell-model Hamil-
tonians, lack of experimental data to constrain neutron wave
function and other approximations of the theoretical formal-
ism. The study of those effects, although beyond the scope of
the present article, must be pursued to further reduce uncer-
tainties of the theoretical modelization.
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