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Tetrahedral shape of 110Zr from covariant density functional theory in 3D lattice space
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Covariant density functional theory is solved in 3D lattice space by implementing the preconditioned conjugate
gradient method with a filtering function. It considerably improves the computational efficiency compared to the
previous inverse Hamiltonian method (IHM). This new method is then applied to explore the tetrahedral shape
of 110Zr in the full deformation space. Although the ground-state energy and deformation are consistent with
the previous study, the pear-shaped isomeric state is significantly lowered in energy. The energy difference
between the two states is only 0.07 MeV, indicating an interesting possible shape coexistence in 110Zr. This
effect is analyzed with the microscopic evolution of the single-particle levels near the Fermi surface driven by
the deformation.
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I. INTRODUCTION

The occurrence of spontaneous symmetry breaking leads
to shapes with a variety of symmetries for nuclei. Nuclear
shape can be described by the parametrization of the nuclear
surface with a multipole expansion of spherical harmonics Yλμ

[1]. The quadrupole shape with axial symmetry characterized
by the Y20-type deformation has been known for a long time,
which results in rotational excitation in nuclei [1]. In recent
decades, many efforts have been devoted to studying the triax-
iality [2–5] and reflection asymmetry [6–9] in nuclei, charac-
terized by the Y22- and the Y30-type deformations, respectively.
Novel excitation modes have been predicted theoretically to
identify these shapes in nuclei [1,2,10,11], and many of them
have been confirmed experimentally [3,4]. Indeed, exotic
shapes that violate both reflection and axial symmetries, such
as tetrahedral shapes, may also exist in nuclei.

A tetrahedral shape corresponds to a pure Y32-type
deformation. The tetrahedral symmetry of nuclei is a di-
rect consequence of the point group T D

d , which has two
two-dimensional and one four-dimensional irreducible rep-
resentations [12]. Due to the tetrahedral symmetry, the
single-particle levels split into multiplets with degeneracies
equal to the irreducible representations of the T D

d group. A
fourfold degeneracy results in large energy gaps in the single-
particle spectrum, and these gaps are comparable to or even
larger than the well-known spherical shell gaps. Empirically,
these large gaps occur predominantly in nuclei with Z (N ) =
16, 20, 32, 40, 56, 70, and 90, and N = 112, 136, and 142
[13–18]. Thus, a nucleus with proton and/or neutron numbers
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equal to these values may have a static tetrahedral deforma-
tion, characterized by the occurrence of negative-parity bands
with missing in-band E2 transitions [19,20].

Several experiments have been devoted to identifying the
tetrahedral shape of nuclei. The negative-parity bands in 160Yb
and 154,156Gd have been suggested as candidates for the ro-
tational bands of tetrahedral nuclei [21], but the measured
nonzero quadrupole moments contradict the existence of tetra-
hedral shapes in these nuclei [19,20,22]. For other candidates
in nuclei 230,232U [23], the possibilities of tetrahedral shapes
for the negative-parity bands in 230,232U appear difficult to rec-
oncile with the systematics of measured quadrupole moments
for the neighboring isotone 226Ra [24]. The isomeric state of
108Zr is proposed to be a candidate for a tetrahedral shape
isomer [25], while the measurement of the corresponding
band structure is required to confirm the tetrahedral shape.
The 156Dy has been suggested as a tetrahedral candidate
nucleus [26], but it is not supported from the experimen-
tal B(E2)/B(E1) ratios of transition probabilities for the
negative-parity bands [27]. In conclusion, there is still no firm
experimental evidence to support the existence of tetrahedral
shapes in nuclei.

The possible tetrahedral shapes in the ground or isomeric
states of nuclei have been investigated with many theoret-
ical approaches. For example, the macroscopic-microscopic
(MM) model [14,15,21,28–31], the algebraic cluster model
[32], the reflection asymmetric shell model [33,34], the non-
relativistic density functional theories (DFTs) [28,35–42], and
the covariant density functional theories (CDFTs) [43,44].
The CDFT [45] is of particular interest, since it brings many
advantages to describe the nuclear systems [46–48], such as
the natural inclusion of the self-consistent treatment of the
time-odd fields [49] and spin-orbit interactions, which can be
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clearly seen in the nonrelativistic reduction of the CDFT via a
similarity renormalization method [50]. However, up to now,
the V4 symmetry has always been assumed in the application
of CDFT to nuclear tetrahedral shapes [43,44].

The aim of the present work is to explore the tetrahedral
shapes of nuclei in the full deformation space by solving the
CDFT in three-dimensional (3D) lattice space. The CDFT
in 3D lattice space has been a longstanding challenge due
to the variational collapse [51] and the Fermion doubling
[52] problems. It became available recently [53] with the
help of the inverse Hamiltonian method (IHM) [54] and the
Fourier spectral method [55]. In Ref. [56], a more efficient
method, the preconditioned conjugate gradient method with
a filtering function (PCG-F), is proposed to solve the nuclear
Dirac equation with a given potential in 3D lattice space. In
this work, the CDFT will be solved in 3D lattice space by
implementing the PCG-F method [56], and this new method
is then applied to explore the tetrahedral shape of 110Zr in the
full deformation space. Note that the ground state of 110Zr
was previously predicted to be tetrahedral by the MM model
[28], the Skyrme DFTs [28,37], and the multidimensionally
constrained CDFT (MDC-CDFT) [43].

The paper is organized as follows. The formulas for the
CDFT and the PCG-F method will be briefly introduced in
Sec. II. The numerical details are presented in Sec. III. Sec-
tion IV is devoted to the results for tetrahedral shapes in 110Zr.
A summary is given in Sec. V.

II. THEORETICAL FRAMEWORK

A. Formalism of the CDFT

The starting point of the CDFT is a standard Lagrangian
density in the point-coupling form, which can be written as
[57]

L = ψ̄ (iγ μ∂μ − m)ψ − 1

2
αS (ψ̄ψ )(ψ̄ψ )

−1

2
αV (ψ̄γ μψ )(ψ̄γμψ ) − 1

2
αTV (ψ̄ �τγ μψ )

·(ψ̄ �τγμψ ) − 1

3
βS (ψ̄ψ )3 − 1

4
γS (ψ̄ψ )4

−1

4
γV [(ψ̄γ μψ )(ψ̄γμψ )]2 − 1

2
δS∂

ν (ψ̄ψ )∂ν (ψ̄ψ )

−1

2
δV ∂ν (ψ̄γ μψ )∂ν (ψ̄γμψ ) − 1

2
δTV ∂ν (ψ̄ �τγ μψ )

·∂ν (ψ̄ �τγμψ ) − 1

4
FμνFμν − e

1 − τ3

2
(ψ̄γ μψ )Aμ, (1)

where m is the nucleon mass. According to the conventional
variational principle, one obtains the Dirac equation for nu-
cleons,

ĥ(r)ψk (r) = [α · (−i∇ − V (r)) + β(m + S(r)) + V 0(r)]

ψk (r) = εkψk (r), (2)

where εk is the single-particle energy. The single-particle
Dirac Hamiltonian ĥ(r) contains the scalar S(r) and

four-vector V μ(r) potentials,

S(r) = αSρS + βSρ
2
S + γSρ

3
S + δSρS, (3a)

V μ(r) = αV jμ + γV ( jμ jμ) jμ + δV  jμ + τ3αTV jμTV

+τ3δTV  jμTV + e
1 − τ3

2
Aμ, (3b)

where the electromagnetic field Aμ is determined by Pois-
son’s equation, and the densities and currents are defined as

ρS (r) =
∑

k

v2
k ψ̄k (r)ψk (r), (4a)

jμ(r) =
∑

k

v2
k ψ̄k (r)γ μψk (r), (4b)

�jμTV (r) =
∑

k

v2
k ψ̄k (r)γ μτ3ψk (r), (4c)

jμc (r) =
∑

k

v2
k ψ̄k (r)γ μ 1 − τ3

2
ψk (r). (4d)

Here, τ3 is the isospin Pauli matrix with the eigenvalues +1
for neutrons and −1 for protons. The time component of the
vector current jμ is usually denoted as the vector density ρv .

For open shell nuclei, pairing correlations play an im-
portant role, and they are taken into account with the
Bardeen-Cooper-Schrieffer (BCS) method. The pairing en-
ergy functional is given by

Epair = −
∑

τ=n,p

Gτ

4

∫
d3rκ∗

τ (r)κτ (r), (5)

where Gτ is the constant pairing strength and κ (r) is the
pairing tensor,

κ (r) = 2
∑
k>0

fkukvk|ψk (r)|2 (6)

with the smooth-cutoff weight factor

fk = �(−εk )

1 + exp[(εk − λF − Eτ )/μτ ]
. (7)

Here, the Fermi energy λF is determined by the particle
number, 2

∑
k>0 v2

k = Nτ , with Nτ the particle number of neu-
trons or protons. The cutoff parameters Eτ = 5 MeV and
μτ = Eτ /10 = 0.5 MeV are chosen as in Ref. [58]. �(−εk )
equals one for bound levels and zero elsewhere, and it is
introduced to exclude the continuum in the pairing window.

B. Implementation of the PCG-F method

In the PCG-F method, the lowest Ã eigenstates in the
Fermi sea of the Dirac equation (2) are solved iteratively start-
ing from a set of orthonormalized guess solutions ψ

(0)
k (k =

1, 2, . . . , Ã). Here, the value of Ã is chosen to include all
bound states. The trial wave function ψk is then updated
iteratively,

ψ
(i+1)
k =

Ã∑
l=1

[
Ga

klX
(i)
l + Gb

klW
(i)

l + Gc
klP

(i)
l

]
,

(i = 0, 1, 2, . . .), (8)
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where X (i)
l , W (i)

l , and P(i)
l are defined as

X (i)
l = F (ĥ(i) )ψ (i)

l , (9a)

W (i)
l = F 4(ĥ(i) )T (i)

l

[
ĥ(i) − 〈ψ (i)

l |ĥ(i)|ψ (i)
l 〉]ψ (i)

l , (9b)

P(i)
l = F (ĥ(i) )

⎡
⎣ψ

(i)
l −

Ã∑
l ′=1

〈ψ (i−1)
l ′ |ψ (i)

l 〉ψ (i−1)
l ′

⎤
⎦. (9c)

The initial P(0)
l is set to zero. The filtering operator F (ĥ)

and the preconditioner Tl are introduced for the sake of itera-
tion convergence. The single-particle Dirac Hamiltonian ĥ(i) is
constructed from the densities and currents determined by the
wave functions {ψ (i)

k }. The coefficient matrices Ga, Gb, and

Gc in Eq. (8) are chosen to minimize
∑Ã

k=1〈ψ (i+1)
k |ĥ(i)|ψ (i+1)

k 〉
under the orthonormalization condition 〈ψ (i+1)

k |ψ (i+1)
l 〉 = δkl .

Similar to Ref. [56], the filtering operator F (ĥ) and the
preconditioner Tl read

F (ĥ(i) ) = (
ĥ(i) + 2m

)2
, (10)

T (i)
l =

[
p̂2 + (

g(i)
l m

)2
]−1

(11)

with

g(i)
l = 0.15

〈ψ (i)
l |ĥ(i)|ψ (i)

l 〉
(V 0 + S)min

+ 0.10. (12)

There are two criteria for the convergence of the itera-
tion. One is that the energy dispersions 〈ψ (i)

l |[ĥ(i)]2|ψ (i)
l 〉 −

〈ψ (i)
l |ĥ(i)|ψ (i)

l 〉2 for all occupied levels should be smaller than
a certain value, e.g., 10−8 MeV2. The other one is that the
differences between the mean potentials [Eqs. (4a) and (4b)] at
two adjacent iterations should be smaller than a certain value.
The convergence is achieved only if both criteria are satisfied.

C. Nuclear bulk properties

From the converged wave functions, the nuclear total en-
ergy and the deformation parameters can be calculated. The
total energy consists of the mean-field energy EMF, the pairing
energy Epair, and the center-of-mass (c.m.) correction energy
Ec.m.:

Etot = EMF + Epair + Ec.m., (13)

where the mean-field energy EMF is written as

EMF =
∫

d3r

{∑
k

v2
k ψ

†
k (α · p + βm)ψk + αS

2
ρ2

S + αV

2
jμ jμ

+ αTV

2
�jμTV · (�jTV )μ + βS

3
ρ3

S + γS

4
ρ4

S + γV

4
( jμ jμ)2

+ δS

2
ρSρS + δV

2
jμ jμ + δTV

2
�jμTV

·(�jTV )μ + 1

2
AμAμ + e jμc Aμ

}
. (14)

The pairing energy Epair is calculated following Eq. (6),
and the c.m. correction energy Ec.m. is considered with the

FIG. 1. The maximum energy dispersion for the occupied single-
particle states (a), and the maximum absolute difference between
the mean potentials (including the scalar and vector potentials) at
two adjacent iterations (b), as functions of the iteration number for
the ground state of 110Zr. The solid and dotted curves, respectively,
represent the results calculated by the PCG-F and IHM, and the
corresponding computation times are also given.

microscopic c.m. correction

Ec.m. = − 1

2mA

〈
P2

c.m.

〉
(15)

with A the mass number and Pcm = ∑
k pk the total momen-

tum in the c.m. frame.
For a quadrupole shape, the intrinsic frame can be defined

by aligning the principal axes of inertia of the nucleus along
the coordinate axes of the 3D box. The two quadrupole defor-
mation parameters a20 and a22 are then obtained with

a20 = 4π

3AR2
·
∫

d3rρv (r)r2Y20, (16a)

a22 = 4π

3AR2
·
∫

d3rρv (r)r2Y22, (16b)

where R = 1.2 × A1/3 fm. For a general quadrupole-octupole
shape, however, the principal axes for the quadrupole and
octupole degrees of freedom are not the same, so a natural
intrinsic frame related to the symmetry of the shape does not
exist and many alternative ways can be used to define the
intrinsic frame. Here, we keep the intrinsic frame as defined
by the pure quadrupole deformation case, and two quadrupole
deformation parameters and seven octupole deformation pa-
rameters are then used to describe the shape. The ground-state
energy can be obtained by self-consistent calculations in such
a high dimensional deformation space. By constraining the a20

deformation to certain values, a potential energy curve against
the a20 deformation can also be obtained (see Fig. 2).

In the present work, we are interested in the ground state
of 110Zr, whose quadrupole deformation is indeed zero (see
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FIG. 2. The potential energy curves of 110Zr calculated with the
CDFT in 3D lattice space by imposing different symmetries. The
results restricted to axial symmetry and reflection symmetry (AS
& RS), axial symmetry and reflection asymmetry (AS & RA), and
V4 symmetry are represented by dotted, dashed-dotted, and dashed
lines, respectively. The open circles represent the results without
any symmetry restriction (Full), and the obtained ground-state shape
is illustrated by the 3D image. The inset zooms in to the detailed
structure of the potential energy curves near a20 = 0.

Fig. 2), i.e., a pure octuple shape. Consequently, the nuclear
surface R can be parametrized as [59]

R = R0

[
1 + ε0A2 +

3∑
i=1

ε1(i)F1(i) +
3∑

i=1

ε2(i)F2(i)

]
, (17)

where A2, F1(i), and F2(i) are related to the irreducible repre-
sentations of the octahedron group,

A2 = − i

2
(Y32 − Y3−2), (18a)

F1(1) = Y30, (18b)

F1(2) = −
√

5

4
(Y33 − Y3−3) +

√
3

4
(Y31 − Y3−1), (18c)

F1(3) = −i

√
5

4
(Y33 + Y3−3) − i

√
3

4
(Y31 + Y3−1), (18d)

F2(1) = 1√
2

(Y32 + Y3−2), (18e)

F2(2) =
√

3

4
(Y33 − Y3−3) +

√
5

4
(Y31 − Y3−1), (18f)

F2(3) = −i

√
3

4
(Y33 + Y3−3) + i

√
5

4
(Y31 + Y3−1), (18g)

and the corresponding coefficients can be obtained by

ε0 = 4π

3AR3

∫
d3rρv (r)r3A2, (19a)

ε1(i) = 4π

3AR3

∫
d3rρv (r)r3F1(i), (19b)

ε2(i) = 4π

3AR3

∫
d3rρv (r)r3F2(i). (19c)

TABLE I. Pairing gaps (in MeV) calculated by the CDFT in 3D
lattice space for 102,104Zr, in comparison with the empirical values
extracted from the three-point odd-even mass differences. The ex-
perimental masses are taken from AME2020 [61].

102Zr 104Zr

n p n p

Empirical 1.10 1.54 1.08 1.53
CDFT 1.12 1.55 1.00 1.49

For such a pure octupole shape, the intrinsic frame is
defined by fixing ε2 = 0, and the range of the other four
parameters should be restricted by the 48 transformations
corresponding to the elements of the Oh group, to uniquely
determine all possible octupole shapes without a repetition.
As a result, one obtains that ε0 � 0 and ε1(1) � ε1(2) �
ε1(3) � 0.

Hereafter, we denote the coefficients ε0 and ε1(1) by a32

and a30, respectively, since they correspond to the tetrahedral
and pear shapes, which satisfy the V4 symmetry. The other
two coefficients ε1(2) and ε1(3) are then denoted as a31 and
a33 for consistency. Note that a nuclear shape with any two
nonzero values of the three parameters a30, a31, and a33 would
be beyond the V4 symmetry.

III. NUMERICAL DETAILS

In this work, the point-coupling density functional PC-PK1
[57] is used. For the 3D lattice space, the step sizes and
the grid numbers along the x, y, and z axes are chosen as
1 fm and 30, respectively. Similar to Ref. [43], the neutron
and proton pairing strengths Gn = −330 MeV fm3 and Gp =
−430 MeV fm3, are determined by reproducing the empirical
pairing gaps of 102,104Zr, which are obtained with the three-
point odd-even mass differences formula [60] (see Table I).

IV. RESULTS AND DISCUSSION

We first discuss the efficiency of the PCG-F method in
the self-consistent CDFT calculations for the ground state
of 110Zr. In Fig. 1, the maximum energy dispersion [〈h2〉 −
〈h〉2]max for the occupied single-particle states and the max-
imum absolute difference U between the mean potentials
at two adjacent iterations are shown, in comparison with the
results given by the IHM. For the PCG-F method, it takes
only 84 iterations to achieve the convergence, i.e., [〈h2〉 −
〈h〉2]max � 10−8 MeV2 and U � 10−2 MeV, while it re-
quires more than 170 iterations for the IHM to reach the same
accuracy. The difference between the total energies obtained
in these two methods is smaller than 10−5 MeV. The total
computational time for the PCG-F method is 386 min with
the Intel(R) Xeon(R) CPU E5-2680, and it saves 52% of the
computational time as compared with the IHM calculations.
As seen in Ref. [56], compared with the IHM, the PCG-F
method gives a much faster convergence in solving the Dirac
equation with a given potential. The present results prove
that the PCG-F method is more efficient than the IHM in the
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TABLE II. The octupole deformation parameters a30, a31, a32,
and a33, and the total energies E for the two lowest energy states of
110Zr calculated by the CDFT in 3D lattice space.

a30 a31 a32 a33 E [MeV]

0.00 0.00 0.15 0.00 −902.49
0.15 0.11 0.00 0.11 −902.42

self-consistent CDFT calculations as well. This is not trivial
because, during the self-consistent solution of the CDFT in
3D lattice space, the Dirac equation is not exactly solved until
the self-consistency is achieved. In the following, we apply
the framework of the PCG-F method to study the tetrahedral
shape of 110Zr.

Figure 2 depicts the one-dimensional potential energy
curves of 110Zr calculated with the CDFT in 3D lattice space
by imposing different symmetry restrictions: (i) axial and
reflection symmetry (AS & RS), (ii) axial symmetry and re-
flection asymmetry (AS & RA), (iii) V4 symmetry, and (iv)
full deformation space including all deformation degrees of
freedom (Full). There are two energy minima in all cases,
i.e., the ground state at a20 ≈ 0.00 and a prolate minimum
at a20 ≈ 0.50. The ground-state energy varies visibly in the
calculations with different symmetry restrictions. A spherical
ground state is obtained if one assumes axial and reflection
symmetry. The ground-state energy is lowered by about 0.4
MeV if one releases the restriction of reflection symmetry. It
is lowered further by about 0.5 MeV if the nonaxial degrees of
freedom are allowed under the V4 symmetry. This ground state
has a pure tetrahedral shape, and it is consistent with the re-
sults obtained in the previous MDC-CDFT calculations [43].

Thanks to the solutions in the 3D lattice space, one could
remove all symmetry restrictions, and the results are shown
by open circles in Fig. 2. Both the energy and the deform-
ation of the ground state barely change. Such a pure octupole
shape can be parametrized with the deformation parameters
a30, a31, a32, and a33 by defining a new intrinsic frame as
mentioned in Sec. II.

In Table II, the calculated ground-state energy and octupole
deformation parameters for the ground state of 110Zr are listed.
In addition to the ground state, a state whose energy is very
close to the ground-state energy is also listed in Table II. The
same results are found in the calculations with the same box
size but a smaller step size of 0.8 fm. From Table II, one could
see that although the ground-state energy and the deformation
barely change, the pear-shaped isomeric state found in the pre-
vious work with V4 symmetry [43] is significantly lowered in
energy when the a31 and a33 degrees of freedom are allowed.
The energy difference between the two state is only 0.07 MeV,
indicating an interesting possible shape coexistence in 110Zr.

We further investigate the effect of the deformations be-
yond V4 symmetry on the two lowest energy states in 110Zr.
In Fig. 3, we show the potential energy surfaces in the
(a30, a32) (a) and (a31, a33) [(b) and (c)] planes. In Fig. 3(a),
the a31 and a33 deformations are always constrained to
zero. It shows a well-developed tetrahedral ground state
with (a30, a32) ≈ (0, 0.15) and a pear-like isomeric state at
(a30, a32) ≈ (0.15, 0). The barrier between the two minima is
about 0.5 MeV. This is consistent with the previous study with
V4 symmetry [43]. In the present work beyond V4 symmetry,
however, the effects of the a31 and a33 deformations can be
analyzed.

As seen in Figs. 3(b) and 3(c), the deformations (a30, a32)
are constrained to (0, 0.15) and (0.15, 0) in the (a31, a33)
planes, respectively. Both energy surfaces are symmetric with
respect to the diagonals since one can prove that the two
intrinsic shapes corresponding to a31 > a33 and a31 < a33 are
indeed identical by renaming the three axes of the intrinsic
frame. In Fig. 3(b), the tetrahedral ground state with a31 =
a33 = 0 remains, while the potential energy surface is soft in
the direction from diagonal to abscissa. In contrast, as seen in
Fig. 3(c), the pear-like isomeric state at a31 = a33 = 0 is no
longer an energy minimum but a saddle point, and an even
lower energy state with a31 = a33 ≈ 0.11 appears. The shape
with a31 = a33 ≈ 0.11 is quite different from the tetrahedral
shape of the ground state, but their energies differ by only
0.07 MeV. This again indicates an interesting possible shape
coexistence in 110Zr.

FIG. 3. The potential energy surfaces of 110Zr in the (a30, a32) (a) and (a31, a33) [(b) and (c)] planes. The energies are normalized with
respect to the ground-state energy, and the contour interval is 0.1 MeV. Note that a31 and a33 are always constrained to zero in (a), where
the tetrahedral minimum and the pear-like minimum are indicated by a solid star and an open triangle, respectively. In (b), a30 and a32 are
respectively constrained to 0 and 0.15, and the solid star corresponds to the tetrahedral minimum in (a). In (c), a30 and a32 are respectively
constrained to 0.15 and 0, where the open triangle corresponds to the pear-like minimum in (a), and the solid one represents an even lower
energy state. The dashed lines are diagonals in (b) and (c).
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FIG. 4. Single-particle levels of 110Zr as a function of a31 with
a30 = 0 and a32 = 0.15. In (a) and (c), a33 is fixed to be identical to
a31, and for (b) and (d), a33 is fixed to zero. The levels are labeled by
the corresponding spherical quantum number of their main compo-
nent. The dashed lines represent the Fermi levels.

For a microscopic understanding, the single-particle levels
of 110Zr near the Fermi surface are shown in Figs. 4 and 5 as
a function of a31 with, respectively, a30 = 0, a32 = 0.15 and
a30 = 0.15, a32 = 0. In panels (a) and (c) of Figs. 4 and 5, we
assume a33 = a31, which means that the single-particle levels

FIG. 5. Same as Fig. 4, but with a30 = 0.15 and a32 = 0.

are evolved along the diagonals as depicted in panels (b) and
(c) of Fig. 3. Nevertheless, in panels (b) and (d) of Figs. 4 and
5, we assume a33 = 0, which means that the single-particle
levels are evolved along the abscissas as depicted in panels
(b) and (c) of Fig. 3.

In Fig. 4, at a31 = 0, the single-particle levels split into
multiplets with degeneracies equal to the irreducible repre-
sentations of the T D

d group due to the nonzero a32 values. One
can see dramatic energy gaps at N = 70 and Z = 40, and they
are gradually narrowed with increasing a31. As a result, an
energy minimum at a31 = a33 = 0 should be expected, which
just corresponds to the ground state of 110Zr. Moreover, the
soft nature of the potential energy surface from diagonal to
abscissa in Fig. 3(b) should be associated with the nearly
symmetric evolution behavior along a31 for the calculated
single-particle levels with a33 = a31 and a33 = 0.

In Fig. 5, the energy gaps at N = 70 and Z = 40 grow
gradually with increasing a31, so it explains the significant
influence of the a31 and a33 deformations on the energy min-
imum as depicted in Fig. 3(c). In addition, the soft nature
of the potential energy surface from diagonal to abscissa in
Fig. 3(c) is also associated with the nearly symmetric evolu-
tion behavior along a31 for the calculated single-particle levels
with a33 = a31 and a33 = 0.

V. SUMMARY

In summary, the CDFT has been solved in 3D lattice
space by implementing the PCG-F method. It considerably
improves the computational efficiency compared to the pre-
vious inverse Hamiltonian method. Based on this framework,
the shape of 110Zr has been studied in the full deformation
space. It is found that although the ground-state energy and
deformation are consistent with the previous study [43], the
pear-shaped isomeric state is significantly lowered in energy.
The energy difference between the two states is only 0.07
MeV, indicating an interesting possible shape coexistence in
110Zr. Moreover, the effect of the deformation degrees of
freedom beyond V4 symmetry is analyzed with the evolution
of the single-particle levels near the Fermi surface. It is seen
that the single-particle energy gaps at N = 70 and Z = 40
play a crucial role.

Similar effects may also exist in other nuclei. The present
work has demonstrated the importance of full deformation
space calculations for the tetrahedral states. Based on this
new efficient method for the CDFT in 3D lattice space, works
along this line are in progress.
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