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Corrections to the forward-limit dispersion relations for γZ-exchange contributions
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The weak charge of the proton Qw is one of the most fundamental quantities in physics. It can be determined by
measuring the parity asymmetry APV in elastic ep scattering, where the γ Z-exchange contributions are crucial.
For the past fifteen years, dispersion relations (DRs) in the forward limit have been widely used as a model-
independent method to estimate these contributions. In this work, we study corrections to these forward-limit
DRs. We first estimate these corrections using pointlike interactions as an illustrative example. We then estimate
the γ Z-exchange contributions for the upcoming P2 experiment through both direct calculation and the forward-
limit DRs, within the framework of low-energy effective interactions. The results indicate that the correction to
the forward-limit DR for �V

γ Z is around 47% for the upcoming P2 experiment, which will significantly modify
the extracted value of Qw.
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I. INTRODUCTION

The proton is one of the most fundamental particles in
our world, and studies of its structure have been ongoing for
nearly a century. However, our understanding of its struc-
ture is still limited due to the nonperturbative nature of the
strong interaction. In the past two decades, experimental mea-
surements of the proton’s structure have greatly improved,
including measurements of its electromagnetic form factors
[1–8], strange form factor (FF) [9–14], weak charge Qw [15],
size [16–20], and others.

Similar to electromagnetic charge, Qw reflects the strength
of the weak interaction of the proton at low energies. As
quarks are confined, Qw becomes one of the most fundamental
charges that can be measured in the standard model. In ex-
periments, the parity-violating elastic ep scattering provides a
clean method for determining Qw, where the asymmetry APV

is measured.
In the low-energy limit, Qw is proportional to the asym-

metry APV, which means that the accurate determination
of Qw requires precise measurements and analysis of APV.
Theoretical calculations for this purpose focus on accurately
estimating the interference between the one-photon-exchange
and γ Z-exchange diagram. In the literature, various methods
have been used to estimate the γ Z-exchange contributions
[21–32]. Among these methods, the forward-limit dispersion
relations (DRs) are widely applied and accepted as a model
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independent method to estimate γ Z-exchange contributions
directly at the experimental regions.

In this study, we would like to discuss the detailed correc-
tions to the forward-limit DRs in the low-energy region. The
paper is structured as follows: In Sec. II, we provide the basic
formula. In Sec. III, we present our numerical corrections to
the forward-limit DRs in the pointlike theory and the low-
energy model. Additionally, we discuss the reasons for any
observed differences.

II. BASIC FORMULA

This asymmetry APV in the parity-violating elastic ep scat-
tering is defined as follows:

APV ≡
∑

helicity(M+M+∗ − M−M−∗)∑
helicity(M+M+∗ + M−M−∗)

, (1)

where M+,− are the helicity amplitudes in the laboratory
frame with the incoming electron’s helicity ±, respectively.
The corresponding one-photon-exchange and γ Z-exchange
diagrams are depicted in Fig. 1, where the interaction
vertices between the electron and bosons are given by
�μ

γ ee = −ieγ μ and �
μ
Zee = ie

4 sin θw cos θw
[gV

e γ μ + gA
eγ

μγ5] in the
standard model, with θw the Weinberg angle.

According to the types of the interference, the γ Z-
exchange contributions to APV can be separated as follows:

Aγ Z
PV(E , Q2) ≡ GFt

4
√

2παe

{
Re

[
�A

γ Z (E , Q2)
]

+ Re
[
�V

γ Z (E , Q2)
]}

, (2)

where GF = παe/(
√

2M2
Z sin2 θw cos2 θw) is the Fermi con-

stant, αe = e2/4π is the fine structure constant, t = −Q2 =
q2 = (p4 − p2)2 = (p1 − p3)2, and E is the energy of
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(a) (b)

FIG. 1. Feynman diagrams for ep → ep: (a) represents the one-
photon-exchange diagram and (b) represents one of the γ Z-exchange
diagrams.

incoming electron in laboratory frame with (p1 + p2)2 =
M2

N + 2MN E and MN the mass of the proton; p1,2,3,4 are
the momenta of the incoming electron, the incoming proton,
the outgoing electron, and the outgoing proton, respectively.
�A

γ Z (E , Q2) and �V
γ Z (E , Q2) are proportional to gV

e and gA
e ,

respectively.
In the literature, the forward-limit DRs usually are used to

estimate �V,A
γ Z (E , Q2), which can be written as [25–31]

Re
[
�V

γ Z (E , Q2)
] ≈ Re

[
�V

γ Z (E , 0)
]

= 2E

π
P

[ ∫ ∞

0

Im
[
�V

γ Z (Ē+, 0)
]

Ē2 − E2
dĒ

]
,

Re
[
�A

γ Z (E , Q2)
] ≈ Re

[
�A

γ Z (E , 0)
]

= 2

π
P

[ ∫ ∞

0

Ē Im
[
�A

γ Z (Ē+, 0)
]

Ē2 − E2
dĒ

]
,

(3)

where P refers to the principle value integration, and Ē+ =
Ē + i0+. Naively, one question is, how much is the difference
between Re[�V,A

γ Z (E , Q2)] and Re[�V,A
γ Z (E , 0)] in the low-

energy region?. In Ref. [29], Re[�V,A
γ Z (E , Q2)] is estimated

using the following continued formula:

�γ Z (E , t ) ≈ �γ Z (E , 0)
exp(−B|t |/2)

F γ p
1 (t )

, (4)

with B some parameter.
Another naive approximation is to use the following ex-

pressions:

Re
[
�V

γ Z (E , Q2)
] ≈ CV

γ Z (E , Q2)

≡ 2E

π
P

[ ∫ ∞

0

Im
[
�V

γ Z (Ē+, Q2)
]

Ē2 − E2
dĒ

]
,

Re
[
�A

γ Z (E , Q2)
] ≈ CA

γ Z (E , Q2)

≡ 2

π
P

[ ∫ ∞

0

Ē Im
[
�A

γ Z (Ē+, Q2)
]

Ē2 − E2
dĒ

]
.

(5)

We would like to point out that, at finite Q2, the ap-
proximation in Eq. (5) slightly differs from the following

approximation:

Re
[
�V

γ Z (E , Q2)
] ≈ DV

γ Z (E , Q2)

≡ 2ν

π
P

[ ∫ ∞

νth

Im
[
�V

γ Z (Ē+, Q2)
]

ν̄2 − ν2
d ν̄

]
,

Re
[
�A

γ Z (E , Q2)
] ≈ DA

γ Z (E , Q2)

≡ 2

π
P

[ ∫ ∞

νth

ν̄ Im
[
�V

γ Z (Ē+, Q2)
]

ν̄2 − ν2
d ν̄

]
,

(6)

where ν ≡ 2(p1 + p2)2 − 2M2
N − Q2 = 4MN E − Q2 and

νth = −Q2.
When Q2 = 0, one has

DV,A
γ Z (E , 0) = CV,A

γ Z (E , 0) = Re
[
�V,A

γ Z (E , 0)
]
. (7)

Before going to discuss the difference between these ap-
proximations, we review some basic properties of APV [32].
The full γ Z-exchange amplitude can be separated into a
parity-conserved (PC) part and a parity-violated (PV) part as

Mγ Z ≡ MPC
γ Z + MPV

γ Z ,

MPV
γ Z ≡ gA

eMV
γ Z + gV

e MA
γ Z . (8)

After taking the approximation me = 0 with me the mass of
electron, the amplitudes MV,A

γ Z can be written as

MV
γ Z ≡

3∑
i=1

FV
γ Z,iPV

i , MA
γ Z ≡

3∑
i=1

FA
γ Z,iPA

i , (9)

where the general invariant amplitudes PV
i and PA

i are chosen
as [32]

PV
1 ≡ [ū3γμγ5u1][ū4γ

μu2],

PV
2 ≡ 1

Q
[ū3γμγ5u1][ū4iσμνqνu2],

PV
3 ≡ 1

MN Q
[ū3P/γ5u1][ū4K/u2],

PA
1 ≡ [ū3γ

μu1][ū4γμγ5u2],

PA
2 ≡ 1

Q
[ū3γ

μu1][ū4γμK/γ5u2],

PA
3 ≡ 1

MN Q
[ū3P/u1][ū4K/γ5u2], (10)

with P = p2 + p4, K = p1 + p3.
After some calculations, Aγ Z

PV can be expressed as

Aγ Z
PV = 1

e2σ

(
gA

e

3∑
i=1

NV
i Re

[FV
γ Z,i

]+ gV
e

3∑
i=1

N A
i Re

[FA
γ Z,i

])
,

(11)

with

NV
1 = 8M2

N Q2
[(

ν2 − 4M2
N Q2 + Q4

)
F1 + 2Q4F2

]
,

NV
2 = 4MN Q

[
8M2

N Q4F1 + Q2(ν2 + 4M2
N Q2 − Q4)F2

]
,

NV
3 = 8MN Qν

(
ν2 − 4M2

N Q2 − Q4
)
F1,
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N A
1 = 16M2

N Q4ν(F1 + F2),

N A
2 = 4MN Q3[8M2

N Q2F1 + (
ν2 + 4M2

N Q2 − Q4)F2
]
,

N A
3 = 8MN Q3

(
ν2 − 4M2

N Q2 − Q4
)
(F1 + F2), (12)

and

σ = 4F 2
1 M2

N

(
ν2 − 4M2

N Q2 + Q4
) + 16F1F2M2

N Q4

+ F 2
2 Q2

(
ν2 + 4M2

N Q2 − Q4
)
, (13)

where F1,2 are the electromagnetic FFs of proton.
To discuss the details of the differences between the above

approximations, we take two types of interactions as examples
to illustrate their properties. In the first case, we treat the pro-
ton as a pointlike particle, where the corresponding interaction
vertices can be well defined and expressed as

�
μ

γ pp = ieγ μ,

�
μ

Z pp = ie

4 sin θw cos θw
[g1γ

μ + g3γ
μγ 5], (14)

which also represent the leading-order (LO) low-energy in-
teractions. In the second case, we consider the γ pp and Z pp
interactions at the LO and the next-to-leading order (NLO) of

momentum. These interactions can be described as follows:

�μ
γ pp = ie

[
F1γ

μ + F2
iσμν

2MN
qν

]
,

�
μ
Z pp = ie

4 sin θw cos θw

[
g1γ

μ + g2
iσμν

2MN
qν + g3γ

μγ 5

]
.

(15)

Through these interactions, the contributions of γ Z ex-
change can be directly calculated, and the forward-limit
dispersion relations (DRs) can also be examined within the
energy regions where these interactions are applicable. In
practical calculations, the package FEYNCALC10.0 [33] is used
to deal with Dirac matrix, the package PACKAGEX3.0 [34] is
used to do the loop integration, and the package LOOPTOOLS

[35] is used for cross-check.

III. RESULTS AND DISCUSSION

In the pointlike interaction case, the direct calculation
shows that FV,A

γ Z,i(E , Q2) satisfy DRs such as Eq. (6) exactly

for any Q2. This means the results for Re[�V,A
γ Z (E , Q2)] ob-

tained through the direct calculation are identical to those
obtained by first dispersing FV,A

γ Z,i(E , Q2) and then substituting

into Eq. (11). However, at finite Q2, �V,A
γ Z (E , Q2) do not satisfy

the similar DRs. The reason can be traced to the double pole

FIG. 2. Numerical results for Re[�V
γ Z (E , Q2)], Re[�V

γ Z (E , 0)], CV
γ Z (E , Q2), and DV

γ Z (E , Q2) in the physical region with E � Emin ≡
Q(

√
4M2

N + Q2 + Q)/4MN , where the pointlike interactions are considered. The solid-black, dashed-red, dotted-blue, and dashed-dotted-olive
curves correspond to Re[�V

γ Z (E , Q2)], Re[�V
γ Z (E , 0)], CV

γ Z (E , Q2), and DV
γ Z (E , Q2), respectively.
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TABLE I. Comparisons of Re[�V
γ Z (E , Q2)], Re[�V

γ Z (E , 0)], CA
γ Z (E , Q2), and DA

γ Z (E , Q2) at various experimental energy points, where the
pointlike interactions are considered.

Experiment

P2 Qweak G0 G0 HAPPEX A4 SAMPLE

Q2 (GeV2) 0.0045 0.0248 0.22 0.63 0.624 0.23 0.1

E (GeV) 0.155 1.15 0.362 0.687 3.48 0.854 0.2

(E − Emin )MN/Q2 25 432 0.26 0.13 4.34 2.22 0.12

CV
γ Z (E ,0)

Re[�V
γ Z (E ,Q2 )]

96.6% 97.6% 35.8% 27.2% 83.2% 73.3% 25.0%

CV
γ Z (E ,Q2 )

Re[�V
γ Z (E ,Q2 )]

96.6% 97.4% 35.3% 25.7% 79.7% 71.9% 24.9%

DV
γ Z (E ,Q2 )

Re[�V
γ Z (E ,Q2 )]

97.2% 97.5% 40.1% 30.2% 78.6% 73.8% 28.2%

CA
γ Z (E ,0)

Re[�A
γ Z (E ,Q2 )]

99.1% 99.4% 65.1% 56.9% 95.1% 91.7% 49.6%

CA
γ Z (E ,Q2 )

Re[�A
γ Z (E ,Q2 )]

99.7% 99.9% 71.0% 64.8% 98.7% 96.4% 53.2%

DA
γ Z (E ,Q2 )

Re[�A
γ Z (E ,Q2 )]

99.8% 99.9% 71.6% 64.8% 99.1% 96.8% 53.6%

in Eq. (11). This double pole gives rise to the following DRs:

Re
[
�A

γ Z (E , Q2)
]

= cAν

ν2 − ν2
p

+ 2ν

π
P

[ ∫ ∞

νth

Im
[
�A

γ Z (Q2, ν̄+)
]

ν̄2 − ν2
d ν̄

]
,

Re
[
�V

γ Z (E , Q2)
]

= cV

ν2 − ν2
p

+ 2

π
P

[ ∫ ∞

νth

ν̄ Im
[
�V

γ Z (Q2, ν̄+)
]

ν̄2 − ν2
d ν̄

]
, (16)

where νp is the zero point of σ , and cA,V are constants which
are only dependent on Q.

To quantify the differences, we present the numeri-
cal results for Re[�V

γ Z (E , Q2)], Re[�V
γ Z (E , 0)], CV

γ Z (E , Q2),
and DV

γ Z (E , Q2) in Fig. 2, where the parameters gV
e =

−0.076, gA
e = 1, g1 = 0.076, and g3 = −0.95 are cho-

sen [23], and the energy E is restricted to the physical
region E � Emin ≡ Q(

√
4M2

N + Q2 + Q)/4MN at the cor-
responding experimental Q2 [9–15,36]. The differences
between Re[�A

γ Z (E , Q2)], Re[�A
γ Z (E , 0)], CA

γ Z (E , Q2), and
DA

γ Z (E , Q2) are small and thus are not presented. The com-
parisons clearly indicate that Re[�V

γ Z (E , 0)], CV
γ Z (E , Q2),

and DV
γ Z (E , Q2) are very similar to each other in al-

most the entire range. However, for very small values of
E or Q2 > 0.22 GeV2, there are significant differences
between these quantities and Re[�V

γ Z (E , Q2)]. Addition-
ally, the results reveal that Re[�V

γ Z (E , Q2)]/ Re[�V
γ Z (E , 0)]

not only depends on Q2 but also exhibits a strong
dependence on E , particularly when E is small. This find-
ing suggests that the simple continuity equation given by
Eq. (4) is not applicable when dealing with small values
of E .

Detailed numerical comparisons in the corresponding ex-
perimental energy regions [9–15,36], are provided in Table I.
These comparisons clearly indicate that the corrections are
correlated with the values of (E − Emin)MN/Q2.

The above results are obtained exactly within the point-
like particle approximation. For the physical ep scattering,
an interesting property is that the mass-center energy of the
coming P2 experiment [36] is below the resonance 	(1232),
where we can expect that the low-energy effective interactions
in the second case can be used to estimate the γ Z-exchange
contributions.

Within this framework of LO and NLO interactions, the co-
efficients FV,A

γ Z,i(E , Q2) still satisfy similar DRs such as Eq. (6)
exactly, except for terms proportional to F2g2 whose real parts
contain UV divergences and satisfy once-subtracted DRs. In
the effective theory, the presence of UV divergences implies
that some contact terms need to be introduced to absorb these
divergences. These contact terms correspond to the subtracted
terms in the subtracted DRs. Since the contributions from F2g2

in FV
γ Z,i are of higher order in Q or E , we neglect them in the

current analysis.
As anticipated, when Q2 → 0 and (E − Emin)MN/Q2 >

104, Re[�V,A
γ Z (E , Q2)], Re[�V,A

γ Z (E , 0)], CV,A
γ Z (E , Q2), and

DV,A
γ Z (E , Q2) exhibit nearly identical behavior, resembling the

case of pointlike interactions.
For the energy point of the upcoming P2 experiment, where

Q2 = 0.0045 GeV2 and E = 0.155 GeV, we obtain the fol-
lowing results [32]:

Re
[
�V

γ Z (P2)
] = 10−4 gA

e

σ

(
230.269F 2

1 g1 + 7.582F 2
1 g2

+ 13.928F1F2g1 + 4.090F 2
2 g1

+ 4.394F2F1g2
)
,
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FIG. 3. Comparison of Re[�V,A
γ Z (E , Q2)] and CV,A

γ Z (E , Q2) in the
region with E � Emin, where the LO + NLO low-energy interactions
are considered. The dashed-dotted olive, solid black, dotted red,
and dashed blue curves correspond to Re[�V

γ Z (E , Q2)], CV
γ Z (E , Q2),

Re[�A
γ Z (E , Q2)], and CA

γ Z (E , Q2), respectively.

Re
[
�A

γ Z (P2)
] = 10−4 gV

e

σ

(
410.700F 2

1 + 410.961F1F2

− 0.115F 2
2

)
g3. (17)

The uncertainties in the estimations of Re[�V,A
γ Z (P2)] are

therefore linked to uncertainties in the low-energy coupling
constants and the corrections from higher orders. By taking
the low-energy coupling constants as F1 = 1, F2 = 1.793,
g1 = 0.076, g2 = 2.08, and g3 = −0.95 [23], we find that
Re[�V,A

γ Z (0.155GeV, 0)], as well as CV,A
γ Z (P2) and DV,A

γ Z (P2),
remain relatively similar to each other. Their differences com-
pared to the full results Re[�V,A

γ Z (P2)] are as follows:

CV
γ Z (P2) = 0.002 221

Re
[
�V

γ Z (P2)
] = 0.004 685

= 47.41%,

CA
γ Z (P2) = 0.007 370

Re
[
�A

γ Z (P2)
] = 0.007 383

= 99.82%. (18)

These comparisons reveal an important property when the
physical interactions are considered: for the upcoming P2 ex-
periment, the physical Re[�V

γ Z (E , Q2)] is significantly larger
than the forward-limit Re[�V

γ Z (E , 0)] or CV
γ Z (E , Q2), while

Re[�A
γ Z (E , Q2)] is very close to forward-limit Re[�A

γ Z (E , 0)]
or CA

γ Z (E , Q2).

In Fig. 3, we present the E dependence of Re[�V,A
γ Z (E , Q2)]

and CV,A
γ Z (E , Q2) at Q2 = 0.0045 GeV2 with LO + NLO in-

teractions. The result for Re[�A
γ Z (E , Q2)] at small E such as

0.05 GeV is consistent with those reported in Refs. [27,31],
but the behavior of Re[�V

γ Z (E , Q2)] at small physical E is
much different from those reported in Ref. [28–30].

Further analysis reveals that the larger corrections in
Re[�V

γ Z (E , Q2)] and the significantly different behavior of

FIG. 4. Re[�V,A
γ Z (E , Q2)] obtained with the LO and LO + NLO

low-energy interactions, respectively. The dashed-dotted olive and
solid black curves correspond to Re[�V

γ Z (E , Q2)] with LO + NLO
and LO interactions, respectively. The dotted red and dashed blue
curves correspond to Re[�A

γ Z (E , Q2)] with LO + NLO and LO in-
teractions, respectively.

Re[�V
γ Z (E , Q2)] from the references are associated with three

reasons. First, the forward limit is only accurate when (E −
Emin)MN/Q2 → ∞ for Q < MN , which is not a good approx-
imation for the P2 experiment. Second, the magnitude of the
ratio g2/g1 is relatively large, which plays a significant role
in contributing to the observed large corrections. Third, the
nonzero F2 also gives considerable corrections even g2 is taken
as zero.

In Fig. 4, we present E dependence of Re[�V,A
γ Z (E , Q2)]

obtained using LO interactions and LO + NLO interactions
as Q2 → 0. The results indicate that, for very small val-
ues of E , the NLO interactions give a large contribution to
Re[�A

γ Z (E , Q2)] due to the nonzero F2, but a very small con-
tribution to Re[�V

γ Z (E , Q2)].
In summary, the widely used forward-limit DRs for

�V,A
γ Z (E , 0) work well, as expected in the region with

(E − Emin)MN/Q2 → ∞ for Q < MN . However, when (E −
Emin)MN/Q2 is not sufficiently large, contributions beyond the
forward limit must be taken into account, and it is recom-
mended to use DRs such as Eq. (6) to estimate the coefficients
FV,A

γ Z,i(E , Q2) instead of �V,A
γ Z (E , Q2). For the upcoming P2

experiment, the γ Z contributions are estimated using the LO
and NLO low-energy effective interactions, and the numerical
results show that the forward-limit DRs used in the literature
may potentially underestimate Re[�V

γ Z (P2)] by as much as
47%.
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[15] D. Androić et al. (Qweak Collaboration), Phys. Rev. Lett. 111,
141803 (2013); Nature (London) 557, 207 (2018).

[16] R. Pohl et al., Nature (London) 466, 213 (2010).
[17] A. Antognini et al., Science 339, 417 (2013).
[18] H. Fleurbaey, S. Galtier, S. Thomas, M. Bonnaud, L. Julien, F.

Biraben, F. Nez, M. Abgrall, and J. Guena, Phys. Rev. Lett. 120,
183001 (2018).

[19] N. Bezginov et al., Science 365, 1007 (2019).

[20] W. Xiong et al., Nature (London) 575, 147 (2019).
[21] W. J. Marciano and A. Sirlin, Phys. Rev. D 27, 552 (1983); 29,

75 (1984); 31, 213(E) (1985).
[22] J. Erler, A. Kurylov, and M. J. Ramsey-Musolf, Phys. Rev. D

68, 016006 (2003).
[23] H. Q. Zhou, C. W. Kao, and S. N. Yang, Phys. Rev. Lett. 99,

262001 (2007); 100, 059903(E) (2008).
[24] J. A. Tjon and W. Melnitchouk, Phys. Rev. Lett. 100, 082003

(2008).
[25] M. Gorchtein and C. J. Horowitz, Phys. Rev. Lett. 102, 091806

(2009).
[26] A. Sibirtsev, P. G. Blunden, W. Melnitchouk, and A. W.

Thomas, Phys. Rev. D 82, 013011 (2010).
[27] P. G. Blunden, W. Melnitchouk, and A. W. Thomas, Phys. Rev.

Lett. 107, 081801 (2011).
[28] B. C. Rislow and C. E. Carlson, Phys. Rev. D 83, 113007

(2011).
[29] M. Gorchtein, C. J. Horowitz, and M. J. Ramsey-Musolf, Phys.

Rev. C 84, 015502 (2011).
[30] N. L. Hall, P. G. Blunden, W. Melnitchouk, A. W. Thomas, and

R. D. Young, Phys. Rev. D 88, 013011 (2013).
[31] C. Y. Seng and Ulf-G. Meißner, Phys. Rev. Lett. 122, 211802

(2019).
[32] Q.-Q. Guo and H.-Q. Zhou, Phys. Rev. C 108, 035501 (2023).
[33] R. Mertig, M. Bohm, and A. Denner, Comput. Phys. Commun.

64, 345 (1991); V. Shtabovenko, R. Mertig, and F. Orellana,
ibid. 207, 432 (2016).

[34] H. H. Patel, Comput. Phys. Commun. 197, 276 (2015); 218, 66
(2017).

[35] T. Hahn and M. Perez-Victoria, Comput. Phys. Commun. 118,
153 (1999).

[36] D. Becker et al., Eur. Phys. J. A 54, 208 (2018).

014308-6

https://doi.org/10.1103/PhysRevLett.84.1398
https://doi.org/10.1103/PhysRevLett.88.092301
https://doi.org/10.1103/PhysRevC.70.015206
https://doi.org/10.1103/PhysRevLett.94.142301
https://doi.org/10.1103/PhysRevLett.105.242001
https://doi.org/10.1016/j.physletb.2011.10.002
https://doi.org/10.1103/PhysRevC.84.055204
https://doi.org/10.1103/PhysRevLett.124.042001
https://doi.org/10.1103/PhysRevLett.78.3824
https://doi.org/10.1126/science.290.5499.2117
https://doi.org/10.1016/j.physletb.2004.01.002
https://doi.org/10.1103/PhysRevC.69.065501
https://doi.org/10.1016/j.physletb.2006.03.011
https://doi.org/10.1103/PhysRevLett.98.032301
https://doi.org/10.1103/PhysRevLett.93.022002
https://doi.org/10.1103/PhysRevLett.94.152001
https://doi.org/10.1103/PhysRevLett.95.092001
https://doi.org/10.1016/j.nuclphysbps.2006.08.072
https://doi.org/10.1103/PhysRevLett.111.141803
https://doi.org/10.1038/s41586-018-0096-0
https://doi.org/10.1038/nature09250
https://doi.org/10.1126/science.1230016
https://doi.org/10.1103/PhysRevLett.120.183001
https://doi.org/10.1126/science.aau7807
https://doi.org/10.1038/s41586-019-1721-2
https://doi.org/10.1103/PhysRevD.27.552
https://doi.org/10.1103/PhysRevD.29.75
https://doi.org/10.1103/PhysRevD.31.213
https://doi.org/10.1103/PhysRevD.68.016006
https://doi.org/10.1103/PhysRevLett.99.262001
https://doi.org/10.1103/PhysRevLett.100.059903
https://doi.org/10.1103/PhysRevLett.100.082003
https://doi.org/10.1103/PhysRevLett.102.091806
https://doi.org/10.1103/PhysRevD.82.013011
https://doi.org/10.1103/PhysRevLett.107.081801
https://doi.org/10.1103/PhysRevD.83.113007
https://doi.org/10.1103/PhysRevC.84.015502
https://doi.org/10.1103/PhysRevD.88.013011
https://doi.org/10.1103/PhysRevLett.122.211802
https://doi.org/10.1103/PhysRevC.108.035501
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/j.cpc.2015.08.017
https://doi.org/10.1016/j.cpc.2017.04.015
https://doi.org/10.1016/S0010-4655(98)00173-8
https://doi.org/10.1140/epja/i2018-12611-6

