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Quantum benefit of the quantum equation of motion for the strongly coupled many-body problem
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We investigate the quantum equation of motion (qEOM), a hybrid quantum-classical algorithm for computing
excitation properties of a fermionic many-body system, with a particular emphasis on the strong-coupling regime.
The method is designed as a stepping stone towards building more accurate solutions for strongly coupled
fermionic systems, such as medium-heavy nuclei, using quantum algorithms to surpass the current barrier in
classical computation. Approximations of increasing accuracy to the exact solution of the Lipkin-Meshkov-Glick
Hamiltonian with N = 8 particles are studied on digital simulators and IBM quantum devices. Improved
accuracy is achieved by applying operators of growing complexity to generate excitations above the correlated
ground state, which is determined by the variational quantum eigensolver. We demonstrate explicitly that the
qEOM exhibits a quantum benefit due to the independence of the number of required quantum measurements
from the configuration complexity. Postprocessing examination shows that quantum device errors are amplified
by increasing configuration complexity and coupling strength. A detailed error analysis is presented, and error
mitigation based on zero noise extrapolation is implemented.
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I. INTRODUCTION

During the past several decades, the progress in the nuclear
many-body problem has been driven by considerable advance-
ments in its two major building blocks: (i) nucleon-nucleon
(NN) interactions and (ii) quantum many-body methods. The
former is mainly focused on chiral perturbation theory for
bare interactions and density functional theory (DFT) for ef-
fective interactions, while the latter develops techniques for
modeling the in-medium dynamics of nucleons using NN
interactions as an input. Since the exact many-body solutions
for medium-heavy nuclei are beyond the reach of existing
computational capabilities, the major goal of theory is to
adequately capture the microscopic mechanisms of forma-
tion of the emergent collective effects, which considerably
redefine the bare forces in strongly correlated media. Such
effects are responsible for vibrational and rotational types of
motion, superfluidity, collective giant resonances, and more
exotic, less collective soft modes. An accurate description
of emergent collectivity dominating these modes is criti-
cal for many nuclear physics applications, ranging from the
study of exotic nuclei to astrophysics and the search for new
physics.

The success of early phenomenological models that in-
cluded collective variables established the notion of collective
degrees of freedom, such as rotational and vibrational quanta,
which can be introduced in the effective Hamiltonians in-
dependently of the single-nucleon degrees of freedom [1,2].
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Such models, later evolved into more microscopic frame-
works, although quite successful, still have not reached
the spectroscopic accuracy of even hundreds of keV in
the description of excitation spectra and other properties
of medium-mass and heavy nuclei. The most advanced
approaches belonging to this class encompass various beyond-
mean-field (BMF) techniques [3–12] implemented on the base
of the latest energy density functionals (EDFs) [13–18]. De-
spite the convincing progress on both BMF methods and the
EDFs, it remains unclear to what degree the lack of accuracy
should be attributed to imperfections of the EDFs, inherent
deficiencies of the BMF models, or unavoidable limitations of
present computational capabilities.

Some hope to resolve these issues laid with “ab ini-
tio” approaches, which were supposed to use, as their only
input, the NN interaction in the vacuum. However, such
approaches (dominated by chiral perturbation theory (χPT)
combined with standard many-body methods [19–22]) leave
it unclear to what extent the emergent collectivity, crucial for
medium-heavy nuclei, can be addressed. Presently available
calculations of this kind require readjustments of the NN-
interaction to the properties of finite nuclei [23,24], thereby
partly absorbing the collective effects in the parameters.
Introducing three-nucleon forces in χPT enables a better de-
scription of some characteristics of finite nuclei and nuclear
matter, and further improvements are anticipated in future
developments [25]. Novel microscopic many-body techniques
and their combinations with collective-coordinate methods
demonstrate impressive progress in the description of the
ground and low-lying excited states in medium-light nuclei
[26–30].
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The complexity of the nuclear many-body problem is a
serious obstacle on the way to a spectroscopically accurate
theory, which considerably impedes its utility in applications
where highly accurate spectral computation for medium-
mass and heavy nuclei in wide energy limits is crucial.
Many-body response theory is the best tool to quantify the
excitation spectra of such nuclei, and the best-quality nuclear
response calculations beyond the simplistic (quasiparticle)
random phase approximation [(Q)RPA] only include config-
uration complexity up to (correlated) two-particle-two-hole
(2p2h) [8,9,31–37], and in rare cases 3p3h [10,11,38–40],
due to limitations in current computational capabilities. These
implementations are mostly based on effective NN inter-
actions, either schematic or derived from DFTs, although
calculations employing bare interactions have also become
available [41–47]. Both types of approaches to the nuclear
response still do not demonstrate consistent performance on
spectroscopic accuracy, and the absence of a clear link to
the exact equations of motion (EOMs) for the fermionic
correlation functions somewhat obscures their assessment. A
recent effort to surmount these shortcomings has been the
advancement of relativistic nuclear field theory in a fully
self-consistent approach to the nuclear response based on the
exact EOMs for fermionic propagators and including cor-
related 3p3h configurations in a large model space [12,48].
These calculations emphasize the importance of taking into
account high-complexity configurations in the parameter-free
formalism and pave the way to a spectroscopically accurate
and yet computationally feasible theory of nuclear spectral
properties that satisfy the standards of modern applications.

However, even with the advent of exascale computing,
the impediment of exponential growth of the Hilbert space
with configurations of growing complexity remains a serious
hurdle in classical numerical approaches. Therefore, quantum
algorithms have become an attractive alternative for practi-
tioners, although achieving the supremacy of quantum over
classical computing is debatable [49]. While a fully coher-
ent universal quantum computer remains unrealized, there
exist algorithms suitable for the presently available noisy
intermediate-scale quantum (NISQ) devices. In the nuclear
physics domain, during the last few years, several theoreti-
cal groups have reported applications of such algorithms to
nuclear systems and relevant model Hamiltonians, addressing
both their static and dynamic properties. The former, which
are based on the variational quantum eigensolver, include
computing the binding energy of light nuclei [50,51] and sim-
ulation of lattice models [52]. The latter includes a quantum
algorithm for linear response theory [53], the time evolution
of a nuclear many-body system [54], and simulation of non-
Abelian gauge theories with optical lattices [55]. Other efforts
in the field address efficient state preparation schemes [56–58]
and analysis of nuclear structure using entanglement [59,60].

The quantum EOM (qEOM) algorithm, first implemented
for quantum chemistry calculations [61] as a quantum ex-
tension of the VQE method [62], has attracted our attention
as it is best aligned with the strategy of building growing-
complexity solutions to the fermionic many-body problem
with controlled uncertainties, in the spirit of Refs. [12,48].
Furthermore, the qEOM algorithm is found to be more

resilient to noise compared with other currently available
methods, especially in its recently updated self-consistent
version [63], and it bypasses using a quantum computer for
the noise-sensitive step of solving the eigenvalue equation,
leaving it to a classical computer. While this method was orig-
inally only applied to molecular calculations, i.e., for weakly
coupled systems, in Ref. [64], we explored its performance
in strongly coupled regimes of a prototype Lipkin-Meshkov-
Glick (LMG) Hamiltonian, also known as Lipkin model. It
was found that qEOM shows a very reasonable performance
and has a large potential for improvement.

In this work, we expand the study of Ref. [64] in various
aspects. We note that the accuracy of the qEOM largely de-
pends on the configuration complexity αm of the excitation
operator O†

n(αm) where n denotes the nth excited state. In
general, an N-body problem with accurately defined bare
interactions requires complexity αm = N for the exact solu-
tion [12,65], whereas the advanced classical computation of
the response of medium-mass and heavy nuclei (N ≈ 100)
reaches at most the complexity of αm = 3 [12,48,66]. We
show that the qEOM exhibits a quantum benefit when building
a hierarchy of approximations ordered by α due to the inde-
pendence of the number of required quantum measurements
on this parameter. The number of measurements is found to
scale with the number of particles, thus given this number one
can increase the configuration complexity and achieve better
accuracy of the qEOM without performing more measure-
ments on the quantum computer. Using the efficient encoding
scheme introduced in Ref. [64], we show that the number of
required quantum measurements scales at most quadratically
with the number of particles for the Lipkin model, implying
that the method is feasible for large systems. Furthermore,
we show that for a given particle number, one can increase
the configuration complexity and achieve better accuracy of
the qEOM without performing more measurements on the
quantum computer.

To demonstrate this capability, we simulate the energy
spectrum with αm = {1, 2, 3} using IBM quantum computers
for the LMG Hamiltonian with N = 8 particles and running
coupling strength. The qEOM results for αm = 3, after per-
forming error mitigation, show a reasonable agreement with
the exact solution even in the domain of strong coupling. The
sensitivity of the algorithm to the decoherence of quantum
hardware and sampling errors is discussed.

II. EQUATION OF MOTION METHODS

In this section, we bridge two EOM methods, which are
essentially equivalent but usually employed in different con-
texts. The first EOM method is the backbone of the response
theory dealing with EOMs for fermionic propagators [5,67],
the major subject of study in nuclear and particle physics. The
second method is the EOM of Rowe [68], which directly tar-
gets the excited states of the many-body quantum system and
sets a common background for nuclear structure and quantum
chemistry. The latter EOM serves as a foundation for the
quantum EOM algorithm [61] utilizing the efficient computa-
tion of the many-body ground states by VQE. Here we extend
it to the computation of the transition matrix elements, thereby
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establishing a link with the response theory and accentuating
the universality of the approach and its applicability across the
subfields of quantum many-body physics.

A. Response theory

The strength (spectral) function, which determines the
excitations of a fermionic system in response to a weak os-
cillating external field F † is defined by Fermi’s golden rule:

S(ω) =
∑
ν>0

[|〈ν|F †|0〉|2δ(ω − ων ) − |〈ν|F |0〉|2δ(ω + ων )],

(1)

with the summation over all excited states |ν〉. The transition
matrix element 〈ν|F †|0〉, for the one-body external field oper-
ator in the second-quantized form, reads:

〈ν|F †|0〉 =
∑

12

〈ν|F ∗
12ψ

†
2 ψ1|0〉 =

∑
12

F ∗
12ρ

ν∗
21 . (2)

The matrix elements in Eq. (2) are the transition densities
ρν

12 = 〈0|ψ†
2 ψ1|ν〉, which can be interpreted as the weights

of the pure particle-hole configurations ψ
†
2 ψ1 in the single-

particle basis {1}, built on top of the ground state |0〉, in the
excited states |ν〉. Approximating the δ functions in Eq. (1) by
the Lorentz distribution, one obtains

S(ω) = − 1

π
lim

→0

Im�(ω + i
), (3)

where �(ω) is the polarizability of the many-body system:

�(ω) =
∑

ν

[
Bν

ω − ων

− B̄ν

ω + ων

]
(4)

related to the transition probabilities Bν and B̄ν of absorption
and emission, respectively:

Bν = |〈ν|F †|0〉|2 B̄ν = |〈ν|F |0〉|2. (5)

Thus, the strength function associated with the given external
field operator F can be expressed as

SF (ω) = − 1

π
lim

→0

Im
∑

121′2′
F12R12,1′2′ (ω + i
)F ∗

1′2′ , (6)

where the response function R12,1′2′ (ω) is figuring in its spec-
tral representation

R12,1′2′ (ω) =
∑
ν>0

[
ρν

21ρ
ν∗
2′1′

ω − ων + iδ
− ρν∗

12 ρν
1′2′

ω + ων − iδ

]
, (7)

with the poles at the energies ων = Eν − E0 of the excited
states relative to the ground-state energy and δ → +0.

The response function can be thus defined in terms of
the time-dependent fermionic field operators as the two-time
correlation function

R(12, 1′2′) ≡ R12,1′2′ (t − t ′)

= −i〈T ψ†(1)ψ (2)ψ†(2′)ψ (1′)〉, (8)

where 〈.〉 is a shorthand notation for the expectation value in
the ground state while ψ (1) ≡ ψ1(t1), ψ†(1) ≡ ψ

†
1 (t1) are the

fermionic field operators in Heisenberg picture. In Eq. (8) it

is implied that the number arguments in the brackets include
the time variables, t1 = t2 = t and t1′ = t2′ = t ′. The generic
many-body fermionic Hamiltonian is given by

H = H (1) + V (2) (9)

and confined here by the two-body interaction V (2). In the one-
body term H (1)

H (1) =
∑

12

t12ψ
†
1 ψ2 +

∑
12

v
(MF)
12 ψ

†
1 ψ2 ≡

∑
12

h12ψ
†
1 ψ2 (10)

the matrix elements h12 combine the kinetic and the mean-
field v(MF) parts of the interaction. The two-body sector is
defined by the operator V (2)

V (2) = 1

4

∑
1234

v̄1234ψ
†
1 ψ

†
2 ψ4ψ3, (11)

via v̄1234 = v1234 − v1243, the antisymmetrized matrix element
of the interaction of two fermions in the vacuum, also called
the bare interaction. Three-body forces are neglected in this
work but can be included straightforwardly.

The EOM for the response function (8) is generated by
differentiation of (8) with respect to the time arguments. Tak-
ing the derivatives with respect to t and t ′, after a Fourier
transformation to the energy domain, yields

R12,1′2′ (ω) = R(0)
12,1′2′ (ω)

+
∑

343′4′
R(0)

12,34(ω)T34,3′4′ (ω)R(0)
3′4′,1′2′ (ω), (12)

with the free (uncorrelated) particle-hole response R(0)(ω),

R(0)
12,1′2′ (ω) = N121′2′

ω − ε21
, (13)

and the T matrix T (ω), the Fourier image of T (t − t ′), which
splits into the instantaneous T (0) and the time-dependent T (r)

parts:

T12,1′2′ (t − t ′) = Ñ−1
121′2′

[
T (0)

12,1′2′δ(t − t ′) + T (r)
12,1′2′ (t − t ′)

]
,

T (0)
12,1′2′ = −〈[[V, ψ†

1ψ2], ψ†
2′ψ1′ ]〉,

T (r)
12,1′2′ (t − t ′) = i〈T [V, ψ†

1ψ2](t )[V, ψ†
2′ψ1′ ](t ′)〉. (14)

In Eqs. (13) and (14) N121′2′ is the norm kernel:

N121′2′ = 〈[ψ†
1 ψ2, ψ

†
2′ψ1′ ]〉 = δ22′ 〈ψ†

1 ψ1′ 〉 − δ11′ 〈ψ†
2′ψ2〉

(15)

and ε12 = ε1 − ε2, while ε1 and ε2 are the eigenvalues of the
one-body part of the Hamiltonian. The basis single-particle
states are, therefore, the eigenstates of H (1) and h12 = δ12ε1. If
the norm simplifies to the form N121′2′ = δ11′δ22′ (n1 − n2) ≡
δ11′δ22′N12, then Ñ121′2′ = N12N1′2′ , and the quantity n1 =
〈ψ†

1 ψ1〉 is associated with the occupancy of the fermionic state
|1〉.

By introducing the irreducible interaction kernel K (t − t ′),
where irreducibility is implied with respect to R(0)

12,1′2′ ,

K (t − t ′) = Ñ−1[K (0)δ(t − t ′) + K (r)(t − t ′)],

K (0) = T (0), K (r)(t − t ′) = T (r)irr (t − t ′). (16)
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Equation (12) transforms to a formally closed equation for
R(ω), similarly to the Dyson equation for the one-fermion
propagator, which is known as the Bethe-Salpeter-Dyson
equation (BSDE):

R(ω) = R(0)(ω) + R(0)(ω)K (ω)R(ω), (17)

where

T (ω) = K (ω) + K (ω)R(0)(ω)T (ω). (18)

Equations (12)–(18) express the response theory, which can
be applied for calculations of the strength distribution (1)
for a given F †. The excitation spectrum of the system is,
thereby, in principle, completely determined by the external
field and the bare fermionic interaction via the commutation
relations (14) and (15), which promote all the in-medium
physics. Because of the presence of higher-rank correlation
functions in the dynamical, or time-dependent, interaction
kernel K (r)(t − t ′) which give a feedback on its static coun-
terpart, in practice, certain approximations are made to obtain
solutions of Eq. (17) [12,69].

At the exact poles of the response function ω → ων BSDE
can be reformulated into a matrix equation for the transition
densities

ρν
21 =

∑
341′2′

R(0)
12,34(ων )K34,1′2′ (ων )ρν

2′1′ . (19)

Under certain assumptions about the correlation content of
the ground and excited states, this relationship can be further
recast into the form of the generalized eigenvalue equation,
which appears in Rowe’s EOM method discussed in the next
subsection.

B. Quantum EOM algorithm and its quantum benefit

The EOM developed by Rowe [68] is another framework
for computing excitation properties of quantum many-body
systems. The goal is to find the excitation spectrum of a
quantum system obeying the Schrödinger equation

Ĥ |n〉 = En |n〉 , (20)

where Ĥ is the Hamiltonian operator, En is the energy of the
nth excited state, and |n〉 is the nth excited state. Following
tradition, in this subsection, we will denote operators explic-
itly with the “ˆ” symbol. The excited states |n〉 are generated
by the excitation operator Ô†

n which is defined by its action on
the ground state |0〉:

|n〉 = Ô†
n |0〉 , (21)

with the vacuum annihilation condition (VAC),

Ôn |0〉 = 0. (22)

The energies above the ground-state energy (En0 = En −
E0 ≡ ωn) are given by Ref. [70] as

En0 = 〈[Ôn, [Ĥ , Ô†
n]]〉

〈[Ôn, Ô†
n]〉 . (23)

Therefore, the task of solving Eq. (20) has been reformu-
lated into calculating the energy spectrum Eq. (23) and the
associated wave functions of Eq. (21) using knowledge of

the excitation operator Ô†
n and the many-body ground state

|0〉. If Ô†
n or |0〉 is not known exactly, then some reasonable

techniques to approximate them can be used to initiate the
computation cycle.

The excitation operator can be written in its most general
form as an expansion over products of creation and annihila-
tion field operators

Ô†
n(αm) =

αm∑
α=1

∑
μα

[
X α

μα
(n)K̂α

μα
− Y α

μα
(n)

(
K̂α

μα

)†]
, (24)

where

K̂1
μ1

= ψ̂†
pψ̂h, K̂2

μ2
= ψ̂†

pψ̂
†
p′ψ̂h′ψ̂h, . . . , (25)

the indices p, h, p′, and h′ denote the particle and hole states
(above and below the Fermi surface, respectively), α is the
degree of configuration complexity equal to the number of
particle-hole pairs, and μα is the collective index combining
the single-particle states involved in the given configuration.
In principle, with αm = N , the excitation operator in Eq. (24)
can generate exact solutions for the N-body system assuming
that |0〉 is exact. Thus, for αm < N , there is a hierarchy of
approximations that can be related to the Bogoliubov-Born-
Green-Kirkwood-Yvon hierarchy [71].

In general, many-body systems dominated by strong cou-
pling require higher configuration complexity αm of Ô†

n to
achieve certain accuracy than the weakly interacting systems.
At the same time, for nonperturbative theories that do not
rely on expansions in small parameters, building a hierarchy
of approximations with varying αm may serve as uncer-
tainty quantification, which is an important theory ingredient
[72]. Realistic calculations for medium-heavy nuclear systems
[12] indicate that the quality of description grows relatively
quickly with αm, and the spectral results saturate with this pa-
rameter. Establishing a quantitative link between accuracy and
configuration complexity would be of great value because the
required accuracy of a particular application (or comparison to
experimental data) would set the upper limit on the configura-
tion complexity of the corresponding EOM calculation. This
strategy can be implemented with an adaptive algorithm as an
alternative to the brute-force diagonalization of Ĥ , variants of
which are commonly called shell models [73]. Furthermore,
as previously noted, the EOM method can be conveniently
converted into a quantum algorithm qEOM and used in combi-
nation with the VQE method, which efficiently computes the
many-body ground state |0〉 on a quantum computer [61,63].

With a good approximation to |0〉 and a fixed Ô†
n, one

can solve Eq. (23) by minimization, i.e., setting the variation
δ(En0) = 0 in the parameter space spanned by the coefficients
of Eq. (24). This procedure leads to the generalized eigenvalue
equation (GEE), which, in the block-matrix form, reads:(

A B
B∗ A∗

)(
Xn

Yn

)
= En0

(
C D

−D∗ −C∗

)(
Xn

Yn

)
. (26)

The matrix elements are found by taking expectation values
of the following commutators in the ground state |0〉:

Aμανβ
= 〈[(

K̂α
μα

)†
,
[
Ĥ , K̂β

νβ

]]〉
, (27)
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Cμανβ
= 〈[(

K̂α
μα

)†
, K̂β

νβ

]〉
, (28)

Bμανβ
= − 〈[(

K̂α
μα

)†
,
[
Ĥ ,

(
K̂β

νβ

)†]]〉
, (29)

Dμανβ
= − 〈[(

K̂α
μα

)†
,
(
K̂β

νβ

)†]〉
. (30)

The GEE (26) may be left for postprocessing on a classical
computer, for which methods of increasing efficiency have
been developed [74–76].

The major advantage of the qEOM algorithm resides in
the efficient evaluation of the required expectation values for
the GEE [61]. Another aspect of the qEOM’s computational
efficiency manifests in simulations of strongly coupled many-
body systems, which require higher configuration complexity
to obtain accurate results. Specifically, increasing the config-
uration complexity for a fixed system size is possible without
performing additional measurements on a quantum computer.
To illustrate this statement, note that the Hamiltonian of a
fermionic system can be expressed in terms of a product of
Pauli gates Pk ∈ {I, X,Y, Z} as follows:

H =
∑

i

hi
{
P0 ⊗ P1 ⊗ . . . Pnq

}i
, (31)

where nq is the number of qubits. Therefore, the basis excita-
tion operators and the matrix elements of A are given by

K =
∑

i

κi
{
P0 ⊗ P1 ⊗ . . . Pnq

}i
, (32)

A =
∑

i

ai
〈{

P0 ⊗ P1 ⊗ . . . Pnq

}i〉
, (33)

and analogous decompositions can be employed for the other
matrices B, C, and D. The quantum benefit is that the
number of qubits nq is fixed by the particle number N ;
thus, the number of measurements on a quantum computer
〈P0 ⊗ P1 ⊗ . . . Pq〉 is fixed. Increasing the configuration com-
plexity α increases the number of terms in the sums (31)–(33)
but does not affect the number of measurements. This implies
an efficient scheme for building a hierarchy of approximations
ordered by the degree of configuration complexity that is
needed for realistic nuclear structure computation within the
EOM framework.

The GEE yields the complete set of excitation energies En0

and amplitudes X α
μα

,Y α
μα

which can be used to compute the
strength function (1) associated with a given external field
F̂ . The relevant matrix element [e.g., the complex conjugate
of Eq. (2)] can be expressed via an expectation value of the
commutator of the external field and excitation operators,

〈0| F̂ |n〉 = 〈0| [F̂ , Q̂†
n(αm)] |0〉 , (34)

by employing the VAC (22). As in Eq. (23), the commutator
form is used to reduce the rank of operators acting on the
correlated ground state. The general second-quantized form
of a one-body operator

F̂ =
∑

i j

Fi jψ̂
†
i ψ̂ j, (35)

formally contains all types of contributions: Fph, Fhp, Fpp, and
Fhh (where the Latin subscripts in Eq. (35) mark the same

single-particle basis denoted by number indices in Sec. II A).
The commutator in (34) thus expands as

[F̂ , Q̂†
n(αm)] =

∑
i j

Fi j

αm∑
α=1

∑
μα

(
X α

μα
(n)

[
ψ̂

†
i ψ̂ j, K̂α

μα

]
−Y α

μα
(n)

[
ψ̂

†
i ψ̂ j, K̂α†

μα

])
, (36)

with, for α = 1 and α = 2,[
ψ̂

†
i ψ̂ j, K̂1

μ1

] ≡ [ψ̂†
i ψ̂ j, ψ̂

†
pψ̂h] = δp jψ̂

†
i ψ̂h − δhiψ̂

†
pψ̂ j,[

ψ̂
†
i ψ̂ j, K̂2

μ2

] ≡ [ψ̂†
i ψ̂ j, ψ̂

†
pψ̂

†
p′ψ̂h′ψ̂h]

= −δihψ̂
†
pψ̂

†
p′ψ̂h′ψ̂ j + δih′ψ̂†

pψ̂
†
p′ψ̂hψ̂ j

− δ j p′ψ̂
†
i ψ̂†

pψ̂h′ψ̂h + δ j pψ̂
†
i ψ̂

†
p′ψ̂h′ψ̂h, (37)

the analogous expressions for α � 3 and respective counter-
parts with p ↔ h, p′ ↔ h′, . . . . The ground-state expectation
values of these commutators depend on the correlation content
of the model ground state. For instance, with the uncorrelated
ground state of the Hartree or Hartree-Fock (HF) type |0〉 =
|HF〉, which is defined as the particle vacuum ψ̂p |HF〉 = 0,
one obtains

〈0| F̂ |n〉 =
∑

ph

[
FhpX 1

ph(n) + FphY
1
ph(n)

]
. (38)

This means that in the HF approximation to the ground state
ρn

ph = X 1
ph(n), ρn

hp = Y 1
ph(n), and only α = 1 amplitudes con-

tribute to the transition probabilities even in the presence
of higher-complexity configurations in the operator Q̂†

n(αm).
Equation (38) is most commonly used in response theory and
neglects the ground-state correlations.

The simplest and often most relevant is the external field
operator of one-body character with nonvanishing ph and hp
components:

F̂0 =
∑

ph

(Fphψ̂
†
pψ̂h + Fhpψ̂

†
h ψ̂p). (39)

In this case, the transition amplitudes read:

〈0| F̂0 |n〉 =
∑

ph

{
Fph

αm∑
α=1

∑
μα

[
X α

μα
(n)

〈[
K̂1

ph, K̂α
μα

]〉

− Y α
μα

(n)
〈[

K̂1
ph, K̂α†

μα

]〉] + (p ↔ h)

}
, (40)

where the expectation values on the right-hand side are taken
in the formally exact ground state. In the VQE+qEOM ap-
proach, we deal with correlated ground states of unspecified
correlation content. However, the expectation values entering
Eq. (40) are already contained in the set of the Pauli strings
measured for constructing the GEE matrix since〈[

K̂1
ph, K̂α

μα

]〉 = D∗
ph,μα

〈[
K̂1

ph, K̂α†
μα

]〉 = −C∗
ph,μα

, (41)

so that the quantum advantage extends to the computation of
the transition amplitudes and strength functions (1).

Two-body and higher-rank terms can also be present in the
external field operators. Of particular interest are two-body
currents, which are expressed by two-body operators and can,
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therefore, nontrivially couple to the correlated ground state.
Strength function studies on a quantum computer for various
types of external fields will be considered in a separate publi-
cation.

III. QEOM APPLICATION TO LIPKIN MODEL

A. Lipkin model

The LMG model is a test bed for approximate techniques
of solving fermionic quantum many-body problem [77–81].
It describes a system of N interacting fermions constrained
to two N-fold degenerate energy levels with E = ±ε/2. The
particles interact via a monopole-monopole force where, in
the quasispin formulation, the Hamiltonian is given by

Ĥ = εĴz − V

2
(Ĵ2

+ + Ĵ2
−) − W

2
(Ĵ+Ĵ− + Ĵ−Ĵ+). (42)

The operators Ĵz and Ĵ± are related to the fermionic field
operators via

Ĵz = 1

2

N∑
m=1

∑
σ=±

σψ̂†
σmψ̂σm, Ĵσ =

N∑
m=1

ψ̂†
σmψ̂−σm, (43)

and satisfy the angular momentum commutation algebra,
while the index σ = ± differentiates the upper and lower
levels. The interaction term associated with V scatters two
particles from the same energy level up or down, and W
scatters one particle up and another down or vice versa from
different energy levels. The wave functions of the system can
be expressed via the eigenstates |J, M〉 of the operators Ĵz

and Ĵ2 = 1
2 {Ĵ+, Ĵ−} + Ĵ2

z , and |J, M〉 serves as a convenient
basis. These eigenstates are labeled by the quantum numbers
J = j1 + j2 + · · · + jN , which is the total spin, and its pro-
jection M in the z direction. Symmetries of this model can
be exploited to significantly reduce the size of the relevant
Hilbert space. The first symmetry arises from the invariance of
the Hamiltonian under the exchange of particles within the set
of two levels. Additionally, in the case of W = 0 in Eq. (42),
the interaction term only couples states that differ by spin
M ± 2; hence we can block-diagonalize the Hamiltonian. This
leads to the maximally efficient encoding scheme (J scheme)
introduced in Ref. [64]. In this encoding scheme, the problem
of finding eigenvalues of Eq. (42) reduces to the diagonaliza-
tion of smaller matrices of dimensions J and (J + 1), where
J = 1

2 N . Therefore, with the condition W = 0, the dimen-
sion of the LMG Hamiltonian scales as O(N ), which enables
efficient implementations on NISQ devices with a modest
number of qubits and circuit depth.

The exact analytical solution of the LMG model with W =
0 for systems with a few particles is given in Refs. [77,82],
which we use in this study to benchmark the accuracy of
our quantum algorithm. Some extensions of the Lipkin model
have been proposed, such as the Agassi model [83,84], the
three-level Lipkin model [85], and the generalized Lipkin
model [86], all of which could be interesting test-beds for
quantum algorithms.

B. Efficient encoding

In Ref. [64], we introduced the most efficient encoding
scheme of the LMG Hamiltonian (42) with W = 0 on a quan-
tum computer. This section briefly describes this encoding
scheme dubbed as the J scheme. As mentioned above, the
multiplet representation |J, M〉 of the basis states helps reveal
and exploit symmetries of the Hamiltonian. Each block con-
tains a ladder of states with spin projections that differ by an
even number of units. The first block can be mapped to qubits
as follows:

|J,−J〉 ≡ |0〉 → |bin(0)〉 ,

|J,−J + 2〉 ≡ |1〉 → |bin(1)〉 ,

· · ·
|J, J − 2〉 ≡ |d − 2〉 → |bin(d − 2)〉 ,

|J, J〉 ≡ |d − 1〉 → |bin(d − 1)〉 , (44)

where the Gray code (GC) is employed for |bin(k)〉, and the
mapping of the other block is done similarly. The GC orders
the binary values such that any two adjacent entries differ by
only a single bit [87]. The GC has been shown to be more
efficient than standard binary coding for Hamiltonian simula-
tions on a quantum computer [88,89]. Thus, the dimensionless
Hamiltonian H̄ = Ĥ/ε is recast as

H̄ =
d−1∑
k=0

ak |k〉 〈k| +
d−2∑
k=0

bk (|k〉 〈k + 1| + |k + 1〉 〈k|), (45)

where the states |k〉 are mapped to |bin(k)〉 by the GC and the
coefficients are given by

ak = M, (46)

bk = −v

2
× {[J (J + 1) − M(M + 1)]

× [J (J + 1) − (M + 1)(M + 2)]} 1
2 , (47)

where M = 2k − J and v = V/ε. In this work, we consider
a system of N = 8 particles, thus J = 4, which corresponds
to a total multiplet of nine states that decomposes into two
disconnected subblocks of even and odd values of M denoted
by A and B:

|4,−4〉 ≡ |0〉A → |000〉 |4,−3〉 ≡ |0〉B → |00〉
|4,−2〉 ≡ |1〉A → |001〉 |4,−1〉 ≡ |1〉B → |01〉

|4, 0〉 ≡ |2〉A → |011〉 |4,+1〉 ≡ |2〉B → |11〉
|4,+2〉 ≡ |3〉A → |010〉 |4,+3〉 ≡ |3〉B → |10〉
|4,+4〉 ≡ |4〉A → |110〉 , (48)

where the GC single bit that changes in subsequent states is
shown in bold. The Hamiltonian for block B is given by the
ansatz

H̄B = a0 |00〉 〈00| + a1 |01〉 〈01| + a2 |11〉 〈11| + a3 |10〉 〈10|
+ b0(|00〉 〈01| + |01〉 〈00|)
+ b1(|01〉 〈11| + |11〉 〈01|)
+ b2(|11〉 〈10| + |10〉 〈11|), (49)
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FIG. 1. Ansatz circuit for block B of the Lipkin system with N =
8 particles.

with the following coefficients:

a0 = −3, a1 = −1, a2 = 1, a3 = 3,

b0 = −3
√

7v, b1 = −10v, b2 = −3
√

7v. (50)

The Hamiltonian of Eq. (49) is then rewritten in terms of Pauli
matrices by noting that the operators associated with ak are
given by

|00〉 〈00| = P(0)
1 P(0)

0 = 1
4 (I + Z0 + Z1 + Z1Z0),

|01〉 〈01| = P(0)
1 P(1)

0 = 1
4 (I − Z0 + Z1 − Z1Z0),

|11〉 〈11| = P(1)
1 P(1)

0 = 1
4 (I − Z0 − Z1 + Z1Z0),

|10〉 〈10| = P(1)
1 P(0)

0 = 1
4 (I + Z0 − Z1 − Z1Z0), (51)

where P(0)
i = 1

2 (Ii + Zi ) and P(1)
i = 1

2 (Ii − Zi ) are the projec-
tion operators acting on the ith qubit. Similarly, the operators
associated with bk can be expressed as

|00〉 〈01| + |01〉 〈00| = P(0)
1 X0 = 1

2 (X0 + Z1X0),

|01〉 〈11| + |11〉 〈01| = X1P(1)
0 = 1

2 (X1 − X1Z0), (52)

|11〉 〈10| + |10〉 〈11| = P(1)
1 X0 = 1

2 (X0 − Z1X0).

After substituting Eqs. (50)–(52) into Eq. (49), the Hamilto-
nian of block B reads

H̄B = −2Z1 − Z1Z0 − 3
√

7vX0 − 5vX1 + 5vX1Z0. (53)

The associated GC wave function for block B is given by

|ψB〉 = cos φ0 |00〉 + sin φ0 cos φ1 |01〉
+ sin φ0 sin φ1 cos φ2 |11〉
+ sin φ0 sin φ1 sin φ2 |10〉 , (54)

which can be represented by the ansatz circuit shown in Fig. 1.
One can follow the same procedure to obtain the block-A

Hamiltonian:

H̄A = − (IIZ + ZZI ) + 1

2
(ZII − 3IZI − IZZ − ZIZ )

+ 3
√

10

4
v(ZXZ + ZXI − IXZ − IX I )

+
√

7

2
v(ZZX + IZX − ZIX − IIX )

− v

4
(3

√
10 + 2

√
7)(XII + XIZ )

+ v

4
(3

√
10 − 2

√
7)(XZI + XZZ ), (55)

where the subscripts {2, 1, 0} marking the qubits are dropped
for readability. The associated wave function for block A can

FIG. 2. Ansatz circuit for block A of the Lipkin system with N =
8 particles.

be represented by the ansatz circuit shown in Fig. 2. Here we
employ an optimized circuit constructed by removal of the re-
dundant entangling gates similar to the procedure of Ref. [90].
This optimization has the benefit of reducing the circuit depth,
which in our case results in an order-of-magnitude reduction
of errors on the quantum computer. Since this circuit is not
exact, it introduces some approximation errors, which in-
crease with the effective interaction strength. However, for the
range of couplings studied in this work, this increase remains
negligible compared to the noise from the quantum computer.
More details of the error analysis are given in Sec. V.

In general, for an arbitrary N , the Hamiltonian is split into
block form as

H̄ (N )
J =

(
H̄A 0
0 H̄B

)
, (56)

where the dimension of block A and B is dA = J + 1 and dB =
J for the even values of N and dA = dB = 1

2 (N + 1) for the
odd values of N . In Ref. [64], we showed that this encoding
leads to a logarithmic scaling of the number of qubits nq with
respect to the number of particles N given by

nq =
⌊

log 2

(
N

2
+ 1

)⌋
. (57)

This O(log(N )) scaling of the number of qubits is the critical
factor that enables the realization of the quantum benefit.

C. Scaling of qEOM

VQE+qEOM algorithm consists of four steps character-
ized by scaling with the number of particles N in the system,
namely

(1) The number of qubits required to accommodate all the
system states.

(2) The number of independent parameters (angles) that
express the many-body wave function of the system.

(3) The number of measurements of the basis Pauli-gates
on a quantum computer required to evaluate the qEOM
matrix elements.

(4) The dimension of the GEE solved on a classical com-
puter.

In this section, we determine the scaling of each algorithmic
step for the Lipkin model. As mentioned in Sec. III B, the
number of qubits scales logarithmically with N . The number
of angles na is defined by

na = 2nq − 1 = 2[log 2( N
2 +1)�] − 1 ≈ N

2
. (58)
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Hence, the number of angles to be optimized for the wave-
function ansatz scales as O(N ), i.e., linearly with N .

The total number of measurements M needed to construct
the qEOM matrix elements is determined by counting the
combinations Pk of choosing k Pauli strings from the set of
four Pauli strings {I, X,Y, Z} including repetitions:

M = 4k − 1 = (2k )2 − 1 ≈ N2, (59)

where k = nq is the number of qubits in the system. There-
fore, since k scales logarithmically with N , the number of
measurements M scales as O(N2), i.e., quadratically with N .
In practice, not all the Pauli strings in Pk enter the matrix
elements; thus, the total measurements are much less than
N2, which represents the worst-case scenario. For the Lipkin
model with W = 0 the quadratic scaling makes the quan-
tum benefit accessible by high-complexity approximations for
strongly coupled systems.

Finally, the scaling of the GEE matrix dimensions is found
by computing the total number of unique excitations on an nq-
qubit quantum computer. According to the set theory, the total
number of distinct proper subsets of the set {0, 1, . . . q − 1} is
given by s = 2nq − 1. We note that a proper subset excludes
the original set but includes the null set {∅}, whereas, in
the case of unique excitations, we include the original set
and exclude the null set; hence, the count is the same. The
dimension of the GEE matrices is given by

2s = 2 × (2nq − 1) ≈ N. (60)

Thus the GEE matrix dimension scales linearly as O(N ) for
the Lipkin model with the efficient J scheme.

In general, assuming no symmetries can be exploited in
the model Hamiltonian, the number of Pauli-gate measure-
ments on a quantum computer and the dimension of the GEE
solved by the classical computer grows exponentially with
the number of particles in the system. However, in practical
implementations of the EOM, and in nuclear structure in par-
ticular, the particle-hole pairs in the operators F̂ and Q̂† are
coupled either to a good angular momentum (in the spherical
symmetry) or to a total angular momentum projection (in the
axial symmetry) [91]. Accordingly, separate EOMs are solved
for each set of quantum numbers, such as spin, isospin, and
parity, which define an eigenmode or are transferred by an
external field. This is an essential factor that moderates the
scaling considerably.

IV. QUANTUM SIMULATION RESULTS

The energy spectrum of the Lipkin Hamiltonian (42) with
W = 0 and N = 8 is displayed in Fig. 3. The spectrum was
obtained using a classical simulation of an ideal quantum
computer with no noise errors, often called a simulator, with
the running effective interaction strength ṽ = (N − 1)v. The
results obtained on the simulator served as a benchmark for
the real noisy quantum device calculations. The ground E0 and
first excited E1 states were found via the VQE minimization
procedure for blocks A and B, respectively. The approach
of finding the optimal angles on the simulator was used. As
justified in Ref. [64], in the case of only a few angles, those
for the ground-state energy on the noisy quantum processor

FIG. 3. Simulator results for the energy spectrum of the Lipkin
model as a function of the effective interaction strength ṽ for a system
of N = 8 particles. The square, circle, and cross symbols represent
calculations with the maximal configuration complexity αm = 1, 2,
and 3. The dashed lines are the exact solutions for the energy levels.

can be approximated by the angles found on the simulator.
This enables more economical VQE execution on currently
available noisy quantum devices.

The higher-energy states {E2, E4, E6, E8} and {E3, E5, E7}
are obtained by accordingly applying the excitation operator
(24) on the two lowest-energy states. The excited-state ener-
gies of block A are found using the qEOM algorithm with α =
1, 2, and 3 configuration complexities of the excitation opera-
tor, while the energies of block B were obtained with α = 1,
2. In the efficient J-scheme encoding of the Lipkin model, the
maximal configuration complexity is αm = nq, where nq is the
number of qubits in the ansatz. As nq = 3 for block A and
nq = 2 for block B, all the possibilities were realized in the
calculations. The approximations to the excitation operator
with the maximal configuration complexities αm = 1, 2, and
3 are dubbed as α1, α2, and α3, respectively. As the ground
state is obtained by minimization and accounts for many-body
correlations nearly exactly, these approximations differ from
the regular RPA, second RPA, and third RPA based on the
quasiboson approximation [70]. Therefore, the maximal con-
figuration complexity index αm is used for identification of the
approach to the excitation operator.

We are particularly interested in how the increase in con-
figuration complexity influences the results across coupling
regimes. By construction of the excitation operator, it is ex-
pected that (i) larger αm should lead to a more accurate
solution and (ii) terms with larger α should become increas-
ingly important with the growing interaction strength. Indeed,
one can see in Fig. 3 that both trends manifest in both blocks
A and B of the model Hamiltonian.

Because of the presence of the ground-state correlations,
the α1 solutions avoid the anomalous behavior of RPA at ṽ =
1 and rather resemble the pattern of the self-consistent RPA
[69,92]. With the ṽ increase, the α1 solutions exhibit large
deviations from the exact ones. Introducing the α = 2 con-
figurations into the excitation operator enables considerably
more accurate solutions for all the energy levels. The αm = 2
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FIG. 4. Basis expectation values as a function of the effective
interaction strength for a three-qubits ansatz of the Lipkin model.
The graph labels “ibmq” and “zne” represent computation performed
on IBM quantum computers without error mitigation and with error
mitigation employing the ZNE method, respectively. The solid lines
labeled “sim” represent the values computed by the state-vector
simulator.

approximation demonstrates a very good performance for the
E2–E5 and E7 excited states for almost all interaction strength
values except for a few deviations in E2 from the exact en-
ergies at strong coupling. The higher-energy αm = 2 block-A
solutions E6 and E8 start to deteriorate already near ṽ = 1.
Finally, with the maximal possible configuration complexity
α = 3 for block A, one can see a significant improvement of
the results approaching the exact values. Thus, maximal pos-
sible configuration complexities generate nearly exact results
with the VQE+qEOM algorithm on the simulator.

Although the same trends manifest in the solutions on the
quantum computer, the hardware results are affected by noise,
which is especially pronounced at strong coupling. To reduce
systematic errors from noise, zero-noise extrapolation (ZNE)
error mitigation was adopted from Refs. [93,94] and applied to
the final expectation value measurements. ZNE consists of (i)
amplifying the noise in the circuit by creating multiple circuit
copies with varying multiplication factors of the U †U type or
local folding of single gates, (ii) making measurements for the
multiplied circuits, thereby generating varying levels of noise,
and (iii) using the results of the measurements to extrapolate
down to the ideal setting with theoretically zero noise.

The effect of the ZNE application on the single Pauli
strings is illustrated in Fig. 4 for the selected elements
〈IZZ〉, 〈IXZ〉, 〈ZII〉, and 〈ZIY 〉 of the block-A computation.
The hardware results before and after the error mitigation
are displayed in comparison with the simulator results. The
expectation values of the first two Pauli strings are systemati-
cally underestimated, while somewhat oscillating behavior is
observed for the other two. Remarkably, the errors generally
do not increase with the ṽ value, i.e., the strong coupling is not
problematic at this step. The major trend in the ZNE results
is a systematic reduction of hardware errors. One case where
the ZNE does not improve the result is the strong-coupling
regime with 1.0 � ṽ � 2.0 for the ZII string; however, the

FIG. 5. Energy spectrum of the Lipkin model as a function of
the effective interaction strength ṽ for a system of N = 8 particles.
Energy levels of the Hamiltonian matrix block A are shown. The
graph labels “ibmq” and “zne” represent computation performed on
IBM quantum computers without error mitigation and with error
mitigation employing the ZNE method, respectively.

corresponding hardware values are quite close to the ones
obtained on the simulator, i.e., not much affected by the noise.
This may be a feature of this particular kind of combinations
(Pauli gates with two identity elements) that are less affected
by hardware noise than others.

The IBM hardware results obtained by the same algorithm
are demonstrated in Figs. 5 and 6 in comparison with the exact
solution. Figure 5 shows the even energy levels of block A of
the Lipkin Hamiltonian, and Fig. 6 displays the odd energy
levels from its block B. The results were collected before
and after the ZNE was applied to the basis Pauli-gates ex-
pectation value measurements and augmented with error bars
determined as described in Sec. V. The results before and after
applying ZNE are marked by “ibmq” and “zne,” respectively,
and include computation with varying maximal configuration
complexity αm of the excited states. The ground-state and first
excited-state energies are the outputs of the VQE for block
A and block B, correspondingly. One can observe systematic
inaccuracies in the VQE calculations, which return slightly
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FIG. 6. Same as in Fig. 5 but for block B of the Hamiltonian
matrix.

larger energy values regardless of the interaction strength.
While consistency and stability of VQE are discussed in
Sec. V, here we note that the application of ZNE definitely
helps reduce the inaccuracies in the ground-state energy in
all the coupling regimes. However, even after the error miti-
gation, the ground-state description is imperfect, so one can
expect propagation of the remaining errors to the expectation
values and, therefore, their nonnegligible contribution to the
errors in the excitation energies.

The overall observation across the LMG spectrum is that,
for the excited states, the hardware noise generates system-
atic errors following the same trends as the accuracy: The
errors are amplified with the increase of αm and growth of
the interaction strength. As noted above, the hardware errors
of single quantum measurements do not grow with the inter-
action strength; however, the role of larger α becomes more
important with stronger coupling, while the increase of αm

leads to more terms in the GEE matrix elements and eventu-
ally to postprocessing higher-rank matrices. These two factors
together, therefore, lead to larger errors in the resulting energy
spectrum at large ṽ. Overall, in the strong-coupling regime,
the reduction of theoretical errors by introducing higher com-
plexity terms in the excitation operator comes at the price of
amplified hardware errors.

In most cases, the ZNE allows for a significant reduction
in the errors originating from the hardware noise, according to
the trend for the single Pauli strings. However, as follows from
the sampling noise analysis discussed in Sec. V, sampling

errors in certain coupling regimes may dominate over the
hardware errors.

V. ERROR ANALYSIS

Two sources of error were considered and investigated
for this analysis: inaccuracies in the parametrization of the
ground-state wave function and noise from the quantum
computer. The primary source of the former is inconsistent
convergence of the VQE, while the latter arises from the prob-
abilistic nature of the computation and noise in NISQ devices.
To get an approximate confidence interval for the expectation
value measurements on a quantum computer, we employ a
simple statistical model assuming that sampling variances are
the dominant source of errors.

A. VQE consistency and stability

VQE is a stochastic algorithm [62], and there is neither a
guarantee that it will converge to the global energy minima
nor that repeated iterations will converge to the same local
minima. In practice, it was observed that repeated iterations
of VQE converged to a consistent set of solutions that varied
smoothly with ṽ. Figure 7 illustrates the “optimal” angles
generated by VQE for 500 uniformly distributed values of ṽ
from 0.0 to 3.0. As is shown in Fig. 2, the ground-state wave
function of block A of the Lipkin model for N = 8 is parame-
terized by 4 angles (labeled θi; i ∈ [0, 1, 2, 3]), and block B by
3 angles (labeled θi; i ∈ [0, 1, 2], see Fig. 1). Adjacent values
of ṽ are not necessarily continuous, but a band structure is
visible. In practice, it was found that these different sets of
optimal angles generated effectively identical energy spec-
tra and so are presumably equivalent. Ground-state energies
were calculated directly, on a simulator, from the angles in
Fig. 7 and found to agree with exact solutions within 10−4.
Likewise, a separate analysis was performed in simulation
for 25 uniformly distributed values of effective interaction
strength, where the energy spectra were calculated 50 times
using a different set of “optimal” angles generated by VQE.
The resulting energy spectra were consistent within numer-
ical precision. As noted in Sec. III B, the optimized circuit
for block A is relatively shallow, which is the cause of the
smooth behavior of the respective error. Without employing
the optimization and using the circuit directly obtained for
the block-A Hamiltonian (55), we found that the ground-state
energy errors show stochastic behavior, similar to that of block
B. The peculiar behavior of the errors at small couplings ṽ is
likely an algorithmic effect of the VQE used in this work.

The presence of multiple sets of optimal angles and the
consistency of their quality suggests that there exist multiple
minima in the VQE parameter space that are effectively equiv-
alent. To study this, the ground-state energy was calculated
across the entire range of the angles parametrizing block A
with ṽ = 0. A discrete uniform sampling of 10 steps was taken
for each of the four angles from −π to π , and the ground
state was calculated using a simulator. Figure 8 illustrates
this analysis, as well as sets of angles returned by VQE. The
same analysis was performed for ṽ > 0, and the results were
materially similar but with the locations of the minima shifted

014306-10



QUANTUM BENEFIT OF THE QUANTUM EQUATION … PHYSICAL REVIEW C 109, 014306 (2024)

FIG. 7. Angles parametrizing the ground-state wave functions.
The top four panels display the value of the angles returned by VQE
as a function of ṽ for blocks A and B. The bottom panel shows the
error in the ground-state energy (E0) and the first excited state (E1, the
ground state of block B) calculated using the corresponding angles.
See text for details.

corresponding to the shift in the band structure seen in Fig. 7.
The results reported in Fig. 8 provide an important insight into
the stability of VQE. The dark blue spots in the center of the
plot represent a region of lower energy close to or equal to
the ground-state energy E0. We observe that the radius of this
region is large; that is, θ0 and θ1 can be changed by up to
π/2 from the “optimal” values, and the energy will still be
relatively close to E0. This implies the VQE minimization, at
least in this case, is robust against small changes in the optimal
parameters. In other words, if the dark blue region were small
such that small changes of ε on the optimal angles resulted in
energy solutions far from E0 (in the light blue region), then
VQE would be unstable and susceptible to the barren plateau
problem.

A similar analysis was performed on the effect of small
changes in the ground-state parametrization on the excited-
state energies. The expectation values of the Pauli operators
were calculated for one set of optimal angles found by VQE

FIG. 8. Ground-state energy of Lipkin model with N = 8 as a
function of block A parametrization computed on a simulator. Dark
blue corresponds to lower energy, and bright yellow to higher en-
ergy. Each row of the grid is a single value of θ1, and the value is
incremented continuously for each row. Each column of the gird is
a single value of θ0, and the value is incremented for each column.
Each cell of the grid is a heat map with θ2 on the x axis and θ3 on
the y axis. The angles have all been shifted so that the center of the
figure corresponds to an arbitrarily chosen set of optimal angles from
VQE. The red X markers indicate specific sets of angles found by
VQE, rounded to the nearest values used for the sampling. Note that
ε represents the angle variation and is not to be confused with the
energy scale of the Lipkin model.

and kept constant for all subsequent calculations. The analysis
was done using a discrete uniform sampling of seven steps for
θi; i ∈ {0, 1, 2, 3} of the ground-state wave function of block
A from −π/4 to π/4. The results of this analysis for E7, con-
figuration complexity α = 2 for ṽ = 0.0 and 1.7 are displayed
in Figs. 9 and 10, respectively. In general, the effect of small
changes to the parametrization is small, indicating robustness
against small misparameterization. However, in some cases
(such as shown in Fig. 10), the energy spectra are highly
sensitive to the ground-state parametrization. These cases are
associated with regions of high sensitivity to sampling noise,
as discussed in Sec. V B.

B. Analyzing noise from quantum measurements

The probabilistic nature of quantum computation and the
presence of stochastic noise in NISQ devices necessitates run-
ning all computations multiple times (known as the number
of “shots”) and calculating mean values. Broadly speaking,
two types of error can be considered: sampling noise (arising
from a finite number of shots) and systematic errors inherent
in the nature of the hardware. The error bars in this work
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FIG. 9. Deviation of E7/ε from the exact solution for the Lipkin
model with N = 8, configuration complexity α = 2, and ṽ = 0. Each
row of the grid is a single value of θ1, and the value is incremented
continuously for each row. Each column of the gird is a single
value of θ0, and the value is incremented for each column. Each
cell of the grid is a heat map with θ2 on the x axis and θ3 on the
y axis. The color scale is logarithmic with dark blue corresponding
to a smaller deviation and bright yellow to a larger deviation. The
minimum and maximum values of the color scale are the same as
in Fig. 10. The angles have all been shifted so that the center of the
figure corresponds to an arbitrarily chosen set of optimal angles from
VQE. This figure corresponds to the second panel from the top in
Fig. 11 at ṽ = 0.

represent the uncertainty from sampling noise, and no attempt
has been made to calculate error bars for systematic errors. As
discussed above, ZNE demonstrates the ability to mitigate the
effect of noise-induced systematic errors.

In this analysis, we conjecture that the individual mea-
surements (i.e., the individual shots) can be taken from a
binomial distribution (appropriately scaled). In practice, when
considering the individual measurements, if the hardware is
stable (and ignoring the complexities involved in performing
and postprocessing the measurements), then there should be
no difference between one run of 50 000 shots and 50 runs
of 1000 shots, as they are all coming from the same binomial
distribution with the same expectation value. Given this obser-
vation, one can note two things: First, the sampling noise is a
function of the expectation value and the number of samples
taken and, second, it is trivial to simulate this sampling noise
without the need for the quantum computer. This observation
was verified for a subset of the measurements taken on the
quantum computer.

A more rigorous approach for modeling the noise would
also consider error sources from (i) hardware infidelities in

FIG. 10. Same as Fig. 9 but with ṽ = 1.7. The minimum and
maximum values of the color scale are the same as in Fig. 9. This
figure corresponds to the second panel from the top in Fig. 11 where
the error band gets large at ṽ = 1.7.

the form of depolarizing Pauli noise, (ii) state preparation
and measurement errors, and (iii) decoherence in the form
of thermal relaxation and dephasing, see Refs. [95,96]. But
for the Lipkin model with a few particles, we found that the
reported variances from the quantum computer are consistent
with the binomial model, and the variance of the measured
expectation values is consistent with our simple statistical
model of the noise. Hence we computed error bars of the
measured expectation values from a quantum computer using
our simple model.

The relationship between the noise from the quantum com-
puter and the energy spectra is nontrivial because of the
multistep nature of the qEOM algorithm. In practice, it de-
pends on the number of particles considered, the circuit built
to accommodate the Hamiltonian, the encoding scheme, and
the eigensolver used. We assessed the effect of sampling noise
on the energy spectra by calculating the spectra multiple times
using different values of each measured operator. For the
calculation considered, the GEE was solved 100 times using
for each operator a value sampled from a binomial distribution
with an expectation value given by the quantum computer (or
the simulator) and a sample size of 213 = 8192. The result-
ing distributions for the energy spectra are highly variable,
depending on energy level, ṽ, and configuration complexity
αm and, in most cases, highly asymmetric so the error bars
presented are the range from first to third quartiles.

To further verify the validity of the simple statistical noise
model, we computed the excitation energies on a simulator
with noise from our model, which, for clarity, we shall call
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FIG. 11. Energy spectra of excited states for the Lipkin model
with N = 8 calculated using the emulator for configuration complex-
ities α = 1, 2, and 3. Error bands represent the effect of noise. See
text for details.

an emulator. Figure 11 shows the emulator results for the
excited states where the error bands represent the effect of
noise, the marker corresponds to calculations without noise,
and the error bars represent the range from the first to third
quartiles. Comparing the results of Fig. 11 with those shown
in Figs. 5 and 6 suggests that the noise is strong in the regimes
where large errors are observed, for instance, in the vicinity
of ṽ = 1.7. This is the same range of coupling strength where
the VQE is highly sensitive to the sampling noise.

Furthermore, as the ground state |0〉 is computed by
VQE, i.e., in a procedure separate from the qEOM for the
excited states, the vacuum annihilation condition given by
Eq. (22) is not necessarily satisfied in practice. The reason
is that the ground-state wave function and excitation op-
erator are adopted with different correlation contents. This
may potentially introduce theoretical errors; however, the self-
consistency can be restored in a straightforward way. Some
relevant methods are discussed in Refs. [97,98], and a unitary
transformation of the excitation operator restoring the VAC is
implemented in Ref. [63] in the framework of the quantum
self-consistent EOM applied to molecular calculations. We
leave an exploration of a self-consistent qEOM with strong
coupling for future endeavors.

VI. SUMMARY AND OUTLOOK

In this work, we explored the potential of the VQE+qEOM
method for quantum hardware computation of strongly cou-
pled fermionic systems. Based on the maximally efficient
encoding scheme [64], the method was implemented for the
Lipkin Hamiltonian across the regimes between weak and
strong couplings and executed on NISQ devices. For the
system of N = 8 fermions, the method allows generating ex-
citations with up to 3p3h configuration complexity. While the
quantum chemistry realm is confined by the weak-coupling
regime and thus qEOM provides an accurate description
of electronic systems at the 2p2h level [61,63], in sys-
tems dominated by strong interactions higher configuration
complexity is often needed for an adequate theoretical de-
scription of spectral phenomena. We show explicitly how
higher-complexity configurations become increasingly impor-
tant with the increase of the effective interaction strength,
including the particle number scaling factor. This effect is
related to the emergence of collective behavior of strongly
coupled fermions.

The quantum benefit of the qEOM method was demon-
strated. We found that increases in configuration complexity
only increase the number of terms in the matrix elements
of the generalized eigenvalue equation but do not affect the
number of quantum measurements. The latter is fixed by
the number of qubits employed in implementing the model
Hamiltonian. NISQ simulations on IBM quantum computers
confirmed the robustness of the algorithm and demonstrated
good resilience to noise across the coupling regimes. The
noise profile of the quantum measurements generating the
GEE matrix elements slightly varies for each Pauli string but
is independent of effective interaction strength. However, at
considerably large coupling strength, the computational errors
start to dominate over the theoretical ones, which is attributed
to the increase of the GEE matrix rank with configuration
complexity. The ZNE error mitigation method was applied to
reduce the systematic error in the latter regimes and showed
its effectiveness. However, the sampling noise remains
significant for certain strong-coupling regimes where the al-
gorithm is sensitive to the degeneracy of the VQE ground
state.

The qEOM approach admits further improvements and
optimizations without compromising its advantages and major
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qualities. The most immediate developments are introducing
self-consistency between the ground-state wave function and
the excitation operator and transitioning from npnh ansätze
to the particle-vibration coupling ones, accentuating the ef-
fects of emergent collectivity. With the demonstrated quantum
benefit, reasonable scaling with the system size, and noise
resilience, the qEOM is one of the most promising methods to
be implemented for realistic strongly interacting systems. Of
particular interest are nuclear systems, which will be targeted
in future work.
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