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Atomic mass relations of mirror nuclei
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In this paper we study the mass relation of mirror nuclei with our focus on pairing and shell effects in
the Coulomb energy. We present an accurate mass formula for neutron-deficient nuclei with mass number
A > 20 that achieves a root-mean square deviation (RMSD) of 70 keV when compared to experimental data
from AME2020, and the RMSD further diminishes to 49 keV when excluding five nuclei with experimental
uncertainties larger than 100 keV. Based on the mass formula, we predict 174 atomic masses near the proton drip
line with 20 < A < 115, and tabulate the results in the Supplemental Material of this paper.
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I. INTRODUCTION

Nuclear mass (or alternatively nuclear binding energy)
plays an important role in nuclear physics and astrophysics
[1,2]. Nuclear mass measurements not only challenge nuclear
models but also yield crucial insights into nucleon-nucleon
interactions, shell evolution, shape-phase transition, pairing,
and clustering. Accurate mass measurements and theoretical
predictions provide us with valuable information on elemental
abundance, nucleosynthesis pathways, properties of compact
stars, and astrophysical energy production.

Numerous efforts have been devoted to improving the
theoretical predictions of nuclear mass. Various global
mass models and formulas have been significantly im-
proved, including the famous Duflo-Zuker model [3,4], the
Skyrme-Hartree-Fock-Bogoliubov theory [5,6], the improved
Weizsäcker-Skyrme mass formula [7,8], the finite-range
droplet model, and finite-range liquid drop model [9].
Local mass relations have also been found to exhibit a
small root-mean square deviation (RMSD), such as the
Garvey-Kelson mass relation [10–13], the Audi-Wasptra
(AW) extrapolation method [14], and the mass relation of the
residual proton-neutron interaction [15–18]. It is worth noting
that while these global and local approaches achieve a high
level of accuracy (typically with RMSDs of 100–500 keV)
for a wide range of nuclei, they tend to be less accurate for
light nuclei. Most theoretical predictions exhibit deviations
larger than 400 keV compared to experimental data for nuclei
with N < Z < 40. A comprehensive review is presented in
Ref. [19].

From another perspective, mass relations between mirror
nuclei have been studied by calculating the Coulomb en-
ergy based on the assumption that low-lying states of atomic
nuclei approximately conserve isospin symmetry. For exam-
ple, Ormand [20] studied the Coulomb displacement energy
(CDE) using the isobaric multiplet mass equation [21]. Brown
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et al. made use of the Skyrme-Hartree-Fock calculation,
incorporating charge-symmetry breaking forces, to report the
CDE results with an RMSD of ≈100 keV in the mass region
A = 41–59 [22,23]. Bao et al. described the mass difference
between mirror nuclei using an empirical Coulomb energy
formula, achieving RMSDs of 120–290 keV [24]. Zong et al.
proposed several formulas of local mass relations for mirror
nuclei based on the residual proton-neutron interactions and
one-nucleon separation energy with RMSDs of 70–140 keV
[25–27]. Ma et al. emphasized the presence of local correla-
tions in these formulas, which have been found to improve the
accuracy of mass predictions [28].

In this paper, we revisit the mass relation of mirror nuclei
discussed in Ref. [24] by considering pairing and shell effects
in the Coulomb energy. We propose a simple mass formula for
neutron-deficient nuclei, which achieves an RMSD of 70 keV
for nuclei with mass numbers A > 20. We demonstrate the
predictive capability of our formula. This paper is organized
as follows. In Sec. II, we discuss pairing and shell effects in
the atomic mass difference between mirror nuclei, and present
our formula. In Sec. III, we make use of the formula to predict
masses of neutron-deficient nuclei. Finally, in Sec. IV, we
summarize our results.

II. ATOMIC MASS DIFFERENCE OF MIRROR NUCLEI

In this paper we use MN(N, Z ), MA(N, Z ), and B(N, Z ) to
denote the nuclear mass, atomic mass, and nuclear binding
energy of a nucleus with N neutrons and Z protons, respec-
tively. The nuclear masses MN(N, Z ) can be calculated from
the atomic ones MA(N, Z ) as follows:

MN(N, Z ) = MA(N, Z ) − Z × Me + Be(Z ), (1)

where Me is the electron mass, and Be(Z ) is the electron
binding energy evaluated by [1]

Be(Z ) = 14.4381Z2.39 + 1.55468 × 10−6Z5.35 eV. (2)
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The nuclear binding energy B(N, Z ) is evaluated by the
Weizsäcker formula, i.e.,

B(N, Z ) = avA − asA
2/3 − acZ (Z − 1)A−1/3

− asym(N − Z )2A−1 + apairδN,Z , (3)

where A = N + Z is the mass number of the nucleus, and
av, as, ac, asym, and apair are the coefficients of the volume
energy term, surface energy term, Coulomb energy term, sym-
metry energy term, and pairing energy term, respectively.

Using Eqs. (1) and (3), one obtains a simple formula of
atomic mass difference between two corresponding mirror
nuclei with neutron and proton numbers (N, Z ) = (K − k, K )
and (K, K − k) as follows:

�k (K ) ≡ MA(K − k, K ) − MA(K, K − k)

= ack(A − 1)A−1/3 + fk (K ). (4)

Here, K represents the larger of the neutron and proton num-
bers of the nuclei, and k represents the difference between the
neutron and proton numbers. The mass number, A, can then be
expressed as A = 2K − k. The term fk (K ) is a parameter-free
function that relies solely on K and k:

fk (K ) ≡ k(Mp + Me − Mn) + Be(K − k) − Be(K ), (5)

where Mp and Mn are proton and neutron masses. From
Eq. (4), one sees the Coulomb energy term in the Weizsäcker
formula significantly influences the mass difference of mirror
nuclei.

Unfortunately, the RMSD of the mass difference, as cal-
culated using Eq. (4), is not small (typically ≈310 keV)
compared to the experimental data from AME2020 [29]. This
discrepancy is attributed to the oversimplification of Eq. (3) in
representing the Coulomb energy contribution to the nuclear
binding energy. To address this issue, we incorporate a more
sophisticated Coulomb energy formula

Bc(N, Z ) = − acZ (Z − 1)A−1/3 − aexZ4/3A−1/3

− ap(−1)Z A−1. (6)

The first term in the above formula, which is the same as the
Coulomb energy term in Eq. (3), is commonly referred to as
the direct term. The second term is known as the exchange
term, which arises from the antisymmetrization of the proton
wave function in quantum many-body models, such as the
Fermi gas model. The coefficient aex derived from the Fermi
gas model is precisely equal to − 5

4 ( 3
2π

)2/3ac. It should be
noted that the relation between coefficients aex and ac is model
dependent. Therefore, in this work, we consider aex as a free
parameter. The third term is called the Coulomb pairing term,
which originates from the nuclear pairing effect. This effect
is characterized by the nuclear pairing force, which causes
nucleons around the Fermi sea to form spin J = 0 pairs at
shorter distances, resulting in an increased Coulomb repulsion
between them.

Assuming the Coulomb energy formula of Eq. (6), we have

�k (K ) ≈ ack(A − 1)A−1/3 + fk (K ) + 25/3

3
aexk

+ ap(1 − (−1)k )(−1)K A−1. (7)

FIG. 1. Deviations of �k between the experimental data in
AME2020 [29] and the theoretical values obtained using (a) Eq. (4),
(b) Eq. (7), and (c) Eq. (9) (in units of keV). The circles in red,
squares in blue, pentagons in green, and nablas in purple represent
the mirror nuclei with k = 1, 2, 3, 4, respectively. The gray strip
indicates the region of deviations below 100 keV. The RMSDs of
Eqs. (4), (7), and (9) are 310 keV, 147 keV, and 70 keV, respectively.
If we exclude five data values with experimental uncertainties larger
than 100 keV, the RMSD of Eq. (9) is reduced to only 49 keV.

The third and fourth terms in the above formula arise from
the exchange and Coulomb pairing terms, respectively. This
inclusion leads to a notable enhancement in the theoretical
description of �k , yielding an RMSD of ≈150 keV. Fig-
ures 1(a) and 1(b) show the deviations of �k between the
experimental data and the theoretical values obtained using
Eqs. (4) and (7), respectively, for mirror nuclei with A > 20
and k = 1, 2, 3, 4. In Fig. 1(a), we see odd-even staggering for
the cases of k = 1 and 3, while no staggering is observed for
k = 2 and 4. This phenomenon is explained by the fourth term
in Eq. (7), i.e., the Coulomb pairing effect. We noticed that
in the mass relation formulas proposed in Refs. [24–27], the
mass difference between a proton and a neutron was treated
as an adjustable parameter without proper explanation. In this
work, we elucidate the source of the Coulomb exchange term.

One of the purposes of this work is to obtain reliable
predictions of the mass difference, we further introduce a
shell correction term (denoted by δsh here) into Eq. (7), which
is explained as follows. In Figs. 1(a) and 1(b), we observe
a gradual increase in the deviation of �k after K = 8 + k,
followed by a sudden drop at K = 21, and a subsequent rise
beyond K = 20 + k. This drop in �k at K = 21 might be
attributed to an sd-p f cross-shell effect, which occurs due to
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TABLE I. Parameters of Eq. (9) obtained by a χ 2 fitting to the
experimental data from AME2020 [29]. The parameters of the shell
correction term, ash1 and ash2, are presented with different magic
numbers, respectively. All results are in the unit of keV, except for
α which is dimensionless.

ac aex ap α

670.1 −127.1 1029 1.1870
Shell ash1 ash2

(K0, K1) = (8, 20) −304.1 17.91
(K0, K1) = (20, 28) −330.2 39.82

K0 = 20 −183.3 −
K0 = 28 −0.7 −

the relatively weaker Coulomb interaction between the 0d3/2

and 0 f7/2 orbits [30], as well as the influence of the relativistic
electromagnetic spin-orbit potential [31,32]. A similar sudden
drop is also observed at K = 9, which can be attributed to a
p-sd cross-shell effect. Based on this observation, we empiri-
cally obtain the shell correction term as follows:

δsh =
{

kα[ash1 + ash2(K − K0)], if K0 + k � K � K1,

kα ash1, if K0 < K < K0 + k.

(8)

The above equation presents two distinct cases “in shell” and
“cross shell”, respectively. In the case of the in shell, K0 and
K1 are adjacent magic numbers that define the boundaries of
a major shell, and K0 + k � K � K1 indicates that both the
neutron and proton numbers of the nuclei are in the same ma-
jor shell between the magic numbers K0 and K1. In the case of
the cross shell, K0 is a magic number, and K0 < K < K0 + k
indicates that either the neutron or proton number is smaller
that the magic number K0 while the other is larger than K0. α,
ash1, ash2 are free parameters. Our data fitting procedure yields
an estimate of α ≈ 1, suggesting that the shell correction is
approximately proportional to the difference between neutron
and proton numbers.

Including δsh into Eq. (7), we finally have

�k (K ) ≈ ack(A − 1)A−1/3 + fk (K ) + 25/3

3
aexk

+ ap(1 − (−1)k )(−1)K A−1 + δsh. (9)

In Table I, we present the six parameters, namely, ac, aex,
ap, α, ash1, and ash2, of Eq. (9). These parameters are de-
termined by a χ2 fitting to the data from AME2020. In
Fig. 1(c), we see a good agreement between the experimental
data and the theoretical values obtained using Eq. (9); the
RMSD is 70 keV. If we exclude five data values with experi-
mental uncertainties exceeding 100 keV, corresponding to the
mirror pairs 28S - 28Mg, 50Co - 50V, 55Cu - 55Fe, 71Kr - 71Br,
and 75Sr - 75Rb, the RMSD decreases further to 49 keV. In
Figs. 1(b) and 1(c), it is observed that the odd-even stagger-
ing effect of �k for nuclei with K � 30 and k = 1 does not
seem to be reasonably described by the Coulomb pairing term
introduced in Eqs. (6), (7), and (9). This discrepancy can be

TABLE II. The RMSDs (in the unit of keV) of atomic masses
extrapolations from the AME2012 [33] and AME2016 databases
[34], respectively, to AME2020 [29]. “#” denotes the number of
masses for comparison.

Database Comparison to RMSD #

AME2012 AME2020 85 8
AME2016 AME2020 49 7

resolved by incorporating the more recent experimental data.
A detailed discussion of this issue will be presented in the
subsequent section.

III. MASS PREDICTION AND DISCUSSION

In this section, we use �k to make predictions for the
atomic masses of neutron-deficient nuclei with A > 20 and
k = 1, 2, 3, 4. We denote the �k values obtained from Eq. (9)
as �theo

k , and have

Mpred
A (K − k, K ) = MA(K, K − k)+�theo

k (K ). (10)

Using Eq. (10), we can predict the mass of a nucleus
with neutron number K − k and proton number K by em-
ploying �theo

k and the mass of the corresponding mirror
nucleus.

One of the main purposes of this work is to demonstrate
the predictive capability of our mass formula, i.e., Eq. (10).
We exemplify this by carrying out mass extrapolations based
on the AME2012 database [33] and comparing the result to
the more recent AME2020 data. The detailed procedure is as
follows. First, we determine the parameters ac, aex, ap, α, ash1,
and ash2 in Eq. (9) by a χ2 fitting to the experimental data from
AME2012. Next, we use these fitted parameters to calculate
�theo

k , and further predict the masses of neutron-deficient nu-
clei that were not available in the AME2012 database using
Eq. (10) (the experimental mass values of the correspond-
ing mirror nucleus are taken from AME2012). Out of these
predicted masses, eight have been measured and compiled in
AME2020. Figure 2 shows our predicted mass values, as well
as the associated theoretical uncertainties, of the eight nuclei.
The procedure for evaluating these theoretical uncertainties
is presented in the Appendix. The mass values predicted by
the Audi-Wapstra extrapolation in 2012 (denoted by AW2012)
[33] and those predicted using the local correlation approach
[28] are also presented for comparison. A good agreement
of our result with the experimental data is observed. The
RMSD derived from our mass extrapolations is 85 keV (see
in Table II), which is significantly lower compared to the
RMSD of 446 keV obtained from AW2012. While the work
in Ref. [28] has achieved superior accuracy, our predictions
has produced results that are competitively precise. We also
see that the theoretical uncertainties of our extrapolations are
small, due to the accuracy of Eq. (10) and the typically small
experimental uncertainties associated with the masses of the
corresponding neutron-rich mirror nuclei.

Similarly, we extend our investigation to cover the ex-
trapolations from AME2016 to AME2020. Specially, we
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FIG. 2. Comparison of atomic masses (in the unit of keV) of
neutron-deficient nuclei from the experimental data in AME2020
[29], the extrapolations from AW2012 [33], the extrapolations using
the local correlation approach (i.e., Ma2020) [28], and the extrapo-
lations using Eq. (10) in this work based on the AME2012 database.
Our prediction exhibit a good agreement with the experimental data.

predict the masses of neutron-deficient nuclei that were not
included in the AME2016 database [34] by utilizing param-
eters determined based on the AME2016 data. Out of these
predicted masses, seven have been measured and compiled in
AME2020. Impressively, the RMSD is only 49 keV (see in
Table II).

Since the AME2020 database was published, new mass
measurements were performed with high accuracy for the
ground states of 12 nuclei, 58Zn, 60Ga, 61Ga, 62Ge, 63Ge, 64As,
65As, 66Se, 67Se, 70Kr, 71Kr, and 75Sr, at the HIRFL-RIBLL2-
CSRe [35] and TITAN-MR-TOF [36] facilities, respectively.
We also predict the masses of these nuclei using Eq. (10)
by utilizing parameters optimized based on the AME2020
data. Figure 3 and Table III compare the data from the new
measurements [35,36], AME2020, AW2020, and our result.
The RMSD of our result with respect to the new data in
Ref. [35] is 81 keV. For nuclei 64As, 70Kr, and 75Sr, whose ex-
perimental uncertainties exceed 100 keV, our predicted values
are −39562(41) keV, −41333(41) keV, and −46356(41) keV,
respectively. If we exclude these three nuclei, the RMSD of
our result with respect to the new data in Ref. [35] is reduced
to 59 keV. For 65As and 71Kr, our predictions deviate from
the new data in Ref. [35] by 46(59) keV and −12(49) keV,
respectively. These deviations are much smaller compared to
the deviations observed between the AME2020 data and the
new data, which are −131(95) keV for 65As and −271(132)
keV for 71Kr. Interestingly, for 60Ga and 61Ga, our predictions

FIG. 3. Comparison of atomic masses (in the unit of keV) from
the new experimental data in the references of Wang2023 [35] and
Paul2021 [36], the experimental data in AME2020 [29], the results
predicted in AW2020 [29], and the results predicted using Eq. (10)
in this work based on the AME2020 database. Our results exhibit a
remarkable agreement with the data in Wang2023 [35] and Paul2021
[36].

TABLE III. Atomic masses (in the unit of keV) of 58Zn, 60Ga,
61Ga, 62Ge, 63Ge, 64As, 65As, 66Se, 67Se, 70Kr, 71Kr, and 75Sr ob-
tained from the very recent experimental data in Refs. [35,36],
the experimental data in AME2020 [29], the results predicted in
AW2020 [29], and the results predicted using Eq. (10) in this work
based on the AME2020 database.

Nuclei Ref. [35] Ref. [36] AME/AW2020 This work

58Zn −42248(36) - −42330(50) −42327(41)
60Ga −40034(46) −40005(30) −39590(200)a −39982(41)
61Ga −47168(21) −47114(12) −47135(38) −47085(44)
62Ge −42289(37) - −42140(140)a −42349(41)
63Ge −46978(15) - −46921(37) −46993(41)
64As −39710(110) - −39530(200)a −39562(41)
65As −46806(42) - −46937(85) −46760(41)
66Se −41982(61) - −41660(200)a −41890(41)
67Se −46549(20) - −46580(67) −46588(41)
70Kr −41320(140) - −41100(200)a −41333(41)
71Kr −46056(24) - −46327(129) −46068(42)
75Sr −46200(150) - −46620(220) −46356(41)

aMasses extrapolated from AW2020.
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FIG. 4. Deviation of �k derived using the experimental data
in AME2020 [29], the new data in Wang2023 [35] and Paul2021
[36], and Eq. (9) from the function, 696A2/3 − 1505 keV. Here, we
emphasize the odd-even staggering phenomenon.

show slightly better agreement with the new data in Ref. [36]
when compared to the data in Ref. [35].

Now, let us return to the issue of the odd-even staggering
in �k for nuclei with K � 30 and k = 1, which was dis-
cussed in the end of the previous section. To highlight the
odd-even staggering, we subtracted an approximate function
696 A2/3 − 1505 keV from each �k value. Figure 4 presents
the deviations of �k derived using the experimental data in
AME2020, the new data in Refs. [35,36], and Eq. (9) from
the function. Interestingly, we observe that the AME2020 data
exhibit an odd-even staggering inverse specifically at K = 35.
However, this inverse is not observed in the new data nor in
our predictions. Our results agree well with the new data,
further supporting the validity of the Coulomb pairing term
introduced in this work.

Last but not least, encouraged by the remarkable agreement
between our results and experimental data, we have included
final mass predictions for a total of 174 neutron-deficient
nuclei in the Supplemental Material of this paper [37]; 94
of these nuclei are currently unavailable for experimen-
tal measurement. The predictions are obtained by utilizing

parameters optimized based on the data from AME2020
and Refs. [35,36] (with an RMSD of 55 keV). Our pre-
dictions cover a range of nuclei with 20 < A < 115 and
k = 1, 2, 3, 4. It is worth mentioning Ref. [27] here, which re-
ports a relatively smaller Coulomb energy in neutron-deficient
nuclei beyond the proton-drip line, particularly for those with
A < 20. Taking this effect into account could potentially
improve our results, which we leave to future work.

In Table IV we present a selected set of data that is of sig-
nificant importance in astrophysics or has large experimental
uncertainties. For comparison, we also include the predicted
results from the Supplemental Material of Refs. [27] and [28].
Here, we provide a few examples. The reported mass values in
AME2020 for 28S, 50Co, 55Cu, 71Kr, and 75Sr are 4073(160)
keV, −17589(126) keV, −31635(156) keV, −46327(129)
keV, and −46619(220) keV, respectively. The new measure-
ment [35] provides updated mass values for 71Kr and 75Sr,
which are −46056(24) keV and −46200(150) keV, respec-
tively. Our final predictions for these nuclei are 4308(41) keV,
−17517(41) keV, −31740(41) keV, −46064(41) keV, and
−46351(41) keV, respectively. For these nuclei, the predicted
values from Refs. [27] and [28] align closely with our re-
sults, except for 50Co. Although there are currently substantial
discrepancies between the predictions and the experimental
data for 28S, 50Co, 55Cu, and 75Sr, these gaps are expected
to diminish as more accurate data becomes available in the
future.

IV. SUMMARY

In this paper, we have studied the mass relation of mirror
nuclei, �k , and utilize these results to predict masses. To im-
prove the accuracy of our predicted �k , we take the Coulomb
energy term in the Weizsäcker formula, and introduce several
corrections. The key corrections mainly involve the Coulomb
pairing and shell effects. We observe a prominent odd-even
staggering phenomenon in �k , and we successfully quanti-
fies it through the Coulomb pairing term. Additionally, we
find that cross-shell mirror nuclei tend to exhibit relatively
lower mass differences. With the consideration of these cor-
rections, we propose a formula for �k that yields an RMSD
of 70 keV compared to the experimental data from AME2020.
Furthermore, if we exclude 5 data values with experimental

TABLE IV. Comparison of atomic masses (in keV) for 28S, 50Co, 55Cu, 63Ge, 65As, 67Se, 71Kr, and 75Sr. The mass values are taken from
the experimental data in Ref. [35] and AME2020 [29], as well as the predicted results in the Supplemental Material of Refs. [27] and [28] and
this work [37]. The predicted results in this work are derived using parameters optimized based on the data from AME2020 and Refs. [35,36].

Nuclei Ref. [35] AME2020 [29] Ref. [27] Ref. [28] This work [37]

28S - 4073(160) 4359(68) 4205(86) 4308(41)
50Co - −17589(126) −17688(73) −17685(86) −17517(41)
55Cu - −31635(156) −31746(68) −31798(82) −31740(41)
63Ge −46978(15) −46921(37) −47010(96) - −46992(41)
65As −46806(42) −46937(85) −46751(96) - −46760(41)
67Se −46549(20) −46580(67) −46581(96) - −46586(41)
71Kr −46056(24) −46327(129) −46037(96) - −46064(41)
75Sr −46200(150) −46620(220) −46302(96) - −46351(41)
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uncertainties larger than 100 keV, the RMSD reduced to only
49 keV.

We utilize our predicted values of �k to predict atomic
masses of neutron-deficient nuclei, using the mass formula
Eq. (10). We have demonstrated strong predictive power of
this formula through numerical experiments. We compare
our mass extrapolations based on the AME2012 (AME2016)
database with the more recent AME2020 data, and the RMSD
is found to be 85 (49) keV. Moreover, when compared to the
new experimental mass data reported in Ref. [35], our results
yield an RMSD of 81 keV, which further reduces to 59 keV
if excluding three data values with experimental uncertainties
larger than 100 keV.

Finally, we have included our mass predictions for a total
of 174 neutron-deficient nuclei, covering the range of nuclei
with mass numbers between 20 and 115, in the Supplemental
Material of this paper [37]. We believe the proposed mass
formula raised in this paper and our predicted atomic masses
will be very useful in the fields of astrophysics and nuclear
structure for future studies. Further improvements can be
achieved by refining the mass relation and incorporating more
precise experimental data when it becomes available.
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APPENDIX: χ2 FITTING PROCEDURE WITH THE
MAXIMUM-LIKELIHOOD METHOD

We denote experimental mass data by Mexpt
i and exper-

imental uncertainty by σ
expt
i , where i is an abbreviation of

neutron and proton numbers; i = 1, 2, . . . , n, and n is the
number of data. We denote a mass formula by

M theo
i = M(i; a1, a2, . . . , at ), (A1)

where a1, a2, . . . , at are t parameters to be determined.
In this work, the χ2 statistic is defined by

χ2 =
n∑

i=1

wi
(
Mexpt

i − M theo
i

)2
. (A2)

Here, the weight, wi, is given by

wi = 1

(σ theo)2 + (
σ

expt
i

)2 , (A3)

where σ theo is the model error, which represents the deviation
of the present formula from “the exact theory”. In Ref. [9]
σ theo is evaluated by decoupling the experimental uncertainty
from variance using the maximum-likelihood method:

(σ theo)2 =
∑n

i=1 wi
2
[(

Mexpt
i − M theo

i

)2 − (
σ

expt
i

)2]∑n
i=1 wi

2
. (A4)

The parameters a1, a2, . . . , at are determined by minimizing
the χ2 statistic in Eq. (A2), i.e., we solve the following
equations:

∂

∂a j

n∑
i=1

wi
(
Mexpt

i − M theo
i

)2 = 0, j = 1, 2, . . . , t . (A5)

Equations (A3)–(A5) are iteratively solved until the
convergence is achieved for a1, a2, . . . , at ,wi and σ theo.
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