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Exotic nonaxial-octupole shapes in N = 184 isotones from covariant density functional theories
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The nonaxial octupole shape in some nuclei with N = 184, namely, 284Fm, 286No, 288Rf, and 290Sg, is investi-
gated using covariant density functional theories. Employing the density-dependent point-coupling covariant
density functional theory with the parameter set DD-PC1 in the particle-hole channel, it is found that the
ground states of 284Fm, 286No, 288Rf, and 290Sg have pure nonaxial octupole shapes with deformation parameters
β31 ≈ 0.08 and β33 ≈ −0.01 to −0.03. The energy gain due to the β31 and β33 distortion is ≈1 MeV. The
occurrence of the nonaxial octupole correlations is mainly from the proton orbitals 1i13/2 and 2 f7/2, which are
close to the proton Fermi surface. The dependence of the nonaxial octupole effects on the form of the energy
density functional and on the parameter set is also studied.

DOI: 10.1103/PhysRevC.109.014303

I. INTRODUCTION

The occurrence of spontaneous symmetry breaking leads
to the intrinsic shape of many atomic nuclei deviating from a
sphere. The deformation of a nucleus is usually described by
a multipole expansion of the nuclear surface

R(θ, ϕ) = R0

⎡
⎣1 + β00 +

∞∑
λ=1

λ∑
μ=−λ

β∗
λμYλμ(θ, ϕ)

⎤
⎦, (1)

where βλμ’s are deformation parameters. The presence of
quadrupole deformations β20, β22 is well known and the
related nuclear phenomena have been studied extensively.
Recently, enhanced reduced electric-octupole transition prob-
abilities, B(E3), were observed in 224Ra [1], 144Ba [2], 146Ba
[3], and 228Th [4], providing direct experimental evidence of
static octupole deformation. In addition, the octuple correla-
tions between multiple chiral doublet bands in 78Br [5] and
the coexistence of chirality and octupole correlations in 76Br
[6] have also been observed.

Besides the axial octupole deformation β30, the nonaxial
octupole deformations β31, β32, and β33 are also of particular
interests. Among these three nonaxial octupole deformations,
the β32 deformation have attracted much more attention due
to its special symmetry properties, i.e., a nucleus with a pure
β32 deformation (βλμ = 0 if λ �= 3 and μ �= 2) has a tetra-
hedral shape with the symmetry group T D

d . The predicted
shell gaps at specific proton or neutron numbers for a nucleus
with tetrahedral symmetry are comparable or even stronger
than those at spherical shapes [7–12]. Thus there may be a
static tetrahedral shape or strong tetrahedral correlations for a
nucleus with such proton or neutron numbers.

Various nuclei were predicted to have ground
or isomeric states with tetrahedral shapes from the
macroscopic-microscopic (MM) model [8,9,13–16] and
the Skyrme Hartree-Fock (SHF) model, the SHF plus
Bardeen-Cooper-Schrieffer (BCS) model, or the Skyrme

Hartree-Fock-Bogoliubov (SHFB) model [9,13,14,17–21].
The ground state shapes of even-even Zr isotopes were also
studied within the multidimensionally constrained relativistic
Hartree-Bogoliubov (MDC-RHB) model [22], possible
tetrahedral shapes in the ground and isomeric states were
predicted for nucleus around 110Zr. Consistent results were
obtained from three-dimensional (3D) lattice calculations
[23]. The rotational properties of tetrahedral nuclei have also
been studied theoretically [24–30]. Several experiments were
devoted to the study of tetrahedral shapes in 160Yb [31],
154,156Gd [31–33], 230,232U [34], and 108Zr [35].

More interestingly, although the ground state of the well-
known magic nuclei 16O is predicted to have spherical shape
from mean field calculations, the restoration of the rotational
and parity symmetry leads to the occurrence of the tetrahe-
dral symmetry [36]. This is consistent with the very recent
predictions from the algebraic cluster model [29] and the
ab initio lattice calculation in the framework of nuclear lattice
effective field theory [37]. Similar projection-after-variation
calculations for 96Zr were also presented in Ref. [38]. The
β32 deformation also shows up after symmetry restorations,
although this deformation parameter was predicted to be zero
from the mean-field calculations. This may indicate that the
nonaxial octupole β32 deformation plays much more im-
portant role in the ground and low-lying states of nuclear
many-body system than expected.

Compared to β32, less attention has been paid to the distor-
tion effect from β31 and β33, although still sizable shell gaps
can be found in the single-particle levels at specific proton or
neutron numbers when β31 or β33 are considered [8,39]. From
the MM model, some nuclei in Se, Ba, Ra isotopic chains were
predicted to have ground or isometric states with nonzero β31

or β33 together with sizable quadrupole deformations [40].
Recently, the nuclear octupole fourfold neutron magic num-
ber N = 136 and 196 were introduced. From the potential
energy surfaces generated from MM model, several nuclei
around this range are predicted to have equilibrium shapes
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with nonzero β31 or β33 [16,41–43]. The ground state shapes
of 64Ge and 68Se are predicted to have nonzero β33 from SHF
plus BCS calculations [21]. A fully 3D symmetry-unrestricted
SHFB calculations indicate that the oblate ground state of 68Se
is unstable against the triangular β33 distortion, the predicted
ground state have equilibrium shape with β20 = −0.28 and
β33 = 0.08 [17].

In recent years, nuclei with Z � 100 have been studied
extensively because such studies can not only reveal the struc-
ture for these nuclei but also give useful structure information
for superheavy nuclei. For example the observed very low-
lying 2− bands in several N = 150 isotones were attributed to
the Y32 correlations [44]. The nuclear shapes with a non-zero
β32 superposed on a sizable β20 were also predicted within
MDC-RHB model for these N = 150 isotones [45].

However, the V4 symmetry is imposed in the MDC-RHB
model, only the shape degrees of freedom βλμ with even μ are
allowed [22,46–48]. To include the β31 and β33 deformations,
we released the constraint of the V4 symmetry and extended
the MDC-RHB model by imposing only the simplex-y sym-
metry. The RHB equation is solved by expanding the Dirac
spinors in simplex-y harmonic oscillator (HO) basis. Thus all
four magnetic components of the octupole deformation β3μ,
μ = 0, 1, 2, 3 can be present simultaneously. In this work,
we present the microscopic investigation of the β31 and β33

distortion effect on N = 184 isotones within the extended
MDC-RHB model. The theoretical framework and method
are introduced in Sec. II. The results for N = 184 isotones
are described and discussed in Sec. III. Section IV contains a
summary of the principal results.

II. THEORETICAL FRAMEWORK

In covariant density functional theory, one can derive the
Dirac-Hartree-Bogoliubov equation within the Green’s func-
tion technique [49,50], the obtained RHB equation reads∫

d3r′
(

hD − λ �

−�∗ −hD + λ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (2)

where Ek is the quasiparticle energy, (Uk, Vk )T is the quasi-
particle wave function, λ is the chemical potential, and ĥD is
the single-particle Dirac Hamiltonian

ĥD = α · [p − V (r)] + β[M + S(r)] + V0(r) + �R(r), (3)

S(r), V (r), and �R(r) denote the scalar potential, vector po-
tential, and rearrangement terms, respectively. The pairing
potential is given by

�p1 p2 (r1σ1, r2σ2) =
∫

d3r′
1d3r′

2

×
p′

1 p′
2∑

σ ′
1σ

′
2

V pp
p1 p2,p′

1 p′
2
(r1σ1, r2σ2, r′

1σ
′
1, r′

2σ
′
2)

× κp′
1 p′

2
(r′

1σ
′
1, r′

2σ
′
2), (4)

where p = f , g is used to represent the large and small com-
ponents of the Dirac spinors. V pp is the effective pairing
interaction and κ (r1σ1, r2σ2) is the pairing tensor. As is usu-
ally done in the RHB theory, only the large components of

the spinors are used to build the pairing potential [51]. In the
pp channel, we use a separable pairing force of finite range
[52–54]

V (r1 − r2) = −Gδ(R̃ − R̃′)P(r̃)P(r̃′)
1 − P̂σ

2
, (5)

where G is the pairing strength and R̃ and r̃ are the
center-of-mass and relative coordinates of the two nucleons,
respectively. P(r) denotes the Gaussian function,

P(r) = 1

(4πa2)3/2
e−r2/4a2

, (6)

where a is the effective range of the pairing force. The two
parameters G = 728 MeV fm3 and a = 0.644 fm [52,53] have
been adjusted to reproduce the density dependence of the
pairing gap at the Fermi surface in symmetric nuclear matter
and calculated with the Gogny force D1S.

The RHB equation (2) is solved by expanding the large
and small components of the spinors Uk (rσ ) and Vk (rσ ) in
simplex-y HO basis, where the axially deformed (AD) HO ba-
sis states are used to build the eigenfunctions of the simplex-y
operator Sy = Pe−iπ jy . P denotes the parity operator. The
eigenstates of the Sy operator with eigenvalues s = +i and
s = −i reads [55]

|nznr�; s = +i〉 = 1√
2

(i|nznr�; 1/2〉 + |nznr − �; −1/2〉),

(7)

|nznr�; s = −i〉 = 1√
2

(|nznr�; 1/2〉 + i|nznr − �; −1/2〉),

(8)

where |nznr�; ms〉 refers to the eigenfunctions of the ADHO
potential and nz, nr , �, and ms are the corresponding quantum
numbers. These states are related by the time-reversal operator

T |nznr�; s = ±i〉 = ∓|nznr�; s = ∓i〉. (9)

Due to the time-reversal symmetry, the RHB matrix is block-
diagonalized into two smaller ones denoted by the quantum
number Sy = ±i, respectively. For a system with the time-
reversal symmetry, it is only necessary to diagonalize the
matrix with Sy = +i, and the other half is obtained by apply-
ing the time reversal operation to Dirac spinors. We should
note that the large and small components of the Dirac spinors
are expanded in the simplex-y eigenfunctions of opposite
eigenvalues. Within the simplex-y symmetry, the deforma-
tions corresponding to the four magnetic components of the
octupole deformation β3μ, μ = 0, 1, 2, and 3 can be present
simultaneously [56].

In practical calculations, the ADHO basis is truncated as
[nz/Qz + (2nρ + |m|)/Qρ] � Nf [47,57], for the large com-
ponent of the Dirac spinor. Nf is a certain integer constant
and Qz = max(1, bz/b0) and Qρ = max(1, bρ/b0) are con-
stants calculated from the oscillator lengths b0 = 1/

√
Mω0,

bz = 1/
√

Mωz, and bρ = 1/
√

Mωρ . ωz and ωρ are de-
fined through relations ωz = ω0 exp(−√

5/4πβB) and ωρ =
ω0 exp(

√
5/16πβB), where ω0 = (ωzω

2
ρ )1/3 is the frequency

of the corresponding spherical oscillator and βB is the defor-
mation of the basis. For the small component, the truncation
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FIG. 1. Potential energy curves (E ∼ β20) for N = 184 isotones
284Fm, 286No, 288Rf, and 290Sg. The energy is normalized with respect
to the energy minimum with β20 = 0. Axial symmetry and reflection
symmetry is imposed. The functional DD-PC1 is used in the RHB
calculations.

is made up to Ng = Nf + 1 major shells in order to avoid
spurious states [58]. Nf = 20 is adopted in the present calcu-
lations. The deformation parameter βλμ is obtained from the
corresponding multipole moment using

βτ
λμ = 4π

3Nτ Rλ
Qτ

λμ, (10)

where R = 1.2 × A1/3 fm and Nτ is the number of proton,
neutron, or nucleons. For the details of the RHB model and
the ADHO basis, we refer the reader to Ref. [22].

III. RESULTS AND DISCUSSIONS

In Fig. 1, we display the calculated one-dimensional (1D)
potential energy curves (E ∼ β20) for even-even N = 184
nuclei 284Fm, 286No, 288Rf, and 290Sg when axial and reflec-
tion symmetry imposed. Calculations were performed with
parameter set DD-PC1 [59]. The ground state shape of these
four nuclei investigated here are all predicted to be spherical
when nuclear shapes are restricted to be axial and reflection
symmetric. Additionally, we observe a prolate minimum with
β20 ≈ 0.5. In the case of 284Fm, the energy of the prolate
minimum is approximately 4.7 MeV higher than the spherical
minimum. As the proton number increases, the energy of the
prolate minimum decreases. For 290Sg, the energy of this min-
imum is only about 0.09 MeV higher than the corresponding
spherical minimum.

To explore the impact of axial octupole deformation β30

and nonaxial octupole deformation β3μ, μ = 1, 2, 3, on the
ground state properties along the N = 184 isotonic chain,
we perform 1D constrained calculations around the minimum
β20 ≈ 0 and obtain potential energy curves, i.e., the total
binding energy as a function of β3μ, μ = 0, 1, 2, 3. At each
point on a potential energy curve, the energy is automatically
minimized with respect to other shape degrees of freedom,
such as β20, β22, β3ν for ν �= μ, β40, etc. In Fig. 2, we show

FIG. 2. The binding energy E (relative to the energy of the spher-
ical shape β20 = 0 and β3μ = 0, μ = 0, 1, 2, 3) for N = 184 isotones
284Fm, 286No, 288Rf, and 290Sg as a function of the octupole defor-
mation parameter β30 (dotted line), β31 (solid line), β32 (dash-dotted
line), and β33 (dash-dot-dotted line). The functional DD-PC1 is used
in the RHB calculations.

obtained potential energy curves for these N = 184 isotones.
The total binding energy (relative to the energy at β20 = 0,
β3μ = 0) as a function of β30 is shown with dotted line, while
the one as a function of β31, β32, and β33 is shown with solid
line, dash-dotted line, and dash-dot-dotted line, respectively.
The effect of axial octupole deformation β30 on the ground
states of these N = 184 nuclei has already been discussed in
Ref. [60]. As illustrated in Fig. 2 (dotted line), the inclusion
of β30 lowers the energy, and a minimum around β30 = 0.1
develops for all four nuclei. The energy gain due to the inclu-
sion of β30 is about 0.3 MeV for 284Fm. As the proton number
increases, the energy gain due to β30 distortion rises, reaching
a maximum for 288Rf, where the value is about 0.6 MeV. This
energy gain decreases to 0.5 MeV for 290Sg.

The primary focus of this manuscript is on the nonaxial
octupole deformations β31, β32, and β33. Among these three
nonaxial octupole deformations, the effect of β32 distortion
has been extensively studied due to its symmetry properties.
The pure β32 deformation is known as the tetrahedral shape,
where the single-particle levels split into multiplets with de-
generacies equal to the irreducible representations of the T D

d
group. Consequently, large energy gaps can be obtained at cer-
tain proton or neutron numbers such as Z/N = 20, 40, 70, etc.
[22]. As depicted in Fig. 2 (dash-dotted line), when β32 is con-
strained, the energy of these four N = 184 nuclei decreases
as β32 increases, reaching a minimum at β32 ≈ 0.08. The
energy gain due to β32 distortion is about 0.57 MeV for 284Fm,
and values are approximately 0.87, 0.84, and 0.60 MeV for
286No, 288Rf, and 290Sg respectively. Clearly, the effect of β32

distortion is lager than that of β30 for these nuclei.
The impact of nonaxial octupole deformations β31 and

β33 on the ground state properties has been less studied mi-
croscopically in the previous works. In Fig. 2 (solid line),
potential energy curves obtained by constraining β31 are
shown. Interestingly, for all four nuclei studied here, the
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TABLE I. The axial octupole deformation β30 and nonaxial
octupole deformation parameters β31, β32, and β33 together with
binding energies (relative to the energy of the spherical shape β20 =
0, β3μ = 0, μ = 0, 1, 2, 3) for various energy minima with β3μ �= 0
in N = 184 nuclei calculated with parameter set DD-PC1. All ener-
gies are in MeV.

Nucleus β30 β31 β32 β33 Edepth

284Fm 0.086 0.000 0.000 0.000 0.310
0.000 0.077 0.000 0.042 0.779
0.000 0.000 0.080 0.000 0.569
0.000 0.006 0.000 0.051 0.207

286No 0.100 0.000 0.000 0.000 0.543
0.000 0.078 0.000 −0.016 0.907
0.000 0.000 0.086 0.000 0.865
0.000 0.006 0.000 0.061 0.381

288Rf 0.104 0.000 0.000 0.000 0.619
0.000 0.084 0.000 −0.008 1.062
0.000 0.000 0.083 0.000 0.835
0.000 0.007 0.000 0.065 0.449

290Sg 0.101 0.000 0.000 0.000 0.515
0.000 0.081 0.000 −0.031 1.033
0.000 0.000 0.075 0.000 0.602
0.000 0.009 0.000 0.064 0.371

deepest minima were obtained when β31 was constrained. It
is important to noted that when β31 is constrained, only the
variationally determined β33 value is not zero. Taking 284Fm
as an example, this minimum is located at β31 = 0.077 and
β33 = 0.042, resulting in an energy gain of 0.779 MeV. For
286No, the minimum is located at β31 = 0.078 and β33 =
−0.016, with an energy gain of 0.907 MeV. In the case of

FIG. 3. Density profiles of 290Sg in the x-y plane with z = 0 (a),
x-z plane with x = 0 (b), and y-z plane with x = 0 (c). The functional
DD-PC1 is used in the RHB calculations.

FIG. 4. The single-particle levels near the Fermi surface for
neutrons (a) and protons (b) of 290Sg as functions of the nonaxial
octupole deformation β33 (left side) and of β31 with β33 fixed at
−0.031 (right side).

288Rf, the depth of this minimum is 1.062 MeV character-
ized by β31 = 0.084 and β33 = −0.008. Finally, for 290Sg,
the energy gain due to β31 and β33 distortion is 1.033 MeV,
occurring at β31 = 0.081 and β33 = −0.031. We note that the
energy curve as a function of the β31 deformation [solid line
in Fig. 2(d)] is rather soft around the minimum for 290Sg, this
softness suggests that certain dynamical correlations beyond
the mean-field approximation are important.

Similarly, when we constrain β33 and variationally deter-
mine the other deformation parameters with the initial values
set to zero, we obtain the 1D potential energy curve shown in
Fig. 2 dash-dot-dotted line. As β33 increases, the energy first
decreases and then increases, and leads to a shallow minimum
at finite β33. The depth of this minimum is the smallest when
compared to the cases where we constrained β30, β32, or β31.
Thus remarkable β31 deformation together with moderate β33
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TABLE II. The quadrupole deformations β20 and β22, the octupole deformations β3μ, μ = 0, 1, 2, 3 and the hexadecapole deformation
β40 together with the binding energies Ecal. for the ground states of N = 184 nuclei calculated with parameter sets DD-PC1, DD-ME2, and
PC-PK1. Edepth denotes the energy difference between the ground states and the point constrained β3μ to zero. All energies are in MeV.

Nucleus Parameters β20 β22 β30 β31 β32 β33 β40 Ecal. Edepth

284Fm DD-PC1 0.005 0.002 0.000 0.077 0.000 0.042 0.003 −2027.545 0.779
DD-ME2 0.003 0.005 0.000 0.049 0.000 −0.016 0.001 −2024.425 0.241
PC-PK1 0.001 0.001 0.000 0.029 0.000 −0.007 0.000 −2033.192 0.027

286No DD-PC1 0.005 0.006 0.000 0.078 0.000 −0.016 0.002 −2044.183 0.907
DD-ME2 0.003 0.002 0.000 0.065 0.000 0.026 0.002 −2041.995 0.514
PC-PK1 0.002 0.002 0.000 0.045 0.000 −0.012 0.001 −2048.964 0.111

288Rf DD-PC1 0.004 0.004 0.000 0.084 0.000 −0.008 0.003 −2059.616 1.062
DD-ME2 0.002 0.002 0.000 0.068 0.000 0.007 0.002 −2058.097 0.580
PC-PK1 0.001 0.002 0.000 0.051 0.000 −0.013 0.001 −2063.518 0.161

290Sg DD-PC1 0.002 0.003 0.000 0.081 0.000 −0.031 0.003 −2073.639 1.033
DD-ME2 0.001 0.001 0.000 0.065 0.000 −0.017 0.002 −2072.828 0.529
PC-PK1 0.000 0.000 0.000 0.050 0.000 −0.013 0.001 −2076.818 0.136

deformation were predicted for the ground states of 284Fm,
286No, 288Rf, and 290Sg. We summarized the values of the
octupole deformation parameters and the energy gain due to
β3μ distortion for various minima discussed above in Table I.

In Fig. 3, we display the ground state density profiles of
290Sg obtained from RHB calculations with the parameter set
DD-PC1, where the nonaxial octupole deformation parame-
ters are predicted to be β31 = 0.081 and β33 = −0.031. Panels
(a) and (b) show the density profiles in the x-y plane with
z = 0 and in the x-z plane with y = 0, respectively. Obviously,
they are both derivative from a circle, but the degrees of
distortion are different. For the density profiles in the y-z plane
with x = 0 [panel (c)], the distortion is not visible.

In Fig. 4 we show the neutron and proton single-particle
levels near the Fermi surface of 290Sg as functions of the non-
axial octupole deformation β33 on the left side and of β31 with
β33 fixed at −0.031 on the right side. In the upper panel of
Fig. 4, a pronounced spherical shell closure at N = 184 is evi-
dent, well established by early studies [61–64]. For β31 � 0.1,
this energy gap remains stable, gradually decreasing only as
β31 surpasses 0.1. In the lower panel, the proton single-particle
levels are present. Notably, the spherical proton orbitals 1i13/2

and 2 f7/2 are in close proximity, satisfying the � j = �l = 3
condition, and their near degeneracy give rise to octupole
correlations. With increasing values of β33 and β31 from zero,
an energy gap emerges at Z = 106, while the spherical shell
gaps at Z = 92 and 104 are suppressed. Due to the substantial
energy gap at Z = 106, a robust nonaxial octupole effect is
anticipated for 290Sg and neighboring nuclei.

To examine the dependence of our results on the functional
form and on the effective interaction, we also studied 284Fm,
286No, 288Rf, and 290Sg with parameter sets DD-ME2 [65]
and PC-PK1 [66]. The results are listed in Table II. Roughly
speaking, the outcomes are similar with different parameter
sets, i.e., for the ground states, β30 and β32 vanish in all cases,
β20, β22, and β40 are extremely small, thus can be viewed as
zero. For all nuclei investigated here, DD-PC1 predicts the
largest energy gain Edepth ≈ 1 MeV with β31 ≈ 0.08. For DD-
ME2, the predicted energy gain due to β31 distortion is about
0.5 MeV for 286No, 288Rf, and 290Sg, while Edepth ≈ 0.2 MeV

for 284Fm. The parameter set PC-PK1 predicts the smallest
energy gain, Edepth < 0.2 MeV for all cases; especially for
284Fm, this value is only about 30 keV. The predicted β31

values are around 0.05 for 286No, 288Rf, and 290Sg, while for
284Fm, the equilibrium β31 value is ≈0.03. The evolution of
the nonaxial-octupole β31 and β33 effect along the N = 184
isotonic chain is almost independent of the form of energy
density functional and the parameter set: The effect from β31

and β33 distortion is the strongest in 288Rf and the smallest in
284Fm.

IV. SUMMARY

In summary, we studied the ground state shapes of N =
184 isotones within the covariant density functional theory.
To investigate the role played by the four octupole de-
formations β3μ, μ = 0, 1, 2,3, in determining the ground
state shapes of N = 184 isotones, we solved the Dirac
Hartree-Bogoliubov equation in simplex-y harmonic oscil-
lator basis. One-dimensional constraint calculations were
performed by constraining each β3μ, μ = 0, 1, 2, 3 while
other shape degrees of freedom were determined automat-
ically start from zero initial values. The most pronounced
lowering effect was observed by constraining β31. Simulta-
neously, only the self-consistently determined β33 value is
nonzero at the minimum. Thus the ground state shapes of
284Fm, 286No, 288Rf, and 290Sg were predicted at β31 ≈ 0.08
and β33 ≈ −0.01 to −0.03 with the covariant density func-
tional DD-PC1. The lowering effect due to β3μ distortion
can be attributed to the interaction between the proton or-
bitals from 1i13/2 and 2 f7/2, as a consequence, large energy
gap at Z = 106 was developed at β3μ �= 0 in the single par-
ticle levels. The results from covariant density functional
DD-ME2 and PC-PK1 are consistent with the one from DD-
PC1, thus the distortion effect from β31 and β33 along the
N = 184 isotonic chain is not very sensitive to the form
of the energy density functional and the parameter set we
used. We should note that the present results are limited to the
mean-field calculations, to accurately clarify the effect of the
nonaxial octupole deformations on the ground and low-lying
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states of these nuclei, the beyond mean-field calculations,
for example the full symmetry-restored generator-coordinate
method calculations are necessary.
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[54] T. Nikšić, P. Ring, D. Vretenar, Y. Tian, and Z.-Y. Ma, Phys.

Rev. C 81, 054318 (2010).
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