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The renormalization of the shell-model Gamow-Teller operator starting
from effective field theory for nuclear systems
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For the first time, we approach in this work the problem of the renormalization of the Gamow-Teller decay
operator for nuclear shell-model calculations by way of many-body perturbation theory, starting from a nuclear
Hamiltonian and electroweak currents derived consistently by way of the chiral perturbation theory. These are
the inputs we need to construct microscopically the effective shell-model Hamiltonians and decay operators.
The goal is to assess the role of both electroweak currents and many-body correlations as the origins of the well-
known problem of the quenching of the axial coupling constant gA. To this end, the calculation of observables
related to the Gamow-Teller transitions has been performed for several nuclear systems outside the 40Ca and
56Ni closed cores and compared with the available data.
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I. INTRODUCTION

In recent years there has been a renewed interest to study
the process of β decay of atomic nuclei in terms of nu-
clear structure theoretical models [1–13]. In fact, this kind
of investigation may provide insight about the mechanism of
neutrinoless double-β decay (0νββ), and also an important
testing ground to validate the calculation of the nuclear matrix
element M0ν of such a rare decay.

An important issue which most nuclear structure calcula-
tions have to face is the overestimation of the Gamow-Teller
(GT) transition rates, and this defect is usually treated by
quenching the axial coupling constant gA by a factor q < 1
[9,14–17]. The need to introduce effective values of gA in nu-
clear structure calculations traces back to two main sources:

(1) Nucleons are not pointlike particles, and their quark
structure needs to be accounted for; namely the effects
of meson-exchange currents (two-body electroweak
currents) have to be considered [18].

(2) Apart from the ab initio approaches, all other nuclear
models adopt a truncation of the full Hilbert space of
the configurations of the nuclear wave functions into
a reduced model space where a selected number of
the degrees of freedom are retained. This operation is
necessary to allow the diagonalization of the nuclear
Hamiltonian and, consequently, effective Hamiltoni-
ans and decay operators must be introduced to account
for the configurations which have been neglected to
construct the model-space nuclear wave function [19].

The quenching of the axial coupling constant gA may have
massive impact on the estimate of the half-life of 0νββ decay

T 0ν
1/2. Indeed, the latter is connected to the structure of the

parent and granddaughter nuclei by way of the nuclear matrix
element M0ν according to the following expression:

[
T 0ν

1/2

]−1 = G0ν |M0ν |2| f (mi,Uei )|2, (1)

G0ν being the so-called phase-space factor (or kinematic fac-
tor) [20], and f (mi,Uei ) accounting for the adopted model
of 0νββ decay (light and/or heavy neutrino exchange, etc.)
by way of the neutrino masses mi and their mixing ma-
trix elements Uei. The explicit form of f (mi,Uei ), within
the mechanisms of light-neutrino exchange, is f (mi,Uei ) =
g2

A
〈mν 〉
me

, where me is the electron mass, and 〈mν〉 = ∑
i(Uei )2mi

is the effective neutrino mass.
The above expression evidences the strong dependence of

the inverse half-life on the value of gA, since it is determined
by an exponent equal to 4, and the introduction of a quenching
factor q may drastically reduce the probability of observing
the 0νββ decay.

These considerations indicate that, in order to provide re-
liable calculations of the nuclear matrix elements involved
in 0νββ decay, we need to achieve a robust knowledge
of the renormalization mechanisms of decay operators that
is grounded on a microscopic approach. To this end, since
the 0νββ decay is ruled by the GT spin-isospin-dependent
operator, a test for the predictiveness of nuclear structure
calculations is the reproduction of observables such as β-
decay amplitudes with neutrino emission, or a GT-strength
distribution which can be obtained experimentally by way of
intermediate-energy charge-exchange reactions.

The goal of deriving effective decay operators, that
account for the degrees of freedom that have not been
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explicitly included in the reduced model space, may be
reached within the nuclear shell model (SM) by resorting to
the many-body perturbation theory.

Arima, Towner, and their collaborators were forerunners in
the study of the derivation of effective spin- and spin-isospin-
dependent operators [18,21,22], exploiting both sources of the
renormalization of shell-model M1 and GT transition oper-
ators, namely the role of meson-exchange currents as well
as the derivation of effective operators accounting for the
truncation of the Hilbert space to the SM space [19,23].

In this regard, it is worth mentioning the pioneering works
of Kuo and his coworkers who, apart from the system-
atic development of the theory of the effective shell-model
Hamiltonian (Heff ) [24–26], considered for the first time the
derivation of effective shell-model 0νββ-decay operators and
Hamiltonians starting from Paris [27] and Reid [28] nucleon-
nucleon (NN) potentials [29,30].

Some of the authors of the present work started a few
years ago a systematic study of the renormalization of the
GT operator accounting for the reduced SM model space,
but without considering the corrections arising from two-body
electroweak currents [22,31]. Our theoretical framework has
been the many-body perturbation theory [32–35], and effec-
tive shell-model GT operators and Hamiltonians for nuclei
with mass ranging from A = 48 to A = 136 have been de-
rived starting from the high-precision NN potential CD-Bonn
[36], whose repulsive high-momentum components have been
renormalized by way of the so-called Vlow-k approach [37].
The effective SM Hamiltonians and decay operators have
reproduced quantitatively the spectroscopic and decay proper-
ties, such as the running sums of the GT strengths and nuclear
matrix elements of the 2νββ decay (M2ν), without resorting
to any quenching factor q, thus indicating the reliability of our
theoretical approach [6,10,13].

Now, in the present paper, we report on a similar study of
the derivation of the effective SM GT decay operator �eff ,
but considering also the effect of the two-body electroweak
currents to ascertain the relative weight of the latter with
respect to the renormalization which accounts for the trun-
cation of the full Hilbert space to the reduced model space.
To this end, we start from chiral perturbation theory (ChPT),
both for the nuclear Hamiltonian [38,39] as well as for the
expansion of the electroweak currents which account for the
composite structure of the nucleons [40–42]. This leads to a
consistent way to construct the effective SM operators that are
needed to construct the nuclear wave functions and calculate
then the matrix elements of GT transitions. This approach has
been extensively applied to light nuclear systems [43–47],
and recently employed also to calculate the GT-decay
strength for a few medium-mass nuclei in terms of ab initio
methods [48].

The nuclear systems under our investigation, 48Ca, 76Ge,
and 82Se, are candidates for the observation of 0νββ decay.
More precisely, we present here the results of the calculations
of their GT-strength distributions and nuclear matrix elements
of 2νββ decay, besides their low-energy spectroscopic
properties, to validate the quality of our calculated nuclear
wave functions. We have also performed the calculation
of a large number of nuclear matrix elements of pure GT

transitions between nuclei belonging to the 0 f 1p-shell region,
and compared them with the experimental ones extracted from
the data of the observed log f t values.

As mentioned before, we start from a nuclear Hamilto-
nian based on ChPT [38,39], that consists of a high-precision
two-nucleon (2N) potential derived at next-to-next-to-next-
to-leading order (N3LO) [49], and a three-nucleon (3N)
component at N2LO in ChPT [50]. The one- and two-body
matrix elements of the axial currents have been derived
through a chiral expansion up to N3LO, and the low-energy
constants (LECs) appearing in their expression are consistent
with those of the nuclear potential we are starting from [49].

This is the first time a consistent treatment of the nuclear
Hamiltonian and of the electroweak currents has been carried
out, within the many-body perturbation theory, for nuclei that
are 0νββ-decay candidates.

This paper is organized as follows.
In Sec. II, first we sketch out briefly the nuclear Hamil-

tonian and electroweak currents we have started from, then
we describe the perturbative approach to the derivation of
the effective SM Hamiltonian and decay operators, that we
have obtained considering 40Ca and 56Ni as doubly closed
cores and the 0 f 1p and 0 f5/21p0g9/2 orbitals as model spaces,
respectively.

The results of the shell-model calculations are reported in
Sec. III. First, we compare the calculated low-energy excita-
tion spectra of parent and granddaughter nuclei involved in the
double-β decays under consideration with the experimental
counterparts. Since Heff that we consider for the 0 f 1p shell
was extensively investigated in a previous work [51], we
validate also the new one for 0 f5/21p0g9/2 model space by
comparing the calculated and experimental yrast Jπ = 2+ ex-
citation energies and two-neutron separation energies (S2n) for
nickel isotopes up to N = 48. Then, we report the results of
the 2νββ-decay matrix elements and GT transition-strength
distributions for 48Ca, 76Ge, and 82Se, as well as of nuclear
matrix elements of GT transitions for about 40 nuclei belong-
ing to the 0 f 1p shell.

Finally, in Sec. IV we summarize the conclusions of this
study and also the outlook of our current research project.

II. THEORETICAL FRAMEWORK

A. The chiral nuclear Hamiltonian and electroweak currents

In the middle of the 1990s it was shown that chiral effective
field theory (ChEFT) can provide a valuable tool to deal with
hadronic interactions in a low-energy regime—like that of
nuclear systems—with a systematic and model-independent
approach [38,39]. As is well known, one has to start identi-
fying a clear separation of scales [52], and for finite nuclei
we can set the pion mass as the soft scale, Q ∼ mπ , and the
ρ mass as the hard scale, �χ ∼ mρ ∼ 1 GeV, which is also
known as the chiral-symmetry breaking scale.

This is the starting point of a low-energy expansion ar-
ranged in terms of the soft scale over the hard scale, (Q/�χ )ν ,
where Q stands for an external momentum (nucleon three-
momentum or pion four-momentum) or a pion mass, and the
degrees of freedom are pions and nucleons and, eventually,
their resonances (	).
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The relevant feature of ChEFT is the link with its un-
derlying theory, namely quantum chromodynamics; that is,
the requirement to observe all relevant symmetries of QCD,
specifically the broken chiral symmetry at low energies [53].

In this work, we consider the high-precision NN potential
developed by Entem and Machleidt, by way of a chiral per-
turbative expansion at N3LO [54], that is characterized by a
regulator function whose cutoff parameter is � = 500 MeV.

An important advantage of the EFT approach to the deriva-
tion of a nuclear Hamiltonian is that it creates two- and
many-body forces on an equal footing [39,55,56], since most
interaction vertices that appear in the three-nucleon force
(3NF) and in the four-nucleon force (4NF) also occur in the
two-nucleon one (2NF).

It is worthwhile to point out that the first nonvanishing 3NF
occurs at N2LO. At this order, there are three 3NF topologies:
the two-pion exchange (2PE), one-pion exchange (1PE), and
three-nucleon-contact interactions. These terms are charac-
terized by a set of low-energy constants (LECs): the 2PE
contains the parameters c1, c3, and c4 which, however, appear
already in the 2PE component of the 2NF.

The 3NF 1PE contribution, apart from the parameters
gA = 1.2723, fπ = 92.4 MeV, mπ = 138.04 MeV, and �χ =
700 MeV, contains a new LEC cD, while another new one,
cE , characterizes the 3N contact potential. These LECs, cD

and cE , do not appear in the two-nucleon problem, and there-
fore they should be fixed to reproduce the observables of the
A = 3 system. In present work, we have adopted the same
cD, cE values as in Refs. [51,57–59], namely cD = −1 and
cE = −0.34. This is a choice adopted in no-core shell model
(NCSM) calculations in Ref. [50], where the authors first
constrained the relation of cD-cE , and then investigated a set of
observables in light p-shell nuclei to give a second constraint.

Another innovative feature of ChPT is the possibility of
constructing electroweak currents, which account for the com-
posite structure of the nucleons, by way of a perturbative
expansion that is consistent with the derivation of the nuclear
Hamiltonian we have just discussed [40–42,60–62].

This means that the one- and two-body matrix elements
of the axial currents JA are derived through a chiral expansion
up to N3LO, where the LECs appearing in their expression are
consistent with those of the nuclear potential we have consid-
ered [49]. The details about the derivation of the axial currents
within chiral effective theory can be found in Ref. [42].

Here, we report the expression of JA up to N3LO in the
limit of vanishing momentum transfer, while its diagrammatic
expansion is illustrated in Fig. 1.

The expansion of the electroweak current JA up to N3LO
contains one- and two-body contributions, and therefore can
be written as

JA = JA(1b) + JA(2b). (2)

The one-body contributions to JA appear at the LO and N2LO
of the ChPT expansion. The LO term, shown in Fig. 1(a), is
the standard GT operator (with a minus sign) given by

JLO
A,± = −gA

∑
i

σ iτi,±, (3)

(a)

(b)

(c) (d)

FIG. 1. Diagrams illustrating the contributions up to N3LO to the
axial current we have considered in the present work. The wavy lines
represent the external weak field, the dashed lines the pion exchange,
the square in diagram (b) represents relativistic corrections, while the
dot in diagram (c) denotes a vertex induced by subleading terms in
the π -nucleon chiral Lagrangian.

where gA = 1.2723, and σi and τi are the Pauli spin and
isospin operators of the ith nucleon, having specified the
charge-rising (+) and charge-lowering (−) cases defined by

τi,± = (τi,x ± iτi,y)/2. (4)

The N2LO term [see Fig. 1(b)] consists of a relativistic
correction to the GT operator:

JN2LO
A,± = gA

2m2
N

∑
i

Ki × (σ i × Ki )τi,±, (5)

where mN is the nucleon mass and

Ki = (p′
i + pi )/2, (6)

pi (p′
i) being the initial (final) momentum of the nucleon i.

The first two-body diagrams appear at N3LO of the ChPT
expansion, where we have the 1PE contribution [Fig. 1(c)] and
the contact term (CT) [Fig. 1(d)], as given by

JN3LO
A,± (1PE; k) =

∑
i< j

gA

2 f 2
π

{
4c3τ j,±k + (τ i × τ j )±

×
[(

c4 + 1

4m

)
σ i × k − i

2m
Ki

]}
σ j ·

× k
1

ω2
k

+ (i � j), (7)

JN3LO
A,± (CT; k) =

∑
i< j

z0(τ i × τ j )±(σ i × σ j ), (8)
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where ωk is defined by the relation ω2
k = k2 + m2

π and, since
the external field momentum is vanishing, we have that

ki = (p′
i − pi )/2 = −k j = k. (9)

Moreover, we have defined

(τ i × τ j )± = (τ i × τ j )x ± i(τ i × τ j )y, (10)

and

z0 = gA

2 f 2
π mN

[
− mN

4ga�χ

cD + mN

3
(c3 + 2c4) + 1

6

]
. (11)

The above equation shows that the 1PE term [Eq. (7)] contains
the c3 and c4 LECs, which determine the two-pion exchange
contribution of the chiral 3NF at N2LO, while in the CT term
[Eq. (8)] there appear, along with c3 and c4, also cD [Eq. (11)]
that is connected to the 3NF one-pion exchange contribution
appearing at N2LO for the nuclear Hamiltonian.

Finally, the configuration-space expression for the two-
body contribution of JA is obtained as

JA,±(2b) =
∫

dk
(2π )3

eik·rijC�(k)JA,±(2b; k), (12)

where rij = ri − rj, C�(k) = e−(k/�)4
is the regulator func-

tion, and Kj is replaced by −i∇ j in JA,±(2b; k).
We have calculated the matrix elements of these two-body

terms in the harmonic-oscillator (HO) basis, consistently with
the chiral Hamiltonian, and added them to the one-body LO
and N2LO operators.

It is worth pointing out that, as will be shown in Sec. II C,
we have included these two-body electroweak currents ex-
plicitly and without resorting to any approximation. This is
at variance with respect to the procedure that was followed
in Ref. [63], where the chiral two-body axial currents were
included, retaining only the normal-ordered one-body contri-
bution by taking as reference state a Fermi-gas approximation
for the core.

The convergence with respect to the truncation of the ChPT
expansion at N3LO will be discussed in Sec. III.

B. The effective shell-model Hamiltonian

The nuclear Hamiltonian, that includes 2NF and 3NF
components, is the foundation to build up the effective SM
Hamiltonian Heff , namely the single-particle (SP) energies and
two-body matrix elements (TBMEs) of the residual interac-
tion, which are the basic inputs to solve the SM eigenvalue
problem. Heff must account for the degrees of freedom that
are not explicitly included in the truncated Hilbert space of the
configurations (the model space), that in our case is spanned
by the proton/neutron 0 f 1p orbitals outside the doubly closed
40Ca, or by the proton/neutron 0 f5/21p0g9/2 orbitals outside
the 56Ni core.

This goal may be pursued by a similarity transformation
which arranges, within the full Hilbert space of the configu-
rations, a decoupling of the model space P where the valence
nucleons are constrained from its complement Q = 1 − P.

This problem may be tackled within the time-dependent
perturbation theory, namely by expressing Heff through the

Kuo-Lee-Ratcliff folded-diagram expansion in terms of the
Q̂-box vertex function [26,35,64].

The Q̂ box is defined in terms of the full nuclear Hamil-
tonian H = H0 + H1, where H0 represents the unperturbed
component, obtained by the introduction of the harmonic-
oscillator auxiliary potential, and H1 corresponds to the
residual interaction, as

Q̂(ε) = PH1P + PH1Q
1

ε − QHQ
QH1P, (13)

where ε is an energy parameter called “starting energy.”
An exact calculation of the Q̂ box is practically impossible,

but the term 1/(ε − QHQ) is amenable to be expanded as a
power series,

1

ε − QHQ
=

∞∑
n=0

1

ε − QH0Q

(
QH1Q

ε − QH0Q

)n

, (14)

leading to the perturbative expansion of the Q̂ box. It is
worth introducing a diagrammatic representation of the Q̂-box
perturbative expansion, as a collection of irreducible valence-
linked Goldstone diagrams [25].

The Q̂ box is then employed to solve nonlinear matrix
equations to derive Heff by way of iterative techniques such as
the Kuo-Krenciglowa and Lee-Suzuki ones [65], or graphical
noniterative methods [66]. We have verified that the latter
provide a faster and more stable convergence to the solution of
Heff , and these are the techniques we have employed in present
work.

In order to derive our Heff ’s, we include in our Q̂-box
expansion one- and two-body Goldstone diagrams through
third order in the two-nucleon potential and up to first order
in the three-nucleon (NNN) one. In Ref. [34] a complete list
of diagrams with NN vertices can be found. The diagrams
at first order in the NNN potential, as well as their analyt-
ical expressions, are reported in Refs. [51,57]. It should be
noted that these expressions are the coefficients of the one-
body and two-body terms arising from the normal-ordering
decomposition of the three-body component of a many-body
Hamiltonian [67]. In Ref. [68], Holt and coworkers showed
that the uncertainty linked to neglecting higher-order contri-
butions from NNN vertices (residual NNN forces) is small.

An important issue that has to be stressed is the fact that the
nuclear systems we are going to investigate are characterized
by many valence nucleons, and this means that one should
derive many-body Heff ’s which depend on the number of
valence particles. This implies that the Q̂ box should include
at least contributions from three-body diagrams accounting
for the three-body interaction induced by the 2NF between
the valence nucleons and the configurations outside the model
space.

The tool we employ to diagonalize the SM Hamiltonian is
the KSHELL code [69], which cannot perform the diagonaliza-
tion of a three-body Heff . Then, we derive a density-dependent
two-body term from the three-body contribution arising from
the calculation of nine one-loop diagrams (see the graphs
in Fig. 8 of Ref. [35]) at second order in perturbation
theory [70].
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We reported their explicit form in Ref. [51], and it de-
pends on the unperturbed occupation density ρ of the external
valence line that has been summed on. This leads to the
derivation of density-dependent Heff ’s which account for the
number of valence protons and neutrons, and differ only in
their TBMEs, since these one-loop diagrams are two-body
terms.

An extensive report about the perturbative behavior of the
Q̂-box expansion, starting from the chiral N3LO potential
of Entem and Machleidt, was reported in Ref. [51], which
discussed both its order-by-order convergence properties and
the convergence with respect to the dimension of the space
of the intermediate states, considering the systems with one
and two valence neutrons, namely 41Ca and 42Ca, respectively.
It is worth recalling here that the number of intermediate
states is expressed as a function of the maximum allowed
excitation energy of the intermediate states in terms of the
oscillator quanta Nmax [34], and includes intermediate states
with an unperturbed excitation energy up to Emax = Nmax h̄ω.
The present limitation of our computing resources allows us
to include, for both 40Ca and 56Ni cores, a maximum number
of intermediate states that does not exceed Nmax = 18.

Actually, in Ref. [51] we pointed out that while the energy
spacings of the theoretical SP spectra converge quite rapidly
as a function of the number of intermediate states, this conver-
gence cannot be reached with the larger value of the oscillator
quanta we may consider Nmax = 18, when calculating their
absolute values with respect to the closed cores 40Ca, 56Ni.

Then, for the calculations of ground-state energies of nu-
clei in the 0 f 1p region, we have fixed the SP energies of
proton and neutron 0 f7/2 orbitals at −1.1 and −8.4 MeV,
respectively. For the Heff ’s that have been constructed with
respect to the 56Ni core, the SP energies of proton and neutron
1p3/2 have been chosen to be −0.7 and −10.2 MeV, respec-
tively. Those values are consistent with experimental values
of 41Sc and 41Ca, with respect to 40Ca, and of 57Cu and 57Ni,
with respect to 56Ni [71].

The Coulomb potential is explicitly taken into account, and
summed to the matrix elements of the NN potential. The oscil-
lator parameter h̄ω we have employed to compute the matrix
elements of the NN and NNN potentials in the HO basis is
equal to 11 and 10 MeV for 40Ca and 56Ni cores, respectively,
according to the expression h̄ω = 45A−1/3 − 25A−2/3 [72].

C. Effective shell-model transition operators

One of the goals of this work is the calculation of the matrix
elements of quadrupole-electric transition and GT-decay oper-
ators � which are connected to measurable quantities such as
B(E2), GT strengths, and the nuclear matrix element of the
2νββ decay, M2ν .

The diagonalization of Heff provides the projections of the
true nuclear wave functions onto the chosen model space P;
then we need to renormalize any transition/decay operator �

to account for the neglected degrees of freedom corresponding
to the Q space.

The procedure that we apply to calculate effective SM
operators is the one introduced by Suzuki and Okamoto
in Ref. [33]. This approach to the derivation of effective

transition/decay operators �eff is consistent with the one
we have described in the previous section to construct Heff ,
namely it is based on perturbative expansion of a vertex func-
tion �̂ box, analogously with the derivation of Heff in terms
of the Q̂ box. The details of such a procedure may be found
in Ref. [35], and in the following we only sketch out the main
building blocks.

First, we expand perturbatively the two energy-dependent
vertex functions,

�̂(ε) = P�P + P�Q
1

ε − QHQ
QH1P,

�̂(ε1; ε2) = PH1Q
1

ε1 − QHQ
Q�Q

1

ε2 − QHQ
QH1P,

and their energy derivatives for ε = ε0, ε0 being the unper-
turbed energy of the degenerate model space:

�̂m = 1

m!

dm�̂(ε)

dεm

∣∣∣∣
ε=ε0

,

�̂mn = 1

m!n!

dm

dεm
1

dn

dεn
2

�̂(ε1; ε2)

∣∣∣∣
ε1=ε0,ε2=ε0

.

Then, we can calculate a series of operators χn:

χ0 = (�̂0 + H.c.) + �̂00, (15)

χ1 = (�̂1Q̂ + H.c.) + (�̂01Q̂ + H.c.),

χ2 = (�̂1Q̂1Q̂ + H.c.) + (�̂2Q̂Q̂ + H.c.)

+ (�̂02Q̂Q̂ + H.c.) + Q̂�̂11Q̂,

... (16)

The effective operator �eff is then expressed in terms of an
expansion of the χn operators as follows:

�eff = Heff Q̂
−1(χ0 + χ1 + χ2 + · · · ). (17)

We arrest the χn series at n = 2, and the �̂ vertex functions
are expanded up to third order in perturbation theory, and in
Refs. [10,73,74] we have tackled the issue of the convergence
of the χn series and of the perturbative expansion of the �̂

box, showing that this truncation is substantially satisfying.
Figure 10 of Ref. [35] and Fig. 1 of Ref. [74] show all the
diagrams up to second order appearing in the �̂(ε0) expansion
for a one-body operator �1b and two-body one �2b.

In the present work, the decay operators � are the one-
body electric-quadrupole (E2) transitions qp,nr2Y 2

m (r̂) (the
charge qp,n being e for protons and 0 for neutrons) and the
axial electroweak currents JA that we employ to calculate the
nuclear matrix elements for GT decays.

We have shown in the previous section that, regarding
the effective operator for GT decays, electroweak currents
have one- and two-body components, and consequently the
effective SM operator has the same structure. Moreover, the
first-order term of the one-body component includes also a
normal-ordered contribution, calculated with respect to the
closed-core reference state, obtained from the two-body ma-
trix elements of the electroweak currents.

Our perturbative expansion of the �̂ box includes contribu-
tions up to third order in the many-body perturbation theory
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for the one-body components (for both E2 transitions and GT
decays), and up to second order for the two-body component
of the effective GT decay operator.

It is worth also reporting the explicit expression of the
nuclear matrix elements of the single-GT and 2νββ decays
in terms of the axial electroweak currents:

M1ν
GT = 〈Jf ||JI

A||Ji〉, (18)

M2ν
GT =

∑
n

〈0+
f ||JI

A||1+
n 〉〈1+

n ||JI
A||0+

i 〉
En + E0

. (19)

where the superscript I indicates that we are employing the
matrix elements of either the bare or the effective GT decay
operators.

In the above equations, En is the excitation energy of
the Jπ = 1+

n intermediate state, and E0 = 1
2 Qββ (0+) + 	M,

where Qββ (0+) and 	M are the Q value of the transition and
the mass difference of the parent and daughter nuclear states,
respectively. The index n runs over all possible intermediate
states induced by the given transition operator. It should be
pointed out that we have not considered in our calculations
the Fermi component of the β-decay operator since it plays
a marginal role [75,76] and in most calculations is neglected
altogether.

The calculation of M2ν has been carried out by way of the
Lanczos strength-function method [77], since this is the most
efficient way to include a number of Jπ = 1+ intermediate
states that is sufficient to provide the needed accuracy.

Then, the calculated value of M2ν can be compared with
the experimental counterpart, which is extracted from the
observed half life T 2ν

1/2:

[
T 2ν

1/2

]−1 = G2ν
∣∣M2ν

GT

∣∣2
, (20)

G2ν being the 2νββ-decay phase-space (or kinematic) factor
[20,78].

III. RESULTS

In this section we present the results of our SM calcu-
lations. First, to validate the quality of the nuclear wave
functions we employ to describe GT decays, we compare
the theoretical low-energy spectroscopic properties of a few
nuclei, in the mass regions which are of relevancy for
the Heff ’s we have derived, with the experimental ones. In
Refs. [51,58,59] we have already shown the ability of the
0 f 1p-shell Heff ’s that we have derived, starting from the chiral
nuclear Hamiltonian we presented in Sec. II A, to reproduce
accurately the low-energy spectra and monopole properties of
calcium, titanium, chromium, iron, and nickel isotopes.

Therefore, in Sec. III A 1 we limit our discussion only to
the Heff ’s we have constructed for the 0 f5/21p0g9/2 model
space, focusing on their monopole properties. It is worth
emphasizing that, since we derive Heff considering the contri-
bution of the induced three-nucleon potential too, as reported
in Sec. II B, we use a different Heff for each nuclear system.

In the Supplemental Material [79] the effective SM Hamil-
tonian for A = 58 systems, namely for one- and two-valence
nucleon systems, can be found.

FIG. 2. Comparison between experimental and calculated SP
spectra of 57Ni and 57Cu.

In Sec. III A 2 we present the results of the calculation
of the low-energy spectroscopic properties of the parent and
granddaughter nuclei that are involved in the double-β decay
processes we consider in this paper, namely 48Ca, 48Ti, 76Ge,
76Se, 82Se, and 82Kr, and compare them with available data.

Finally, in Sec. III B we compare with experiment the cal-
culated properties related to the GT decay, such as the nuclear
matrix elements of about 40 nuclear systems in the 0 f 1p-shell
region, the GT− strength distributions, and the M2ν’s of the
above mentioned nuclei.

A. Calculation of the spectroscopic properties

1. Monopole properties of Heff in the 0 f5/21p0g9/2 model space

As previously mentioned, the effective SM Hamiltonian
for A = 58 nuclei can be found in the Supplemental Material
of this paper, and the values of our calculated SP energies
are ε1p3/2 = 0.0 MeV, ε0 f 5/2 = 0.7 MeV, ε1p1/2 = 1.3 MeV,
and ε0g/2 = 6.2 MeV for the proton orbitals, and ε1p3/2 = 0.0
MeV, ε0 f 5/2 = 0.7 MeV, ε1p1/2 = 1.2 MeV, and ε0g/2 = 6.1
MeV for the neutron orbitals.

Since the SP energies are the eigenvalues of the Heff ’s for
the single-valence-nucleon systems, from the SM perspective
these numbers correspond to the excitation energies of the SP
states in 57Cu and 57Ni. In Fig. 2 we compare the theoretical
and experimental SP spectra of these two nuclei [80]; note that
there is no firm assignation of a Jπ = 9/2+ SP state for either
of them.

From the inspection of Fig. 2, we observe that the
calculated SP energies reproduce quite well the observed
natural-parity SP spacings. As a test case of the isotopic chains
belonging to the 0 f5/21p0g9/2 model space, we examine the
nickel isotopes, whose study is pivotal to investigate the shell-
closure properties of our calculated Heff ’s.

In Fig. 3 we show the behavior of the calculated and ex-
perimental Jπ = 2+

1 excitation energies of nickel isotopes up
to N = 48 [80]. The black dashed line indicates the results
obtained with the A = 58 effective Hamiltonian (see the Sup-
plemental Material [79]), and the black solid line refers to the
results obtained with density-dependent Heff ’s accounting for
the induced three-body potential (see Sec. II B).

As can be seen, the theoretical results follow quite well the
observed behavior of the yrast Jπ = 2+ states all along the
isotopic chain, except for the energy bump at N = 32 which
is a fingerprint of the subshell closure of the neutron 1p3/2

orbital, thus revealing that the Z = 28 cross-shell excitations
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FIG. 3. Experimental and calculated excitation energies of the
yrast Jπ = 2+ states for nickel isotopes from N = 30 to 48. The
black dashed line refers to results obtained with the Heff for the
A = 58 system (see text for details).

still play an important role in describing the low-energy spec-
troscopy of light nickel isotopes [81].

It should be noted that our SM calculations reproduce the
shell closure at N = 40 (68Ni), the result being remarkably
better by employing the density-dependent Heff ’s. This con-
firms the ability of the monopole component of our Heff ’s to
provide the observed shell evolution, a feature that may be
ascribed to the NNN component of the chiral nuclear Hamil-
tonian, as we showed in our previous study of 0 f 1p-shell
nuclei [51].

Similar positive conclusions may be drawn from the in-
spection of the behavior of the nickel two-neutron separation
energies (S2n) as a function of the neutron number, which we
have reported in Fig. 4. We note that the discrepancy between
the results obtained with A = 58Heff (dashed black line) and
the density-dependent Heff ’s (solid black line) starts to enlarge
at N = 44, but from that point on there are only extrapolated
values and no experimental counterpart.

We have pointed out in our previous study of nuclear sys-
tems belonging to the 0 f 1p-shell region that a major role in

FIG. 4. Experimental and calculated two-neutron separation en-
ergies for nickel isotopes from N = 30 to 48. The black dashed line
refers to results obtained with the Heff for the A = 58 system (see
text for details). Data are taken from [71]; open circles correspond to
estimated values.

FIG. 5. Neutron ESPEs from Heff TBMEs for nickel isotopes
as a function of the neutron number, calculated from the CD-Bonn
potential and from chiral two- and three-body potential (see the text
for details).

driving the shell evolution, starting from chiral ChPT nuclear
Hamiltonians, is played by 3BF that contribute significantly
to the monopole component of Heff [51]. The direct link
between the properties of the monopole component and the
shell evolution is provided by the calculation and the study of
the effective single-particle energy (ESPE) that is defined in
terms of the bare SP energy ε j and the monopole part of the
TBMEs [82,83]:

ESPE( j) = ε j +
∑

j′
V mon

j j′ n j′ , (21)

where the sum runs over the model-space levels j′, n j being
the occupation number of particles in the level j obtained
from the diagonalization of the shell-model Hamiltonian, and
the angular-momentum-averaged monopole component of the
SM Hamiltonian is defined through the TBMEs of the SM
residual interaction Veff as follows:

V mon
i j =

∑
J (2J + 1)〈i, j|Veff |i, j〉J∑

J (2J + 1)
.

To illustrate the connection between the evolution of the
ESPEs as a function of the valence nucleons and the closure
properties of Heff ’s, in Fig. 5 we compare the neutron ESPEs
of nickel isotopes obtained with two different Heff ’s, both of
them defined in the 0 f5/2, 1p, 0g9/2 model space: the Heff we
have derived for the present work from chiral 2NF and 3NF,
and that which was constructed and employed in Ref. [10]
starting from the CD-Bonn high-precision NN potential [36]
renormalized by way of the Vlow-k procedure [37]. Black dots,
magenta diamonds, green stars, and blue squares indicate the
0 f5/2, 1p3/2, 1p1/2, and 0g9/2 ESPEs, respectively.
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FIG. 6. Same as in Fig. 3, but the theoretical results are here
obtained with Heff reported in Ref. [10] (see text for details).

The inspection of Fig. 5 shows that the Heff from the ChPT
Hamiltonian generates ESPEs that are characterized by an
almost constant energy splitting along the istopic chain, the
0g9/2 ESPE being always well separated from the other ones.
This behavior of the ESPEs is reflected in the neutron closure
at N = 40, as emerges from the results in Fig. 3.

The situation is different when considering the ESPEs ob-
tained from the Heff that was employed in Ref. [10], where
the energy splittings are strongly reduced, exposing then the
shell evolution to the correlations induced by higher-multipole
components of the residual two-body potential. This feature
is reflected by a collective flat behavior of the calculated
excitation energies of the yrast Jπ = 2+ states, as can be seen
in Fig. 6, reaching the climax with the disappearance N = 40
closure.

2. Low-energy spectra of 48Ca, 48Ti, 76Ge, 76Se, 82Se, and 82Kr

Before starting the analysis of the calculated quantites re-
lated to the GT decay, we deem it is worth comparing our
calculated low-energy spectra of 48Ca, 48Ti, 76Ge, 76Se, 82Se,
and 82Kr, as well as their electromagnetic-transition proper-
ties, with the available experimental counterparts.

All calculations have been performed employing theoret-
ical SP energies, TBMEs, and effective transition operators,
following the procedure described in Secs. II B and II C. The
TBMEs include the contribution of induced three-body forces,
so they depend on the different nuclear system under consid-
eration (see the content in Sec. II B).

The shell-model calculation for 48Ca and 48Ti are
performed within the full f p shell, namely the proton
and neutron 0 f7/2, 0 f5/2, 1p3/2, and 1p1/2 orbitals. In Fig. 7,
we show the experimental [80] and calculated low-energy
spectra of 48Ca and 48Ti. Next to the arrows, whose widths are
proportional to the B(E2) strengths, we report the numerical
values in e2fm4 [80].

As can be seen, we reproduce very nicely the observed
shell closure of the neutron 0 f7/2 orbital in 48Ca, the agree-
ment between the experimental and calculated spectra may
be considered quantitative, and also the observed B(E2)s are
satisfactorily reproduced by the theory.

FIG. 7. Experimental and calculated spectra of 48Ca and 48Ti.
B(E2) strengths (in e2fm4) are also reported (see text for details).

As already pointed out in the previous sections, the shell-
model calculations for 76Ge, 76Se, 82Se, and 82Kr have been
performed within the model space spanned by the four proton
and neutron orbitals 0 f5/2, 1p3/2, 1p1/2 and 0g9/2, considering
56Ni as a closed core. The experimental [80] and calculated
low-energy spectra of 76Ge and 76Se are reported in Fig. 8,
together with the experimental [80] and calculated B(E2)
strengths (in e2fm4).

We notice that while the agreement between the experi-
mental and calculated spectra and B(E2)’s for 76Se is quite
satisfactory, the same conclusion does not apply to 76Ge,
whose observed collectivity is poorly described. These results
are at variance with respect to those we found in Ref. [10],
where the Heff was derived from a NNVlow-k potential obtained
from the CD-Bonn potential [36], and the reproduction of
the 76Ge spectrum and B(E2)’s was far better than the one
in Fig. 8.

There is experimental evidence that low-energy states of
76Ge reveal a rigid triaxial deformation [84], and this en-
hanced collectivity, that characterizes heavy-mass germanium
isotopes, may be reproduced within shell model by employing
a model space larger than the 0 f5/21p0g9/2 one [85].

The different collective behavior of the calculated 76Ge
low-lying energy spectrum, as obtained with present the chiral
Heff and the one in Ref. [10], traces back to their different
monopole components. In Table I we report the proton and
neutron ESPEs for 76Ge, calculated with both Heff ’s, and it
is evident that the SM Hamiltonian employed in Ref. [10]
provides an ESPE spectrum more compressed than the one
obtained with the chiral Heff .

FIG. 8. Same as in Fig. 7, but for 76Ge and 76Se (see text for
details).
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TABLE I. Proton and neutron ESPEs (in MeV) for 76Ge cal-
culated with the Heff ’s derived from the chiral 2NF and 3NF (this
work), and from the Vlow-k potential obtained from the CD-Bonn
potential [10].

Proton Neutron

Orbital Chiral Vlow-k Chiral Vlow-k

0 f5/2 2.9 0.3 3.6 0.5
1p3/2 0.0 0.0 0.0 0.0
1p1/2 3.1 0.9 3.1 1.3
099/2 7.0 3.3 6.3 2.5

The collectivity induced by the smaller energy spacings
of the ESPEs, that are calculated starting from the Vlow-k

renormalization of the CD-Bonn potential, has a drawback:
in a few cases this feature fails to reproduce shell closures,
such as in 48Ca (see Fig. 5 in Ref. [10]) or in 68Ni, as we have
shown in Fig. 6.

Also, for the shell model calculation of 82Se and 82Kr, we
have considered the 0 f5/21p0g9/2 model space, and in Fig. 9
we report the experimental [80] and theoretical low-energy
spectra and B(E2)’s.

There is little to comment; the agreement between the-
ory and experiment, especially as regards the electromagnetic
properties, can be considered very satisfactory, with the ex-
ception of the inversion in the calculated spectra of the 0+

2
states with respect to the 2+

2 and 4+
1 ones.

B. Nuclear matrix elements of the GT decay

In this section, we present the results of our calculations of
GT nuclear matrix elements and GT− strength distributions
for 48Ca, 76Ge, and 82Se, and compare them with the available
data.

In order to assess the distinct role that is played by the
meson-exchange currents—that are taken into account by
ChPT expansion of the axial current—and by the configura-
tions outside the model space in the renormalization of the
shell-model GT-decay operator, we label our calculations as
follows:

(a) calculations performed by employing the bare JA at
LO in ChPT, namely the usual spin-isospin dependent
GT operator gAσ · τ;

FIG. 9. Same as in Fig. 7, but for 82Se and 82Kr.

0 1 2 3 4
M(GT) Th

0

1

2

3

4

M
(G

T
) 

E
xp

0 1 2 3 4
M(GT) Th

0

1

2

3

4

M
(G

T
) 

E
xp

0 1 2 3 4
M(GT) Th

0

1

2

3

4

M
(G

T
) 

E
xp

0 1 2 3 4
M(GT) Th

0

1

2

3

4

M
(G

T
) 

E
xp

 JLO
A

 bare

= 0.20

 JLO
A

 effective

= 0.14

(b)(a)

(c) (d)

 JN
3
LO

A
 bare 

= 0.14

 JN
3
LO

A
 effective

= 0.07

FIG. 10. Correlation plots between experimental (y axis) and
calculated (x axis) values of the GT nuclear matrix elements of a few
decay processes in the 0 f 1p shell region. The experimental values
are taken from Ref. [80].

(b) calculations performed by employing the effective JA

at LO in ChPT, that accounts for the contributions of
configurations outside the model space (see Sec. II C);

(c) calculations performed by employing the bare JA at
N3LO in ChPT, that includes also the contributions of
the relativistic corrections to the GT operator and the
two-body contact and pion-exchange contributions;

(d) calculations performed by employing the effective JA

at N3LO in ChPT, a SM operator that has both one-
and two-body components.

First, we have considered 60 experimental GT decays of
43 nuclei belonging to the region of the 0 f 1p shell [80],
involving only yrast states, and compared the matrix elements
extracted from the data with our calculated values. We report
them in a correlation plot in Fig. 10, where the theoreti-
cal nuclear matrix elements are obtained employing SM GT
decay operators (a)–(d), together with the root-mean-square
deviation σ :

σ =
√∑n

i=1(xi − x̂i )2

n
,

xi being the experimental GT nuclear matrix element, x̂i the
corresponding calculated value, and n = 60 the total number
of data we have considered (see the table in the Supplemental
Material [79]). This analysis is analogous to the one reported
in Fig. 1 of Ref. [16], where the authors evidenced the need
to introduce a quenching factor q ≈ 0.74 of the axial coupling
constant gA to reproduce at best GT data of nuclei in the 0 f 1p
region with SM eigenfunctions obtained by diagonalizing the
KB3 SM Hamiltonian [86].
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FIG. 11. Running sums of the 48Ca B(GT) strengths as a func-
tion of the excitation energy Ex up to 6.5 MeV (see text for details).

From the inspection of Fig. 10, the best overall reproduc-
tion of the data is obtained by carrying out calculations with
the effective operator (d), and the values of σ obtained with
the operators (b) and (c) show that for the 0 f 1p shell the im-
provements we obtain with respect to the results with the bare
operator (a) can be equally ascribed to the renormalization of
the GT operator by way of the ChPT expansion of JA, as well
as to the derivation of SM effective operators which account
for the configurations outside the model space (see Sec. II C).

Another quantity that is indirectly related to the GT decay
operator, and that is worth studying, is the GT strength distri-
bution:

B(GT) =
∣∣〈� f ||JA/gA||�i〉

∣∣2

2Ji + 1
, (22)

where indices i, f refer to the parent and daughter nuclei,
respectively.

They are obtained from charge-exchange reactions, and
can be extracted from the GT component of the cross sec-
tion at zero degrees, following the standard approach in the
distorted-wave Born approximation (DWBA):

dσ GT(0◦)

d�
=

(
μ

π h̄2

)2 k f

ki
Nστ

D |Jστ |2B(GT),

where Nστ
D is the distortion factor, |Jστ | is the volume integral

of the effective NN interaction, ki and k f are the initial and
final momenta, respectively, and μ is the reduced mass (see
the formula and description in Refs. [87,88]). This means that
the values of experimental GT strengths are somehow model
dependent.

In Fig. 11, the calculated running sums of the GT−

strengths [�B(GT)] for 48Ca are shown as a function of the
excitation energy up to 6.5 MeV, and compared with the data
reported with a red line [89]. The results obtained with the
bare operator (a) are drawn with a blue dashed line, and those
obtained employing the effective GT operator at LO of the
chiral perturbative expansion of JA (II) are plotted with a
solid blue line. The results with the operators (c) and (d),

TABLE II. Experimental [90,91] and calculated M2ν’s (in
MeV−1) for 48Ca 2νββ decay.

Jπ
i → Jπ

f (a) (b) (c) (d) Expt.

48Ca → 48Ti
0+

1 → 0+
1 0.057 0.048 0.033 0.019 0.042 ± 0.004

0+
1 → 2+

1 0.131 0.102 0.097 0.058 � 0.023
0+

1 → 0+
2 0.102 0.086 0.073 0.040 � 2.72

namely with a bare and effective axial current JA expanded
up to N3LO, are drawn with dashed and solid black lines,
respectively.

It can be seen that the distributions obtained using the (b)
and (c) operators nearly overlap, confirming that the contri-
butions to the renormalization of the GT operator due to the
ChPT expansion of JA and to the derivation of a SM effective
decay operator have the same effect in this mass region.

The combination of both effects, which operator (d) ac-
counts for, results in a good reproduction of the values
extracted from data. It should be pointed out that the the-
oretical total GT− strengths are 24.0, 17.5, 20.9, and 11.2
with operators (a)–(d), respectively, which should be com-
pared with an experimental one that is 15.3 ± 2.2 and includes
a possible contribution from an isovector spin monopole
(IVSM) component [89].

In Table II we report the observed and calculated values of
the M2ν’s for the 2νββ decay from 48Ca ground state into
48Ti yrast Jπ = 0+, 2+ and yrare Jπ = 0+ states; only for
0+

1 → 0+
1 there is a measured value [90], while for the other

transitions there are experimental upper bounds [91]. We point
out that, with respect to the expression in Eq. (19), results are
expressed in g2

A units.
We note that both the experimental and calculated values

of M2ν are rather small, compared with those corresponding
to the 2νββ decay of other nuclides (see Ref. [90] for a recent
review of current data). Regarding our calculated M2ν’s in
Table II, we have to underline that their reduced magnitude
is mainly related to the fact that there is some cancellation
between the different terms appearing in the sum in Eq. (19).

We may observe that, for the decay between the ground
states of 48Ca and 48Ti, the M2ν obtained with the bare
operator (a) slightly overestimates the experimental one, and
it is three times larger than the one obtained with the effective
operator (d), which accounts for the ChPT expansion of
JA as well as the renormalization due to the configurations
outside the chosen 0 f 1p model space. This corresponds to
a quenching factor q ≈ 0.6, which is slightly smaller of the
empirical value q = 0.7 commonly considered in most of
calculations that resort to a truncation of the nuclear degrees
of freedom [9,16].

Regarding the role of the two-body electroweak currents,
it is worth noting that the value of the calculated M2ν’s with
SM effective operator (d) when compared with the experimen-
tal one is very satisfactory and similar to the result M2ν =
0.026MeV−1 we obtained by deriving Heff and �eff from
the CD-Bonn potential, renormalized by way of the Vlow-k

procedure [10].
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FIG. 12. Running sums of the 76Ge B(GT) strengths as a func-
tion of the excitation energy Ex up to 5 MeV.

Now, we focus our attention on 0νββ-decay candidates
which belong to the 0 f5/21p0g9/2 shell, namely 76Ge and 82Se.

For the calculation of GT-decay properties within such
a model space, we expect that the role of the SM effec-
tive operator increases, since it is well known [19] that
spin- and spin-isospin-dependent operators need larger renor-
malizations if some of the orbitals belonging to the model
space—specifically 0 f5/2 and 0g9/2—lack their spin-orbit
counterpart.

We start from the comparison between the experimental
[92,93] and the calculated running sums of the GT− strengths
for 76Ge and 82Se, that are reported in Figs. 12 and 13, re-
spectively. The same labeling as in Fig. 11 is used, namely the
blue dashed line represents the calculated values with the bare
operator (a), those obtained with operator (b) are shown with
a solid blue line. The results with the operators (c) and (d) are
plotted with dashed and solid black lines, respectively.

As can be observed in both Figs. 12 and 13, especially for
higher energies, only the inclusion of both many-body renor-
malizations and higher-order terms in the ChPT expansion
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FIG. 13. Same as in Fig. 12, but for 82Se.

TABLE III. Experimental [90,91] and calculated M2ν’s (in
MeV−1) for 76Ge and 82Se 2νββ decay.

Jπ
i → Jπ

f (a) (b) (c) (d) Expt.

76Ge → 76Se
0+

1 → 0+
1 0.211 0.153 0.160 0.118 0.129 ± 0.004

0+
1 → 2+

1 0.023 0.042 0.025 0.048 � 0.035
0+

1 → 0+
2 0.009 0.086 0.016 0.063 � 0.089

82Se → 82Kr
0+

1 → 0+
1 0.173 0.123 0.136 0.095 0.103 ± 0.001

0+
1 → 2+

1 0.003 0.006 0.008 0.033 � 0.020
0+

1 → 0+
2 0.018 0.007 0.013 0.007 � 0.052

can provide a quite good reproduction of the observed GT-
strength distribution. The theoretical total GT− strengths are
15.8, 10.8, 12.8, and 7.4 with operators (a)–(d), respectively,
for 76Ge and 19.0, 11.4, 14.9, and 7.5 for 82Se. At present,
there are no available data for these quantities.

Before closing the discussion about the GT-strength dis-
tributions, it is worth emphasizing that, starting from an
excitation energy of ≈4 MeV, the experimental distributions
are affected by the underlying contributions arising from
the rather structureless tail of the Gamow-Teller resonance
(GTR). Actually, broad GTRs are observed around Ex = 11
and 12.1 MeV in 76Ge and 82Se, respectively, and their con-
tribution to the total GT strength is not easy to evaluate
quantitatively [92,93].

The central role of two-body electroweak currents shows
up also in the comparison among the calculated M2ν’s for the
2νββ decay of the 76Ge ground state into the 76Se one, as well
as for the same 2νββ decay of 82Se into 82Kr, whose values
are reported in Table III.

The comparison of experimental 0+
1 → 0+

1 M2ν’s with
those calculated by employing SM effective operators (d) is
very satisfactory. The theoretical values are similar to the ones
we have obtained by deriving Heff and �eff from the CD-Bonn
potential, renormalized by way of the Vlow-k procedure [10].
In this connection, it is worth noting that the renormalization
of the one-body GT operator στ due to the use of a trun-
cated model space is smaller for the Heff ’s employed in the
present paper than the one obtained using the Heff ’s derived in
Ref. [10].

The calculated values of 0+
1 → 2+

1 , 0+
2 M2ν’s are much

smaller than the ones involving the transitions between the
ground states, despite being characterized by smaller Q
values. This happens because the contributions corresponding
to the different intermediate states in Eq. (19) tend to cancel
each other for such decay branches, while for the decay to
the ground states of 76Se and 82Kr they are mostly coherent
in sign.

IV. SUMMARY AND OUTLOOK

In this work we have studied for the first time the impact
of two-body electroweak currents, derived with chiral per-
turbation theory, on the perturbative renormalization of the
shell-model GT-decay effective operator.
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To this end, the electroweak currents have been calculated
by way of a perturbative expansion up to next-to-next-to-next-
to-leading order in chiral perturbation theory, that provides
both single- and two-body components; then the SM effective
GT operators have been derived by way of many-body per-
turbation theory. Using such a framework, the SM effective
Hamiltonians have been constructed starting from chiral two-
and three-body forces—which share the same low-energy
constants with the expansion of the electroweak currents—
and then employing the so-called Q̂-box-plus-folded-diagram
method to derive the single-particle energies and two-body
matrix elements of the residual Hamiltonian.

This study is a part of a project aiming to calculate reliable
nuclear matrix elements of the 0νββ decay, therefore we
have applied the present theoretical approach to nuclei of the
0 f 1p and 0 f5/21p0g9/2 shells that are of experimental interest
for the detection of such a rare process, namely 48Ca, 76Ge,
and 82Se.

The comparison of our results with experiment for a
large set of observables related to the GT decay—especially
the nuclear matrix elements of 2νββ decay—show that
the chiral expansion of the electroweak currents and
the many-body renormalizations, which account for the
configurations outside the model space, share equal merit
in providing a noteworthy reproduction of data. These
results, together with a good reproduction of low-energy
spectroscopic properties of the parent and granddaughter
nuclei, should support the reliability of our future

calculation of the nuclear matrix elements M0ν’s for 0νββ

decay.
In fact the future development of our scientific project is to

move towards a similar study that will involve heavier systems
such as 100Mo, that are more challenging from the point of
view of a shell-model calculation, as well as the prediction
of their 0νββ with nuclear matrix elements. In this way, we
could also compare the results based on the ChPT expansion
of nuclear Hamiltonians and electroweak currents with those
we have previously obtained within the realistic shell model
starting from the two-body CD-Bonn potential that was con-
structed by way of the meson-exchange theory [36].

Thus, our following work may also provide important in-
formation to narrow down the spread of the predicted M0ν’s
obtained by way of different approaches.
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