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Union of the discretized spectra for multichannel resonances
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Background: Resonances with binary and few-body decay modes, such as the excited and ground states of
neutron- and proton-rich nuclei, are important objects in nuclear physics. However, a description of three- and
few-body states in the continuum and their decays, especially in case of the Coulomb interaction, remains a
hardly solvable problem.
Purpose: We aim to develop an effective technique for finding the parameters of multichannel resonances based
on the analysis of discretized spectra without explicitly taking into account boundary conditions.
Methods: We introduce a new method for analyzing discretized spectra using spectral and integrated densities of
states. For multichannel two-body scattering problems, this approach allows to one calculate a sum of the eigen
phase shifts as well as the resonance parameters via solving an eigenvalue problem for the total and asymptotic
Hamiltonian matrices in some L2 basis. The generalization of the method to the three-body continuum is used to
find the positions and widths of the resonances.
Results: We test the presented approach for several multichannel problems and for the three-particle αNN
model for light nuclei with A = 6. In particular, the width of the 6Be ground state and the parameters of the
3+0 resonance for the 6Li nucleus are found from a diagonalization of the matrix Hamiltonian with realistic
interactions on the Gaussian basis.
Conclusions: The proposed method can be employed to study three-body decays in nonbinary channels, such as
the decay that accompanies two-proton radioactivity.
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I. INTRODUCTION

Resonances are basic objects of nuclear physics, represent-
ing the excited and ground states of rare isotopes, neutron-
or proton-rich nuclei, and weakly bound nuclei. One of the
most challenging and relevant problems here is the description
of two-proton radioactivity [1,2]. Unlike true bound states,
resonances belong to the continuum and their consideration
requires taking into account various asymptotic channels and
corresponding boundary conditions. The most strict way to
find resonance parameters is a calculation of the S matrix and
its analytical continuation into the complex energy plane [3,4].
However, to date, an accurate description of three- and few-
particle systems, especially in the case of charged particles,
remains a hardly solvable problem.

To simplify practical calculations, the idea of solving prob-
lems in continuum via its discretization is fruitful [5–17].
The main goal of methods based on the L2 discretization
for a few-body continuum is to reduce the complexity of the
problem to the level of the bound-state problem [17]. Such a
reduction seems to be realizable, at least for the problem of
finding resonance parameters.

There are many L2-type methods which have been elab-
orated for solving problems in the continuum and can be
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employed to find resonance parameters. Here we should men-
tion the R-matrix [5] and J-matrix [6] approaches, the finite
volume approach [7,8], calculations in the analytical basis
of the transformed harmonic oscillator [9], complex scaling
[10–13], the Gamow coupled-channels method using complex
momenta [14], and many other methods. The complex scal-
ing approach seems to be the closest to the desired way to
solve the problem, since it allows one to find the positions
of the resonances just from the spectrum of the Hamiltonian
matrix. However, this approach requires a transformation of
variables into the complex plane, has several restrictions on
interactions, and becomes more complex for a few-body sys-
tem. Only a few of the L2 approaches are used for realistic
calculations of three-body and few-body resonances (see, for
example, [6,8,9,11,13,14]).

In this paper, we propose a new technique for analyzing
a discretized continuum based on the spectral shift function
and the spectral density formalism [18–20]. The spectral
shift function (SSF) [21,22] and spectral densities [11,23]
are known in scattering theory due to the trace formula and
spectral integrals, such as the virial expansion [23]. At the
same time, these objects are directly related to the S matrix
and, therefore, can be used both to solve a scattering problem
and to search for resonance parameters. We recently showed
[19] that the SSF formalism is very well suited for the L2

discretization approaches. In particular, the phase shift of one-
channel scattering in the two-body problem can be found from
the difference between the integrated spectral densities (ISDs)
for the total and asymptotic Hamiltonians. To find these ISDs,
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only the discretized spectra of the above Hamiltonians are
required.

In this paper, we take a step much further and consider
multichannel problems, in particular, the two-body coupled-
channels problem and the three-body problem including
long-range Coulomb interactions. As a particular L2 represen-
tation, we consider the multichannel Gaussian basis, which is
very convenient for few-body bound-state calculations [24].
We also employ an additional procedure for combining spec-
tra found using bases with slightly changed parameters into a
common set with the same integrated density [19,20] without
increasing the basis dimension.

The structure of the article is as follows. In Sec. II, we
define the main objects that will be used to solve multichannel
problems. Here the spectral and integrated densities of states
for the Hamilton matrix in a discrete basis are introduced.
The formalism allows us to find phase shifts, as well as the
density of continuum levels. In this section, we also present
a technique for constructing a dense union of discretized
spectra obtained using different Gaussian bases of the same
dimension. Section III explains how to calculate the total
integrated densities of states and resonance parameters in the
multichannel two-body problem. The application of the above
technique to the three-body problem and the results for light
nuclei with A = 6 are considered in Sec. IV. A summary is
provided in the last section. For the reader’s convenience, we
add an Appendix with a brief description of the three-body
spectral functions given in Ref. [23].

II. SPECTRAL DENSITIES FOR A DISCRETIZED
CONTINUUM

Below, up to Sec. IV, we consider a two-body system with
a single-channel or multichannel interaction operator V . It is
assumed that this interaction, which relates the asymptotic
Hamiltonian H0 and the total (perturbed) Hamiltonian H ,

H = H0 + V, (1)

satisfies the standard conditions of the scattering problem
[25]. In particular, it is assumed that the operators H and
H0 are Hermitian, their continuous spectra coincide, and the
operator V has a finite trace.

A. Continuum level density and the spectral shift function

In our treatment, we use two basic functions, the spectral
shift function ξ (E ) and the continuum level density �(E ).
Both them are related to the S-matrix as follows:

ξ (E ) = − 1

2π i
ln det S(E ), (2)

�(E ) = − dξ

dE
= 1

2π i
Tr

[
S(E )† dS(E )

dE

]
. (3)

Equation (2) is known in the scattering theory as the Birman-
Krein formula [22]. It is important to emphasize that Eq. (2)
is not a definition of the SSF ξ (E ); this function is determined
independently using the trace formula or the Fredholm deter-
minant. The existence of the spectral shift function ξ and the
validity of Eq. (2) are proved, in particular, for the interaction

operators V with a finite trace. Similarly, Eq. (3) is not a
conventional definition for the continuum level density, which
is usually introduced as a trace of the difference between the
imaginary parts of the total and asymptotic resolvents [10,23]
(see also Appendix) or as the difference of the spectral densi-
ties for the total and asymptotic Hamiltonians (see details in,
e.g., Ref. [19]). However, for our purposes, the above relations
(2) and (3) are most convenient.

The functions ξ (E ) and �(E ) are expressed in terms of the
eigen phase shifts and their derivatives respectively:

ξ (E ) = − 1

π

K∑
ν=1

δν (E ), �(E ) = 1

π

K∑
ν=1

dδν (E )

dE
, (4)

where K is the number of the opened channels at energy E and
δν (E ) are the eigen phase shifts for the multichannel S matrix.

The presence of a resonance pole in the S matrix, which
is close to the real energy axis, manifests itself in the on-
shell energy dependence of all its elements. Therefore, for the
energy region near the resonance position, the functions ξ (E )
and �(E ) can be parametrized as follows [7,10]:

ξ (E ) = − 1

π
arctan

(
E − ER

�/2

)
+ ξbg(E ), (5)

�(E ) = 1

π

�/2

(E − ER)2 + �2/4
+ �bg(E ), (6)

where ER and � are the position and the width of the res-
onance, respectively, ξbg(E ) and �bg(E ) are the background
functions, which change slowly near the resonance compared
to the resonance terms. Thus, both functions ξ (E ) and �(E )
exhibit a specific behavior and each of them could be used to
find the resonance parameters.

B. Spectral densities for a discretized continuum

In the previous paper [19], we developed the formalism for
an approximate evaluation of ξ (E ) and �(E ) functions in a
single-channel scattering via the L2 continuum discretization.

In this approach, both Hamiltonians H and H0 are rep-
resented by finite matrices in some basis constructed from
L2 functions. Therefore the corresponding spectra are pure
discrete and consist of finite number of eigenvalues. In such a
case, one can introduce individual ISDs X (E ) and X0(E ) for
the total H and asymptotic H0 Hamiltonians, correspondingly.

Each of the functions X (E ) and X0(E ) is determined by the
number of eigenvalues of the corresponding matrix Hamil-
tonian that are less than or equal to the energy E . Thus, by
a definition, the functions X (E ) and X0(E ) for discretized
spectra are integer step functions whose values increase by
1 for each value of E equal to the eigenvalue of the corre-
sponding Hamiltonian. However, we can assume that there are
smooth monotonic functions X (E ) and X0(E ), whose values
for E = Ej coincide with the corresponding integer values.
The value of such a function at all other points E �= Ej can be
determined by using an interpolation.

In fact, X (E ) is an inverse function for the function E ( j),
which determines the dependence of the eigenvalue on its
ordinal number j. Therefore, X (E ) depends on the method of
the continuum discretization, i.e., on the type and parameters
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of the basis functions and on the basis dimension (see details
and examples in Ref. [19]).

Using the reconstructed continuous functions X (E ) and
X0(E ), one can approximate the spectral shift function ξ in
terms of their difference [19]:

ξ (E ) = X0(E ) − X (E ). (7)

Having the continuous integrated spectral densities X (E )
and X0(E ), one can also determine the individual spectral den-
sities of the discretized continuum for the total and asymptotic
Hamiltonians,

ρ(E ) = dX (E )

dE
, ρ0(E ) = dX0(E )

dE
, (8)

and the continuum level density as their difference:

�(E ) = ρ(E ) − ρ0(E ). (9)

Let us consider the question of the convergence of results
when expanding the basis. When calculating bound states,
their energies obtained from a diagonalization of the Hamil-
tonian matrix converge to exact values when the dimension
of the basis N tends to infinity. In contrast, each eigenvalue
of a discretized continuous spectrum tends to the continuum
threshold. Moreover, continuous functions X0(E ), X (E ) and
ρ(E ), ρ0(E ), representing individual integrated and spectral
densities for each of the operators H and H0, do not have
finite limits at N → ∞ [19]. It should be emphasized that
the spectral density of a truly continuous spectrum of some
Hamiltonian cannot be determined at all.

However, the corresponding differences (7) and (9) under
certain conditions converge to the exact functions ξ (E ) and
�(E ) when the dimension of the basis N increases [19]. We
can define a small parameter α ∼ 1/N , which determines the
convergence and allows us to estimate an error for the function
ξ (E ), i.e., for the scattering phase shift (see Ref. [19] for
details).

Thus, the integrated spectral density X (E ) recovered from
the discretized spectrum of the matrix Hamiltonian is the key
object of our approach. Below we will show how to practically
construct such a density for a multichannel problem and even
for a three-body problem.

C. Union of the discretized spectra

In the present calculations, we use the set of the Gaussian
basis functions

φilm(r) = ϕl (βi, r)Y m
l (r̂), i = 1, . . . , N, (10)

ϕl (β, r) = Aβ,l r
l+1 exp(−βr2). (11)

Here Aβ,l are normalization factors, Y m
l are spherical func-

tions, and βi are Gaussian parameters defined by some
function g(x) as follows:

βi = β0g

(
i

N + 1

)
, i = 1, . . . , N. (12)

Under certain conditions on the function g(x), the set of
functions (10) forms a complete nonorthogonal basis at the
limit N → ∞, which we will refer to as the Gaussian basis.
The function g(x) must map the interval (0, 1) into the interval

(0,∞), be monotonic on the interval (0, 1), and behave at zero
as g(u) ∼ ua, a � 1. In our calculations, to define the set of
Gaussian parameters {βi}, we usually use the so-called gener-
alized Chebyshev grid, which is specified by the function

g(x) =
[
tan

(π

2
x
)]t

(13)

and, in our experience, provides the most economical Gaus-
sian basis for bound state calculations [26].

It has been shown [at least for few particular functions g(x)
including (13)] that, by using a finite shift a of the index i
in Eq. (12), one gets a transformation of the basis that does
not change the eigenvalue distribution. Let us introduce a new
(shifted) parameter set {βi(a)} as follows:

βi(a) = β0g

(
i − a

N + 1

)
, i = 1, . . . , N, (14)

where 0 � a < 1. As a result of the diagonalization of the
Hamiltonian matrix on the new basis with the parameter set
(14), we obtain a new shifted set of eigenvalues that lie on the
same curve E (x):

Ei(a) = E (i − a). (15)

This property of invariance of the discretized spectrum al-
lows to combine several spectra into one common spectral set.
To do this, we use the following procedure. Consider M sets
of parameters {βm

i }N
i=1, m = 1, . . . , M for the basis functions:{

βm
i = β0g

(
i − am

N + 1

)}N

i=1

, m = 1, . . . , M, (16)

where am is a sequence of the additional shift parameters
0 � a1 < · · · < am < · · · < aM < 1.

Using sets (16), one gets M different Gaussian bases of
the same dimension N , each of which results in a set of the
eigenvalues {Em

i }N
i=1 after a diagonalization of the Hamilto-

nian matrix. All these eigenvalues are described by the same
function E (x) and the same ISD X (E ) according to Eq. (15),
so that they are combined in the union of discretized spectra.
This union results in an M-fold densification of the discretized
continuum when the functions E (x) and X (E ) are defined on
a much denser set of points than the initial single diagonaliza-
tion gives.

This union of spectra is illustrated in Fig. 1 where a uni-
form distribution of the additional shift parameters is used:
am = (m − 1)/M.

Based on the idea of the union of discretized spectra, we
have developed a new technique for solving single-channel
scattering problems (calculating the scattering phase shifts)
and finding the resonance parameters [19].

It should be noted that for a single-channel problem (when
the continuous spectrum is simple) one can study the behavior
of each energy level Ej depending on the shift parameter
a in a set of Gaussian parameters. Such an approach can
be considered as an analog of the well-known stabilization
method [27], where the decrease of the shift a is used instead
of increasing the dimension of the basis [20].

However, in the multichannel case, and even more so in the
few-body problem, when the continuous spectrum is not sim-
ple, the dependence of each eigenvalue on the shift parameters
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FIG. 1. The initial discretized spectrum (triangles) for the
asymptotic Hamiltonian found in the Gaussian basis with the dimen-
sion N = 15 and the united spectral set (dots) with the multiplicity
M = 20.

is not suitable for analysis. Below we will apply a statistical
processing of the spectrum union which allows us to analyze
the whole discretized spectrum regardless of the multiplicity
of the original continuum.

III. MULTICHANNEL TWO-BODY PROBLEM

Consider a general multichannel problem with a matrix
Hamiltonian:

Hμν = H0νδμν + Vμν, μ, ν = 1, . . . , K. (17)

Here the multichannel asymptotic Hamiltonian has a diagonal
form:

H0 = diag[H01, . . . , H0ν, . . . , H0K ], (18)

where each channel asymptotic Hamiltonian H0ν includes the
kinetic energy operator, the possible Coulomb interaction, and
the threshold energy E ν

th.
For present calculations, we use the multichannel Gaussian

basis as a combination of the single-channel bases (10):{
φν

ilνmν
(r) = ϕlν

(
βν

i , r
)
Y mν

lν
(r̂), i = 1, . . . , Nν

}K

ν=1
, (19)

where lν and mν are the orbital momentum in the channel ν

and its projection correspondingly.
Because the matrix of the asymptotic Hamiltonian (18)

is diagonal, the integrated density X0(E ) is the sum of the
integrated densities X0ν (E ) for each channel ν and can be
easily calculated.

However, a construction of the integrated densities for the
total Hamiltonian is an ambiguous task. Actually, the whole
discretized spectrum should be divided into separate branches
according to its multiplicity. In our previous papers [18,20],
we have shown that such a separation can be performed in
the case when the discretized spectrum of the multichannel
asymptotic Hamiltonian is degenerate with the required mul-
tiplicity. Such degeneracy can be achieved using the basis of

wave packets [18], as well as in some special cases, when
all the thresholds are the same [20]. In the general case, this
requirement is not satisfied.

Nevertheless, below we will show that such a division of
the spectrum into separate branches is not necessary when
it is needed to find only “cumulative” quantities, such as the
sum of eigen phase shifts and the total continuum level density
from Eq. (4) or the position and total width of a resonance.

A. Numerical reconstruction of the integrated density of states

One can try to recover the functions X (E ) and ρ(E )
directly using their definitions in terms of the number of
eigenstates that are below or near the energy E , respectively.
For example, let us divide the entire energy interval [0, Emax]
into “pockets” �Ei and calculate the number of eigenvalues of
the corresponding Hamiltonian �Ni inside each pocket. Then
the approximations for the spectral and integrated densities
are determined as follows:

ρi = �Ni

�Ei
, Xi =

∑
j�i

ρ j�Ej =
∑
j�i

�Nj . (20)

To find the function ξ (E ) one should calculate the differ-
ence between the integrated density X (E ) and the integrated
density for the asymptotic multichannel Hamiltonian X0(E ):

X0(E ) =
K∑

ν=1

X0ν (E ). (21)

This difference approximately determines the sum of the
eigen phase shifts:

K0∑
ν=1

δν (E ) = π [X (E ) − X0(E )], (22)

where K0 is the number of the opened channels. Although in
this way one gets only the sum of the eigen phase shifts, this
is sufficient to determine the parameters of the resonance.

The union of the discretized spectra allows one to get a
much more dense spectral set and treat the problem “sta-
tistically.” In this case, the values from Eq. (20) should be
additionally divided by the factor M (the number of spectra
in the union):

ρU
i = �Ni

M�Ei
, XU

i = 1

M

∑
j�i

�Nj . (23)

Below we use two types of such “statistical” processing of
the spectrum: (a) when the energy width of the pocket �Ei is
fixed and (b) when the number of the states �Ni in the pocket
is fixed. If the functions X (E ) and ρ(E ) exist, both methods
should give the same results.

As a visual example, Fig. 2 shows the spectral and inte-
grated densities for the two-channel problem from Sec. III B,
reconstructed by using the union of 100 discretized spectra
with basis dimensions N1 = N2 = 20 and a rather wide pocket
width �E = 0.5 arb. units. In further calculations, we use a
much smaller pocket width, which allows us to better simulate
the continuous dependence on energy.
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FIG. 2. The reconstructed spectral (a) and integrated (b) densities
of the states for the two-channel problem with the shifted thresholds
from Sec. III B.

It should be noted that the method of a reconstruction the
functions X (E ) and ρ(E ) for a simple spectrum described in
Sec. II is a special case of the procedure proposed here with
�Ni = 1 (the smallest pocket).

B. Two-channel problem with the shifted thresholds

Consider a model two-channel problem with the shifted
thresholds. This example uses arbitrary units h̄ = m = 1 and
we will omit all measurement units in the text of this subsec-
tion to simplify notations.

The asymptotic Hamiltonian is diagonal and has two
components:

H01 = −1

2

d2

dr2
, H02 = −1

2

d2

dr2
+ Eth, (24)

where Eth = 15 is the threshold energy for the second channel.
The interaction is given by the matrix1

V(r) =
(

15e−0.5r2
5re−r2

5re−r2
15(2r2 − r − 1)e−r2

)
. (25)

1. Union of spectra for the two-channel problem

We consider first how the technique with the union of the
discretized spectra works for the multichannel problem. Here
again the variety of the basis sets are constructed using finite
shifts of the arguments in the Gaussian parameters (14). The
properties of the united spectra can be illustrated by the ex-
ample of the multichannel asymptotic Hamiltonian H0. Here
we have the “exact” integrated density X0 equal to the sum of
the densities of the individual channels X0ν , which are easily
calculated. On the other hand, we can calculate statistically
the same cumulative density X0 according to Eq. (23) and
compare it with the “exact” one.

Figure 3 shows the integrated density X0 reconstructed by
Eq. (23) from the union of the spectra found in the two-
channel Gaussian bases defined on the Chebyshev grids (13)
with t = 3 and dimensions N1 = N2 = 20 for the different

1The form of the potential is taken from Ref. [15]. However, we use
here the Gaussians instead of the exponential functions.

FIG. 3. The cumulative integrated density X0(E ) for the two-
channel problem with shifted thresholds found in the two-channel
Gaussian bases with dimensions N1 = N2 = 20 for the different mul-
tiplicity of union: M = 1 (filled diamonds), M = 2 (filled triangles),
M = 10 (empty circles). The solid curve shows the sum of ISDs for
the separate channels X 1

0 (E ) + X 2
0 (E ). The inset panel shows a small

interval above the second threshold energy Eth = 15 arb. units.

multiplicities of union M and �Ni = 1 in comparison with
the sum of the individual integrated densities X0ν .

The case with M = 1 corresponds to the original spectrum
found as a result of one diagonalization. It can be seen that
the unions of spectra with the different multiplicities M lead
to the same function X0(E ) for E < Eth, since the spectrum
of the original problem is simple there. However, above Eth,
where the spectrum is doubly degenerate, the corresponding
approximations differ for small M. At the same time, as the
value of M increases, the corresponding function X0(E ) ap-
proaches the exact sum (21).

Thus, employing the union of the discretized spectra in a
multichannel problem provides more advantages. This allows
us to obtain more accurate the cumulative ISD X0(E ) for the
multichannel Hamiltonian even in the case with the shifted
thresholds.

2. Sum of the eigen phase shifts and the continuum level density

Figure 4 shows a comparison of the sum of the eigen phase
shifts for the problem (24)-(25), found from the union of
discretized spectra with the multiplicity M = 160 and from
the direct solution of the corresponding coupled Schrödinger
equations (the “exact” result). Here we use the two-channel
Gaussian basis with dimensions N1 + N2, constructed using
the Chebyshev grid (13) with t = 2.6 and β0 = 1 for both
channels. To process the discretized spectra, a procedure with
fixed energy pockets �E = 0.1 was applied. The result ob-
tained from a continuum discretization with a basis dimension
N1 = N2 = 30 is nearly indistinguishable from the “exact”
one.

There are two resonances for the model problem in ques-
tion. The resonance parameters are found from the fitting by
the Breit-Wigner form (6) of the differences of the spectral
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FIG. 4. The sum of the eigen phase shifts for the model problem
with the interaction (25) found from the discretized spectra in the
Gaussian bases of dimensions N1 = N2 = 22 (dashed curve) and
N1 = N2 = 30 (dash-dotted curve) with the multiplicity M = 160.
The result of a direct solution of the coupled-channels Schrödinger
equations is shown by the solid curve.

functions ρ(E ) and ρ0(E ) which are reconstructed from the
union of the discretized spectra. The first resonance is situ-
ated below the threshold of the second channel. Therefore,
the spectrum in this region is simple, and a relatively small
densification with M = 20 is sufficient to find the resonance
parameters. Here the spectral densities ρ(E ) and ρ0(E ) can
be determined from Eq. (23) with �Ni = 1, i.e., as numerical
derivatives of the integrated densities (calculated from two
points). The corresponding continuum level density ρ(E ) −
ρ0(E ) and the fitting function are represented in Fig. 5.

FIG. 5. The continuum level density for the two-channel model
(25) near the first resonance state position found from the discretized
spectra using the Gaussian basis with N1 = N2 = 30 and M = 20
(dots) and the fitting function (solid curve).

FIG. 6. The continuum level density for the two-channel model
(25) near the second resonance state position found employing the
200-fold union of the Gaussian spectra with the basis dimensions
N1 = N2 = 30 and two types of pockets: With the fixed energy
�Ei = 0.1 (squares) and with the fixed number of states �Ni = 30
(circles). The fitting function is shown by a solid curve.

The resonance parameters found from this fit, ER = 7.204(1)
and � = 0.0814(7), agree with the values extracted from a
solution of the Schrödinger equation, ER = 7.205 and � =
0.0820. Here the errors in the parentheses are given by the
fitting procedure.

The second resonance is above the threshold energy
Eth = 15. Therefore, to obtain a smooth approximation for the
spectral density, one needs to use the union of the discretized
spectra with a much higher multiplicity M up to 200.

The corresponding approximations for �(E ) found by us-
ing the methods (a) and (b), i.e., with the pockets defined by
fixed energy steps and the pockets containing a fixed number
of the states, in comparison with the fitting function, are
presented in Fig. 6. Here both methods give nearly the same
continuum level density and the obtained resonance param-
eters are the following: ER = 17.919(5) and � = 0.584(8)
(the corresponding values found from the solution of the
Schrödinger equation are ER = 17.92 and � = 0.596). The
errors of the found parameters is estimated from the fitting
procedure for �Ei = 0.075.

3. Resonance parameters from the integrated density

It is also possible to extract the resonance parameters from
the approximation of the integrated density X (E ) in a form:

X (E ) = 1

π
arctan

(
E − ER

�/2

)
+ Xbg(E ), (26)

which follows from Eq. (5). Here it is assumed that the back-
ground function Xbg(E ) includes the integrated density X0(E )
corresponding to the asymptotic Hamiltonian and, therefore,
does not contain a resonance term. Thus, the background
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TABLE I. The parameters of the resonance ER and � (in
arb.units) found by fitting the functions X (E ) and X (E ) − X0(E ) for
N1 = N2 = 22 and different M.

X (E ) X (E ) − X0(E )

M ER � ER �

20 17.92(4) 0.59(5) 17.94(6) 0.58(7)
40 17.92(2) 0.60(2) 17.93(2) 0.58(2)
80 17.920(6) 0.596(6) 17.918(7) 0.591(8)
160 17.919(2) 0.594(2) 17.919(3) 0.589(3)

function in the resonance region can be approximated by a
polynomial of a small degree.

This method seems simpler and more convenient for calcu-
lations since there is no need in a calculation of the integrated
density for the asymptotic Hamiltonian, and it does not re-
quire a good approximation for the derivative dX/dE using
Eq. (23). Therefore, one may use pockets with �Ni = 1 here.
On the other hand, more parameters may be needed to get a
good approximation for the background function in Eq. (26).

The convergence of the results of fitting both function
X (E ) and the difference X (E ) − X0(E ) with increasing mul-
tiplicity of the union M are presented in Table I. Here, the
second-degree polynomials were used to approximate the
background functions in both cases.

The values in the parentheses in Table I are the absolute
errors given by the fitting procedure. It is clear that these errors
are decreasing with increasing M. At the same time, the 20-
fold densification already gives a reasonable approximation.

The convergence of the parameters with increasing the
basis dimension for M = 160 is shown in Fig. 7. Here the
uncertainties again correspond to the fitting procedure.

FIG. 7. The values of the resonance position ER (a) and width �

(b) for the two-channel model (25) found from fitting the functions
X (E ) (solid curve with filled circles) and X (E ) − X0(E ) (dash-dotted
curve with empty circles) for the different basis dimensions N1 = N2.

FIG. 8. The ISD X (E ) for the two-channel model (25) found
using the Gaussian basis (dots) with N = 22 and M = 160 near the
second resonance position, the fitting function (solid curve), and the
background function (dash-dotted curve).

Both calculations give the same result for the resonance
position ER = 17.919(2). The value of the width found from
fitting the function X (E ) is � = 0.595(2), while fitting of the
difference X (E ) − X0(E ) results in the value � = 0.590(2).
In all cases, the absolute errors are given from treating the
results for the basis dimensions N1 = N2 in the range 18–25.
The light difference in the values of the width may be caused
by an approximation of the background function Xbg(E ). At
the same time, one can conclude that the resonance parameters
can be found rather accurately just from the function X (E ),
which should be useful for the three-body problems.

Figure 8 shows the IDS X (E ) for the two-channel model
(25) found using the Gaussian basis, the fitting function (26),
and the background function Xbg(E ). The approximation for
X (E ) is very good.

C. Two-channel problem with a tensor coupling

As a second numerical example, consider the NN scat-
tering problem for the coupled 3S1 − 3D1 channels in the
framework of a hybrid model that takes into account non-
nucleonic degrees of freedom. In the simplest version of the
model, these non-nucleonic degrees of freedom are described
by an internal six-quark channel that includes one bound state.
For this calculation, we slightly modified the model from
Ref. [28], eliminating the possibility of describing inelastic
processes. The Hamiltonian of the modified model has the
form

H = H0 + V, H0 = diag[TS, TD, E0|α〉〈α|],

V =

⎛
⎜⎝

V ext
SS V ext

SD μS|ϕS〉〈α|
V ext

DS V ext
DD μD|ϕD〉〈α|

μS|α〉〈ϕS| μD|α〉〈ϕD| 0

⎞
⎟⎠. (27)

014002-7



POMERANTSEV, RUBTSOVA, AND KULIKOV PHYSICAL REVIEW C 109, 014002 (2024)

FIG. 9. The sum of the eigen phase shifts for the coupled
3S1 − 3D1 channels found using 80 Gaussian bases of dimensions
N1 = N2 = 10 (black dash-dotted curve) and N1 = N2 = 30 (blue
dashed curve) in comparison with the result found from a solution
of the coupled Lippmann-Schwinger equations (red solid curve) and
the SAID data (see the text). Solid and dashed curves are nearly
indistinguishable in the figure.

Here TS and TD are the kinetic energy operators for S and
D waves, V ext is the NN interaction in the external channel,
and μS(D) and |ϕS(D)〉 are the coupling constants and form
factors for the transition operator between the NN and internal
channels. The external interaction V ext includes the one-pion
exchange potential and the orthogonalizing nonlocal potential
which provides the required repulsion between nucleons. The
detailed description of the model and its parameters can be
found in Ref. [28]. The energy of the state |α〉 in the internal
channel is E0 = 440 MeV.

Formally, this problem is a three-channel one. However,
the asymptotic Hamiltonian of the internal channel does not
have a continuous spectrum, so the scattering process is pos-
sible only in two external (S- and D-wave) channels. At the
same time, due to coupling with the internal channel, there
exists a resonance state corresponding to the total Hamiltonian
near the energy E0.

The sum of the eigen phase shifts found from the dis-
cretized spectra is shown in Fig. 9. For a comparison, we
also present in the figure the sum of the 3S1 and 3D1 partial
phase shifts found from a numerical solution of the coupled-
channels Lippmann-Schwinger equations for the above model
and from the SAID partial wave analysis2 [29]. The last two
points from the SAID results are shifted up by 180◦. Here, one
can conclude that even the use of the basis of the relatively
small dimensions N1 = N2 = 10 results in a good approxima-
tion for the sum of the eigen phase shifts in a wide energy

2Here the solutions at single energies are taken and the represented
energy corresponds to the half of the laboratory energy given in the
SAID data.

FIG. 10. The function X (E ) found using the Gaussian bases of
dimensions N1 = N2 = 30 with the union multiplicity M = 80 (dots)
in comparison with the fitting function (solid curve).

region. The parameters of the resonance can be found from
fitting of the function X (E ) with the function (26). The result
of such fitting is shown in Fig. 10, where the dots represent
X (E ) found using the Gaussian bases with dimensions N1 =
N2 = 30 and M = 80. The parameters of the resonance are
the following: ER = 481.1 MeV and � = 3.85 MeV. These
values are very close to the results extracted from solving the
coupled Lippmann-Schwinger equations: ER = 480.9 MeV
and � = 3.61 MeV.3

IV. THREE-BODY PROBLEM

The continuous spectrum of the three-body Hamiltonian
is infinite-fold degenerate. Therefore, the analysis of the
discretized spectrum obtained from the diagonalization of
the Hamiltonian matrix on the basis of L2 functions turns
out to be much more complicated compared to the case of
the multichannel problem. Here it is impossible to divide
the discretized spectrum into separate branches and determine
the S matrix. Nevertheless, densifying the spectrum set by the
union of the discretized spectra makes it possible in many
cases to find a position and a total width of the three-body
resonance. We will demonstrate the applicability of such an
approach using the three-cluster α + 2N model for the six-
nucleon nuclei as an example.

A. Spectral densities for the three-body problem

The spectral shift function formalism on which our ap-
proach is based in the two-body case cannot be directly
generalized to the three-body problem. In the two-body scat-
tering problem (single- or multichannel), one deals with two
operators—the total and asymptotic Hamiltonians—and their

3Because we have modified the interaction these resonance param-
eters differ from those found in Ref. [28].
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difference is the perturbation that determines the scattering.
The scattering problem for a three-body system is generally
defined by five Hamiltonians: The total Hamiltonian H , three
channel Hamiltonians Hi, each of which includes the inter-
action of only one pair of particles, and the three-body free
Hamiltonian H0 (the kinetic energy operator). The differences
between the total and any of four of the above asymptotic
Hamiltonians, in contrast to the two-body problem, are not
operators with a finite trace. However, this does not mean that
spectral densities could not be defined here.

In Ref. [23], the authors shows that one can define the
spectral function +(E ) for the third virial coefficient, which
is related to the trace of the difference of the resolvents for the
above five Hamiltonians (A7). The main result of the work
[23] is the direct relation between the function +(E ) and the
three-body S matrix (for details, see the Appendix). Therefore,
we can expect that, in the presence of a resonance, the function
+(E ) contains the Breit-Wigner term.

As the result of the continuum discretization procedure,
one has finite matrices of the operators. So, as in the two-body
case the individual spectral densities might be constructed
for the discretized spectra of all five Hamiltonians. Using the
analogy with the difference of individual spectral densities
(9), one can write the three-body spectral function �3(E ) ≡
+(E )/π as follows [see Eq. (A11)]:

�3(E ) = ρ(E ) − ρ0(E ) −
3∑

i=1

[ρi(E ) − ρ0(E )], (28)

where ρ(E ), ρi(E ) (i = 0, 1, 2, 3) are the individual spectral
densities related to the Hamiltonians H and Hi(i = 0, 1, 2, 3)
respectively.

Each of these densities does not exist for the original con-
tinuous spectrum, but their difference, at least in the form (28),
should have a limit as the basis dimension increases. Thus, the
formalism [23] gives some mathematical justification for the
analysis of spectral densities in the three-body case.

It should be noted that the above discussion is applicable
only in the case without the long-range Coulomb interactions.
When the long-range Coulomb interactions are included the
problem becomes much more complicated from the mathe-
matical point of view. Below we will assume that in the L2

representation one can consider finite matrices and construct
spectral densities for the case with charged particles as well.
But the question of the existence of the limit of the differences,
e.g., in the form (28), remains open here.

One can take a further step and construct the integrated
spectral densities for each Hamiltonian similarly to the two-
body case. It should be emphasized that the resonance
behavior should manifest itself only in the integrated spectral
density X (E ) of the total Hamiltonian H , because the possible
resonances refer to H only. Therefore, we expect that X (E )
can be approximated by the same Eq. (26), but the background
function here should have a more complicated form.

In the examples considered below, we use the differences
between the spectral and integrated densities for the total
Hamiltonian and only one of the asymptotic Hamiltonians.
These density differences do not correspond to any spectral
functions for a true continuum above the three-body decay

FIG. 11. Jacobi coordinates r and R and respective angular mo-
menta λ and l for the α + 2N system.

threshold. However, the analysis of such differences makes it
possible to reduce the effect of background functions when
fitting the resonance term.

Below we check the above assumptions on the example of
the three-cluster α + 2N model for the six-nucleon nuclei.

B. Three-cluster model for the αNN system and the basis

The three-cluster model was successfully used in the1980s
and 1990s to describe the lowest states of nuclei 6He, 6Li,
and 6Be [30–32]. Here we use the version of the three-cluster
model from [31] defined by the Hamiltonian

H3 = T + VN2α + VN3α + VNN . (29)

Here T is the kinetic energy, VNiα is the potential of the in-
teraction of the ith nucleon with the α particle (the quasilocal
potential with the even-odd splitting and with the forbidden
0S state is used), and VNN is the Reid soft core NN poten-
tial. In the case when one or both nucleons are protons, the
required long-range Coulomb interactions are included into
potentials. The explicit form and parameters of the potentials
are given in [31]. In this paper, we use the above model just
as an example of a three-body system for finding resonance
parameters and, therefore, do not discuss its physical validity
and its advantages and disadvantages. We only note that the
version [31] gives some underbinding of the ground states of
the nuclei 6He and 6Li.

The notation for the Jacobi coordinates and the orbital an-
gular momenta for the α + 2N system is shown in Fig. 11: r is
the relative coordinate of two nucleons, while R is the Jacobi
coordinate of the α particle relative to the center of mass of
the nucleon pair, and the orbital angular momenta λ and l
correspond to the Jacobi coordinates r and R, respectively.

The three-body system wave function �JMJ (r, R) with the
total angular momentum J and its projection MJ is expanded
in a series of the basis functions �

γ
i j :

�JMJ (r, R) =
∑

γ

Nr∑
i=1

NR∑
j=1

Cγ
i j�

γ
i j (r, R), (30)
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FIG. 12. The integrated spectral density for the αpp asymp-
totic Hamiltonian found with different unions: Mr = MR = 1 (filled
circles), Mr = MR = 2 (filled triangles), Mr = MR = 5 (dashed
curve), Mr = MR = 10 (dash-dotted curve), Mr = MR = 25 (dash-
dot-dotted curve), and Mr = MR = 50 (solid curve).

where Cγ
i j are the unknown coefficients and the composite

index γ = {λ, l, L, S} is the set of quantum numbers of the
basis function: λ, l , L = l + λ, and S is the total spin of two
nucleons.

The six-dimensional basis functions �
γ
i j are constructed

from the product of the Gaussian functions (11) and the spin-
angular factors W JMJ

γ :

�
γ
i j (r, R) = ϕλ

(
α

γ
i , r

)
ϕl

(
β

γ
j , R

)
W JMJ

γ (r̂, R̂), (31)

W JMJ
γ (r̂, R̂) = {[Yλ(r̂) × Yl (R̂)]L

× [χ1/2(N2) × χ1/2(N3)]S}JMJ , (32)

where χ1/2(Ni ) is the spin function of the ith nucleon. The
total isospin I is equal to the isospin of the pair of nucleons
and is therefore uniquely determined by the values of λ and S.

C. Union of discretized spectra in the three-body problem

To construct the union of spectra in the three-body case,
one has more opportunities than in the two-body problem. In
particular, the basis functions from Eq. (31) have two indepen-
dent sets of the parameters α

γ

i and β
γ

j , and for each of them
one can employ the procedure with a shift of the index given
by Eq. (14). So, one can introduce two set of shifts {ar

m}Mr
m=1

and {aR
m}MR

m=1. Then the full number of bases employed to
construct the union is equal to M = Mr × MR. Combining all
M spectra obtained using these bases, one can try to construct
the spectral density and integrated density using Eq. (23). The
result of such a union is shown in Fig. 12, where the inte-
grated densities X (E ) calculated with different values of M
for the asymptotic αpp Hamiltonian for the JPI = 0+1 state
are shown. The asymptotic Hamiltonian includes the kinetic
energy operator and three Coulomb interactions between three

FIG. 13. The integrated spectral density for the αpp asymp-
totic Hamiltonian found with different values of MR and Mr = 1:
MR = 1 (filled circles), MR = 5 (dash-dotted curve), and MR = 50
(solid curve). The integrated density for Mr = MR = 50 is shown as
the dashed curve.

charged particles. Here we use the three-body Gaussian basis
with four partial components [see Eq. (35)] and the symmetric
union of the spectra when Mr = MR.

As one can see from Fig. 12, with increasing the union
multiplicity M, the integrated density X (E ) converges. How-
ever, the convergence result depends on the union method. In
Fig. 13, we compare the above “converged” result for X (E )
with the results corresponding the union of the spectra ob-
tained by changing only the R dependence of basis functions,
i.e., with Mr = 1.

Here the “converged” integrated density XMr=1(E ) (shown
by the solid curve) differs from the result for the symmetric
(Mr = MR) densification (shown by the dashed curve). Also
one can see that the curve XMr=1(E ) consists of several smooth
segments. In fact, such an integrated density corresponds
to the coupled-channels reduction of the initial three-body
spectrum. With such a reduction, the continuous three-body
spectrum is replaced by a multichannel spectrum with non-
physical thresholds determined by the discretized spectrum of
the pp subsystem. Such an approximation can also be used for
practical calculations, but numerical solutions may have addi-
tional singularities due to the presence of these nonphysical
thresholds [33].

Thus, in the three-body problem, densifying the spectrum
set involving a variation of the basis parameters over both
variables allows one to decrease nonphysical effects caused
by a continuum discretization.

D. The state 3+0 of nucleus 6Li and D3 phase shift
in α-d scattering

The three-cluster α + n + p model, which describes the
lowest states of the 6Li nucleus with isospin I = 0, gives
an example of a three-particle system in which there is a
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TABLE II. The quantum numbers and the dimensions of the
basis components for a calculation of the 3+0 state of 6Li.

γ = λlLS Nr × Nρ

0221 15 × 20
2021 15 × 20
2221 15 × 20
2231 15 × 20
2241 15 × 20
2421 8 × 8
4221 8 × 8
4041 8 × 8

bound state (deuteron) of one pair of particles (nucleons). The
continuous spectrum of this system starts from Ed = −2.224
MeV and up to the three-particle breakup threshold E = 0
is doubly degenerate, like the spectrum of the two-channel
problem.

The first excited state JPI = 3+0 of the 6Li nucleus with
an energy −1.514 MeV is below the three-particle threshold
and has a width of 24 keV. This state is actually a two-particle
α-d resonance (the contribution of the noncluster components
does not exceed 1%) and manifests itself in the D3 phase
shift of the α-d scattering. Although the continuous spectrum
at E < 0 is doubly degenerate due to the coupling of the
channels D3 and G3, the contribution of the states with λ = 4
at E < 0 is very small (≈0.5%). Therefore, this coupling can
be neglected and the spectrum in this region can be considered
as simple.

In the region of the simple spectrum, one can calculate the
phase shifts and the resonance parameters from the difference
of the integrated densities X (E ) and X0(E ) for the total and
asymptotic Hamiltonians in accordance with Eq. (7), which
was used to analyze the discretized spectra of the two-body
systems [19]. The asymptotic Hamiltonian includes the total
kinetic energy T , the np interaction, and the Coulomb inter-
action between the proton and the α particle:

H3
asy = T + V Coul

pα + Vnp. (33)

The spectra of the Hamiltonians H3 and H3
asy were cal-

culated using the Gaussian basis with the parameters αi, β j

specified on the Chebyshev grid (13) with t = 2.6. The basis
includes eight spin-orbit configurations (channels), the quan-
tum numbers and the corresponding dimensions of which are
listed in Table II. The ground state of lithium 1+0 in the model
[31] has an underbinding by 0.43 MeV. To get a more realistic
description of the resonance, we increased the Nα interaction
coupling constants by 2.1% so that the calculated binding
energy of the 6Li ground state 1+0 matches the experimental
value.

To reconstruct the functions X (E ) and X0(E ) on a dense
set of points, we used the union of MR spectra obtained by
changing the Gaussian parameters β j of the basis functions
ϕl (β j, R) by the index shift. The resulting D3 phase shift of
the α-d scattering is shown in Fig. 14. The phase shift analysis
data are also presented in this figure.

FIG. 14. The D3 phase shift of the α-d scattering found from the
difference of the integrated spectral densities X (E ) and X0(E ) for the
α + 2N model by using the union with MR = 10 (dashed curve) and
MR = 30 (solid curve). Dots show the phase shift analysis data [34].

The energy derivative of the above D3 phase shift is shown
in Fig. 15. Fitting of this dependence according to the Breit-
Wigner form results in the following values for the 6Li(3+0)
resonance parameters:

ER = −1.528 MeV, � = 22 keV, (34)

which are in a reasonable agreement with the experimental
values −1.514 MeV and 24 keV, respectively.

It should be noted that, although in this case the continuous
spectrum in the region E < 0 can be considered as simple,
the existence of the spectral shift function ξ (E ) related to

FIG. 15. The numerical derivative of the D3 phase shift of
the α-d scattering found from the union with MR = 10 (triangles)
and MR = 30 (circles). The solid curve shows the Breit-Wigner
parametrization.
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the S matrix by the Birman-Krein formula (2) has not been
mathematically proved. As already mentioned, in contrast to
the multichannel problem, the perturbation in the three-body
scattering problem, i.e., the difference of the operators H3

and H3
asy, does not have a finite trace. Nevertheless, the above

results show that the method of calculating the phase shift
through the difference in the integrated densities of the dis-
cretized spectra works in the region of the simple spectrum
for the three-body problem as well.

E. Ground state of 6Be (0+1)

The ground state of the nucleus 6Be (0+1) is unstable. Its
experimental energy is equal to 1.371 MeV relative to the
α-p-p threshold and its width is equal to 92 keV. One of
the most detailed theoretical studies for this state within the
three-body approach is presented in Ref. [2] based on solving
coupled equations in a hyperspherical representation.

Treatment of the isovector states within the framework
of the three-cluster model gives an example of a three-body
system without pairwise bound states, where the infinitely
degenerated continuous spectrum starts from the three-body
breakup threshold E = 0. Therefore, in the calculations, a
symmetric densifying of the spectrum set is used. In partic-
ular, the union of M = Mr × MR spectra is constructed by
changing basis parameters corresponding to both variables r
and R.

The calculations are performed with taking into account
four spin-orbit basis configurations with the quantum numbers

γ = {λ, l, L, S} = {0000}, {1111}, {2200}, {3311}, (35)

with the same dimensions N = Nr × Nρ , Nr = Nρ , so that the
total basis dimension is equal N = 4 × N2

r . The Nα interac-
tion was increased by ≈3% so that the calculated position of
the resonance ER would nearly match the experimental value.

Here, as the asymptotic Hamiltonian we use the following
one with switched off nuclear part of the interaction:

H3
asy = T + V Coul

p1α
+ V Coul

p2α
+ V Coul

p1 p2
, (36)

where p1 and p2 denote protons.
Figure 16 shows the integrated densities X0(E ) and X (E )

for the asymptotic and total Hamiltonians, respectively, for
the system α-p-p (0+1), which are obtained from M = 9000
diagonalizations (the symmetric densification in r and R) on
the above four-component basis. The presence of a resonance
at E ≈ 1.38 MeV can be seen from the behavior of the total
integrated density X (E ).

The difference of the integrated densities for the total
and asymptotic Hamiltonians multiplied by π is shown in
Fig. 17. It should be emphasized that this difference no longer
corresponds to any phase shift. However it demonstrates char-
acteristic resonance behavior near the assumed resonance
energy which is quite similar to that seen in the two-body case.

Therefore, below we approximate both the individual func-
tion X (E ) and the difference X (E ) − X0(E ) in accordance
with Eqs. (26) and (5). The results of such fitting in the reso-
nance region 1.25 < E < 1.5 MeV are presented in Table III,
as well as in Fig. 18. The errors indicated in the parentheses
are related to the fitting procedure itself.

FIG. 16. The integrated densities X (E ) and X0(E ) for the asymp-
totic and total Hamiltonians of the system α-p-p (0+1) found in the
Gaussian bases from Eq. (35) by using the symmetric union with
Mr × MR = 30 × 30. The inset shows a small energy interval near
the resonance position.

From Fig. 18 it is clear that the values of ER and � have
some deviations from their average values when the dimen-
sion of the basis changes in the region where convergence
has already been achieved. This scatter is taken into account
when assessing the final errors of the results. In particular,
the parameter values are found by averaging the results for Nr

from 16 to 20, and the corresponding mean absolute errors are
taken.

Finally, both calculations [with X (E ) and with the dif-
ference X (E ) − X0(E )] give fairly close results for the
resonance parameters. The data with estimated errors are the

FIG. 17. The difference of integrated densities X (E ) − X0(E ) for
the asymptotic and total Hamiltonians of the system α-p-p (0+1)
found in the Gaussian bases by using the union of the Mr × MR =
30 × 30 spectra. Solid blue curve: Calculation with fixed �Ni = 1;
dashed red curve: Calculation with fixed �Ei = 0.05 MeV.

014002-12



UNION OF THE DISCRETIZED SPECTRA FOR … PHYSICAL REVIEW C 109, 014002 (2024)

TABLE III. The energies and widths of the ground state 6Be
(in MeV) found using the Gaussian bases with different dimen-
sions Nr × NR and M = 30 × 30 by fitting the functions X (E ) and
X (E ) − X0(E ).

X (E ) X (E ) − X0(E )

Nr = NR ER � ER �

9 1.262(1) 0.144(1) 1.259(1) 0.146(1)
10 1.261(1) 0.111(1) 1.258(1) 0.111(1)
11 1.41356(7) 0.0800(2) 1.41364(8) 0.0802(3)
12 1.39698(8) 0.0799(1) 1.39682(9) 0.0796(2)
13 1.38911(7) 0.0819(1) 1.38893(7) 0.0812(1)
14 1.38274(7) 0.0781(1) 1.38273(9) 0.0777(1)
15 1.38132(6) 0.0796(1) 1.38138(9) 0.0795(1)
16 1.38088(6) 0.0798(1) 1.38074(8) 0.0800(1)
17 1.37773(6) 0.0795(1) 1.37786(8) 0.0791(1)
18 1.37951(6) 0.0794(1) 1.37940(8) 0.0793(1)
19 1.37807(7) 0.0801(1) 1.37819(8) 0.0799(1)
20 1.37865(7) 0.0807(1) 1.37827(9) 0.0805(1)

following:

ER = 1.379 ± 0.001 MeV, � = 79.8 ± 0.5 keV, (37)

which are in reasonable agreement with the experimental
values.

Figure 19 shows the quality of the fit of the function
X (E ) for the maximal basis dimension Nr = NR = 20 in the
resonance region and the background function Xbg(E ). The
fitting function is indistinguishable from the numerically re-
constructed X (E ).

Alternatively, having dense spectral sets, it is possible to
reconstruct the three-body analog for the continuum level
density �(E ) as the difference between the spectral densities

FIG. 18. The values of the resonance positions ER (a) and widths
� (b) for the the system α-p-p (0+1) found from fitting the func-
tions X (E ) (solid curve with filled squares) and X (E ) − X0(E )
(dash-dotted curve with empty circles) for different basis dimensions
Nr = NR.

FIG. 19. The integrated density X (E ) for 6Be(0+1) in the res-
onance region found in the Gaussian bases with dimensions Nr =
NR = 20 by using the union of M = 30 × 30 spectra (blue dots),
the fitting function (red dashed curve), and the background function
Xbg(E ) (green dash-dotted curve).

ρ(E ) and ρ0(E ). In contrast with the two-body case this dif-
ference has no finite limit with increasing basis dimension.
However, the corresponding subtraction allows one to de-
crease the influence of the background. Figure 20 shows such
a function in the resonance region calculated using pockets of
the same energy width of �Ei = 0.02 MeV. The Breit–Wigner
parametrization of such a density results in close values of the
resonance parameters: ER = 1.378(1) MeV, � = 81(3) keV.
Here the errors are given by the fitting procedure. It can be

FIG. 20. The difference of the spectral densities ρ(E ) − ρ0(E )
for the α-p-p (0+1) system near the resonance position found in the
Gaussian bases with dimensions Nr = NR = 18 by using the union of
the 30 × 30 spectra (dots) and its fit by the Breit-Wigner form (solid
curve).
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concluded that the uncertainties in the results when fitting the
X functions are smaller than those for fitting the difference of
the spectral densities ρ.

Thus, having a sufficiently dense ordered set of the eigen-
values, which is a union of many discretized spectra of the
matrix Hamiltonian, obtained on different Gaussian bases of
the same dimensions, we were able to find the position and
width of the three-particle resonance corresponding to the
6Be(0+1) state quite reliably. Three methods can be used for
this purpose: a parametrization of the integrated density X (E )
for the total Hamiltonian, a parametrization of the difference
of the integrated densities X (E ) − X0(E ) for the total and
asymptotic Hamiltonians, and the Breit-Wigner parametriza-
tion of the difference of the spectral densities ρ(E ) − ρ0(E ).
All three methods give close (within the margins of error)
results. However, a parametrization of only one total inte-
grated density X (E ) seems to be more preferable, since it
does not require additional calculations with the asymptotic
Hamiltonian and auxiliary interpolation procedures for the
processing of spectral sets.

V. CONCLUSION

In this paper, we have introduced a new technique for
finding the parameters of the resonances in multichannel and
three-body systems from discretized continuous spectra. The
method is based on two ideas: (i) recovering the spectral and
integrated densities of the states and (ii) combining many
discretized spectra with the same dimension, which allows
one to get a much denser set of energy values covering the
original continuous spectrum.

To determine the cumulative (total) decay width in the
proposed approach, there is no need to consider in detail
various types of boundary conditions. This width can be
found directly from the analysis of the total discretized spec-
trum without dividing it into separate branches corresponding
to different asymptotic channels. This simplifies drastically
the practical solution of the problem. Also one can simul-
taneously consider the binary and three-body decay modes.
Consequently, one can use only the Gaussian basis related to
the binary channels to solve the problem rather than introduc-
ing additionally the hyperspherical basis to study a three-body
decay mode.

Similarly to the complex scaling method, in the suggested
approach one employs the same numerical scheme as for the
bound states, i.e., a solution of the generalized eigenvalue
problem for the Hamiltonian matrix; however, there is no need
to use complex energies or momenta. In particular, to find the
resonance parameters in the three-body case, one can use the
same Gaussian basis of a rather moderate dimension as for
calculating bound states. It is very important that the proposed
approach avoids difficulties associated with the long-range
Coulomb interactions and nonlocal interactions. This opens
up the possibility of solving problems with three charged par-
ticles, such as two-proton radioactivity, using realistic models
of the nucleon-nucleus interactions. We demonstrated the
effectiveness of the method by calculating the width of the
6Be ground state.

It should be emphasized that the proposed approach is
applicable not only to the particular case considered here
when the discretized spectra obtained in the Gaussian basis
are used for analysis. The formalism based on the spectral
and integrated densities of states can also be useful in other
approaches employing the L2 discretization of the contin-
uum. In particular, a rather similar approach was introduced
in chemical physics [7] in the framework of finite volume
calculations.

In our future studies, we plan to consider in more detail
questions related to the accurate definition of the spectral
function (z) for the general three-body problem and the
meaning of the individual integrated densities of states there.
This may also open up the possibility of treating the three-
body scattering problems.
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APPENDIX: SPECTRAL FUNCTION
FOR A THREE-BODY PROBLEM

In Ref. [23], the authors considered the second and third
virial coefficients and the spectral expansions for them. The
spectral expansion for the second virial coefficient is related
to the following spectral function:

ω(z) = Tr[ImG(z) − ImG0(z)], (A1)

where G(z) = [H − z]−1 and G0(z) = [H0 − z]−1 are the re-
solvents4 for the total and asymptotic two-body Hamiltonians
respectively, and z is a complex energy. The imaginary parts
of the above operators are defined by the relation

ImG(z) = 1

2i
[G(z) − G(z∗)]. (A2)

It can be shown that at real energies the function ω is just
proportional to the continuum level density (3) (see, e.g.,
[10]):

ω+(E ) = π�(E ), ω+(E ) ≡ lim
ε→0

ω(E + iε). (A3)

It is related to the two-body S-matrix by the equation [23]

ω+(E ) = 1

2i
Tr

[
S(E )† dS(E )

dE

]
. (A4)

Note that in the energy discretized representation the in-
dividual spectral densities ρ(E ) and ρ0(E ) for the total and
asymptotic Hamiltonians can be defined. So, one can write
the following relation [10]:

1

π
Tr[ImG(E + i0) − ImG0(E + i0)] = ρ(E ) − ρ0(E ).

(A5)

4Here we use the same definition for a resolvent as in Ref. [23].
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This results in Eq. (9) for the continuum level density and the
function ω:

ω+(E ) = π�(E ) = π [ρ(E ) − ρ0(E )]. (A6)

For the three-body problem and the third virial coefficient,
one can define [23] the spectral function via a more compli-
cated difference operator:

(z) = Tr ImGC (z), +(E ) ≡ lim
ε→0

(E + iε). (A7)

Here the operator difference is introduced:

GC (z) = G(z) − G0(z) −
3∑

i=1

[Gi(z) − G0(z)], (A8)

where G(z) ≡ [H − z]−1 and Gi(z) ≡ [Hi − z]−1(i =
0, 1, 2, 3) are the resolvents of five Hamiltonians: The
total Hamiltonian H and four asymptotic Hamiltonians
Hi(i = 0, 1, 2, 3). The imaginary part of GC in Eq. (A7) is
defined similarly to Eq. (A2). The important property of the
operator Im GC (z) is that its trace is finite.

The spectral function (A7) is related directly to
the three-body S matrix but in a more complicated

way:

+(E ) = 1

2i
Tr

[(
S† ∂S

∂E

)
C

− A(E )

]
+ 1

2i
TrĀ(E ), (A9)

where the following difference is introduced which includes
the total S matrix and matrices Si corresponding to three
asymptotic (channel) Hamiltonians Hi:(

S† ∂S

∂E

)
C

≡ S† ∂S

∂E
−

3∑
i=1

S†
i

∂Si

∂E
, (A10)

and A(E ) and Ā(E ) are the specific operators related to the
channel Hamiltonians as well.

In the energy discretized representation, the individual
spectral densities for each of five Hamiltonians can be defined.
Similarly to Eqs. (A5) and (A6), one can write the following
equation for the spectral function:

+(E ) = π

[
ρ(E ) − ρ0(E ) −

3∑
i=1

[ρi(E ) − ρ0(E )]

]
.

(A11)
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