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Possibility of generating the 3
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H nucleus in the quark-delocalization color-screening model
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We probe the existence of the 3
�c H where the N�c potentials are derived from the quark-delocalization color-

screening model (QDCSM). The N�c system is studied and the N�c scattering length as well so the effective
ranges are obtained in the QDCSM. We construct effective Gaussian-type N�c potentials which reproduce the
N�c scattering data given by the QDCSM. By solving the NN�c three-body Schrödinger equation with the
Gaussian expansion method, we calculate the energies of the 3

�c H with isospin I = 0, JP = 1/2+ and I = 0,
JP = 3/2+ under different color screening parameter μ. The JP = 1/2+ and JP = 3/2+ states are both bound
when the color screening parameter μ is set to 1.0 fm−2 or 1.2 fm−2, where the JP = 1/2+ state is bound by
0.08–0.85 MeV and the JP = 3/2+ state is bound by 0.15–1.31 MeV with respect to the deuteron-�c threshold.
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I. INTRODUCTION

The low-energy hadronic system and hadron-hadron in-
teractions are difficult to study due to the nonperturbative
nature of quantum chromodynamics (QCD). In order to un-
derstand the hadron-hadron interactions and exotic hadronic
states, various sophisticated models have been applied. The
nucleon-nucleon (NN), hyperon-nucleon (Y N), and hyperon-
hyperon (YY ) interactions have been well constructed by
some approaches such as the one-boson-exchange (OBE)
model [1–3], chiral effective theory [4], chiral quark model
[5–7], and quark-delocalization color-screening model (QD-
CSM) [8–10]. Recently, the hadron-hadron interactions were
extended to the heavy flavor systems. For instance, in
Refs. [11,12], the �cD̄ bound states are found with the chi-
ral quark model. As for the charmonium-nucleon (cc̄ − N)
interactions, since they have no valence quarks in common,
the single meson exchange is suppressed and the single gluon
exchange is prohibited [13]. Alternatively, the multigluon
exchange interactions could be possible as discussed in
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Refs. [14–17] and the cc̄ − N interaction is found to be at-
tractive.

The �cN interaction and the possible �cN bound state, in
which the �c is composed of one up quark, one down quark,
and one charm quark, have been studied in several models.
With the chiral constituent quark mode, the S-wave �cN
interaction is investigated in Ref. [18] and they find a JP = 2+
candidate of the π�cN three body system. The attractive force
between �c and N is also found in Ref. [19] within the the one
meson exchange model and the quark cluster model, where
a bound �cN state with 1 MeV binding energy is obtained.
However, the HAL QCD collaboration [20] obtained a weakly
attractive S-wave �cN interaction based on unphysical quark
masses corresponding to pion masses of mπ = 410–700 MeV
and no �cN molecular state is confirmed. Recently, an ex-
trapolation of the HAL QCD results to the physical pion mass
with the chiral effective filed theory (EFT) [21] was presented
[22,23]. It gives that the �cN interaction at the physical point
is slightly stronger than for that at the large pion masses but
still less attractive than the phenomenological predictions for
the �cN interaction mentioned above [18,19]. As a summary,
the existence of the �cN bound state is unclear and the theo-
retical study still remains to be continued [24].

Due to the short lifetime of �c, it is difficult to directly
study the �cN interaction from the nuclear scattering. Thus,
similar to the hypernuclear physics, one can polish the Y N
and YY interactions from the spectra data of the light hyper-
nuclei instead of the scattering data. For example, in Ref. [25],
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the two different Y N spin-orbit interactions derived from the
quark model and OBE model give different 5/2+–3/2+ en-
ergy splitting in 13

� C or the 3/2+–1/2+ energy splitting in 9
�Be.

And the observed values [26–28] may suggest which model
of the Y N spin-orbit interaction is favored [29,30]. Therefore,
in order to further study the �cN interaction, it is a natural
consideration to extend our research from the hypernuclei to
the charmed hypernuclei.

In experiment, the first charmed hypernuclei is claimed to
be found in Ref. [31]. The experimental search of the charmed
and bottom hypernuclei was also performed at the ARES
facility [32]. Several factories including the τ charm factory
[33] and the kaon factory (such as the Japan Hadron Facility)
may have potential to generate the charmed hypernuclei. In
the future, several facilities such as GSI-FAIR, J-PARC [34],
or HIAF may be available to check whether the charmed
hypernuclei exist or not.

In fact, the theoretical study of the �c hypernuclei
dates back to the mid-1970s [24,35–41]. Recently, in
Ref. [42], with the one meson exchange model and the
quark cluster model, they found a NN�c bound state.
Soon after that, Garcilazo et al. applied the �cN in-
teraction derived from the chiral quark model to the
JP = 3/2+ charmed hypertriton and obtained a bound
state with binding energy around 0.140–0.715 MeV.
Recently, the lattice QCD calculation [20] found that only the
A � 11 charmed hypernculei can be bound with a few MeVs
binding energy.

As we know, the forces between atoms (molecular force)
are qualitative and similarly between the nucleons. The
quark-delocalization color-screening model (QDCSM), which
models the molecular force, was developed by Wang et al. in
1992 [8] and has been extended to various baryon-baryon in-
teractions and scattering phase shifts [9,10] in the framework
of the resonating group method (RGM) [43]. In QDCSM,
quarks confined in one baryon are allowed to delocalize to
another baryon. The delocalization parameter is determined
by the dynamics of the interacting quark system. Besides, the

color-screening confinement interaction is used when the two
quarks are in different baryons. This gives an extra parameter
μ which is normally determined by the mass of the two- body
hadron-hadron system.

With QDCSM, co-authored by two of the present authors
[44], an attractive �cN interaction with a repulsive core was
obtained and no �cN bound state was found. But no charmed
hypertriton was investigated. Thus in this work, we investigate
the possibility of the existence of the charmed hypertriton.
With the effective �cN interaction derived from the QDCSM,
we calculate the NN�c three-body system. In order to solve
the three-body Schrödinger equation, we apply the Gaussian
expansion method (GEM) [45].

The paper is organized as follows. In Sec. II, we introduce
the effective �cN interaction obtained from the QDCSM. The
detail of GEM is explained in Sec. III. After explaining the
method employed, we show the results and the discussion in
Sec. IV. Summary is at the end.

II. QUARK-DELOCALIZATION COLOR-SCREENING
MODEL AND N�c POTENTIAL

In this section, we introduce the QDCSM and its applica-
tion in the �cN system. In order to describe the �cN system,
we use the chiral constituent quark model, and the Hamilto-
nian of the six quarks is

H =
6∑

i=1

(
mi + p2

i

2mi

)
− Tc

+
∑
i< j

[V G(ri j ) + V χ (ri j ) + V C (ri j )], (1)

where i ( j) = 1–6 is the label of the six quarks composed of
the two baryons. The first term means the sum of the masses
and kinetic energies of all the quarks. Tc is the kinetic energy
of the center of mass. V C , V G, and V χ indicate the confining
potential, gluon-exchange potential, and meson-exchange po-
tential, where χ denotes the π , K , or η meson, respectively.
The forms of V G and V χ are given as follows:

V G(ri j ) = αsi j

4
λi · λ j

[
1

ri j
− 3

4mimjr3
i j

Si j − π

2

(
1

m2
i

+ 1

m2
j

+ 4σi · σ j

3mimj

)
δ(ri j )

]
,

V χ (ri j ) = αch

3

�2

�2 − m2
χ

mχ

{[
Y (mχ ri j ) − �3

m3
χ

Y (�ri j )

]
σi · σ j +

[
H (mχ ri j ) − �3

m3
χ

H (�ri j )

]
Si j

}
Fi · F j, (2)

where λi and Fi are the color Gell-Mann matrices and
SU(3) flavor matrices, respectively. The H (x) and Y (x) are
the standard Yukawa functions [5]. The Si j is the tensor
operator:

Si j = (σi · ri j )(σ j · ri j )

r2
i j

− 1

3
σi · σ j . (3)

For the confining potential, V C , the color screening confining
potential is used when the two quarks are in different baryons:

V C (ri j ) = −acλi · λ j[ f (ri j ) + V0],

f (ri j ) =
⎧⎨
⎩

r2
i j i, j are in the same baryon orbit,

1−e
−μr2

i j

μ
i, j are in different baryon orbits.

(4)
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TABLE I. The channels coupled to the N�c states.

States Channels

JP = 0+ N�c(1S0), N�c(1S0), N�∗
c (5D0 )

JP = 1+ N�c(3S1), N�c(3S1), N�∗
c (3S1),

N�c(3D1), N�c(3D1), N�∗
c (3D1), N�∗

c (5D1)

It should be noted that, in order to determine the color
screening parameter μ (fm−2), we need the total mass of
the two baryon system as an input. In the NN system, the
parameter μ = 1.0 fm−2 is used to fit the deuteron mass or
deuteron binding energy. For the N�c system, up to now, there
is no corresponding experimental measurement to constraint
the parameter μ. From the theoretical side, μ is the parameter
of the confining potential which is flavor independent. As the
result, the value μ = 1.0 fm−2 would also work or be at least
a benchmark for the N�c system. Thus in this work, we vary
μ with three different values, 0.8, 1.0, and 1.2 fm−2. The other
parameters are determined with a global fitting to the masses
of light flavor mesons and charmed baryons �c, �c, and �∗

c
[44,46].

Normally, the usual quark cluster model gives the single
quark wave function as follows:

φα (Si ) =
(

1

πb2

)3/4

e− 1
2b2 (rα−Si/2)2

,

φβ (−Si ) =
(

1

πb2

)3/4

e− 1
2b2 (rβ+Si/2)2

, (5)

where rα(β ) is the coordinate of the single quark to the center
of the baryon and Si is the generating coordinate between
the two baryons. In QDCSM, the delocalized quark wave
functions are used:

ψα (Si, ε) = (φα (Si ) + εφα (−Si ))/N (ε),

ψβ (−Si, ε) = (φβ (−Si ) + εφβ (Si ))/N (ε),

N (ε) =
√

1 + ε2 + 2εe−S2
i /4b2

, (6)

where ε(Si ) is determined by the dynamics of the quark
system.

In Ref. [44], the JP = 0+ and JP = 1+ N�c scattering
phase shifts and the potentials have been studied in QD-
CSM with the well-developed RGM. The coupled channel
effects are considered in the N�c system. In total, three/seven
channels are included in the JP = 0+/JP = 1+ N�c channel
(shown in Table I).

In this work, we diagonalize the nondiagonal S matrix and
normalize the coupled channel effects into the single channel.
We normalize the effects of all three channels into N�c(1S0)
in the JP = 0+ case. Similarly in the JP = 1+ state, the ef-
fects of all seven channels are normalized into the N�c(3S1)
channel. Thus, the �c (�∗

c ) and the D-wave components are
normalized to the S-wave N�c potential.

Then, we construct the effective S-wave �cN interactions
which reproduce the �cN scattering length (a) and the effec-

TABLE II. The scattering length and the effective range of JP =
0+ and JP = 1+ N�c systems. The color screen potential parameter
μ is in unit of fm−2.

(JP, μ) Scattering length (fm) Effective range (fm)

0+, 0.8 −1.57 5.06

0+, 1.0 −4.88 3.62

0+, 1.2 −2.58 3.65

1+, 0.8 −1.92 3.70

1+, 1.0 −7.11 3.15

1+, 1.2 −2.88 3.50

tive range r0 defined as follows:

k cot δ = 1

a
+ 1

2
r0k2 + . . . , (7)

where δ is the scattering phase shift and k is the wave number.
Both the scattering length and the effective range are derived
within the QDCSM. The values are shown in Table II for three
different values, i.e., 0.8, 1.0, and 1.2 fm−2, of μ.

As we can tell from the scattering length, the μ = 1.0 fm−2

case has the strongest attractive force among the three cases
of μ. In order to investigate this, we calculate the scattering
length of the N�c JP = 0+ and JP = 1+ potentials in the
single channel case, which means only the N�c(1S0) and
N�c(3S1) channels are included.

As shown in Table III, all of the potentials in the single
channel case are much less attractive than the coupled channel
cases. Besides, both JP = 0+ and JP = 1+ N�c potentials
become stronger as the μ grows from 0.8 to 1.2 fm−2. This
is reasonable since the μ governs the color screen confining
potential which is lower as the μ increases. So it induces the
more attractive N�c potentials. Then, due to the increase of
the μ, the N and �c are closer and thus quarks’ spin-spin
potential become stronger, which results in the increase of
the difference between the JP = 0+ and the JP = 1+ poten-
tials. So in Table III, the difference between the JP = 0+
and JP = 1+ scattering length (absolute value) grows from
0.06 fm to 0.2 fm as μ increases from 0.8 to 1.2 fm−2.

Therefore, in the QDCSM, the coupled channel effect in
the N�c potentials is significant. Due to the inclusion of the

TABLE III. The scattering length of the single channel JP = 0+

and JP = 1+ N�c systems. The color screen potential parameter μ

is in unit of fm−2.

(JP, μ) Scattering length (fm)

0+, 0.8 −0.16

0+, 1.0 −0.53

0+, 1.2 −1.13

1+, 0.8 −0.22

1+, 1.0 −0.68

1+, 1.2 −1.33
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TABLE IV. Fitting parameters of Veff (r) defined in Eq. (8) for the
N�c effective potentials. The color screen potential parameter μ is
in units of fm−2. The V1 and V2 are in units of MeV. b1 and b2 are in
units of fm.

1S0
3S1

μ 0.8 1.0 1.2 0.8 1.0 1.2
V1 −115.5 −42.0 −223.5 255.0 −216.4 −226.5
b1 1.29 1.58 1.20 1.12 1.30 1.20
V2 160.6 81.3 261.2 292.8 253.3 262.6
b2 1.05 0.91 1.05 1.01 1.12 1.05

coupled channels, the N�c potentials become more attractive
and the patterns of their relations with μ are also changed.

The functional form of the effective N�c interactions are
given by

Veff (r) = V1e−r2/b2
1 + V2e−r2/b2

2 . (8)

The fitting parameters are listed in Table IV. The obtained
effective �cN interactions are shown in Figs. 1 and 2, respec-
tively for the JP = 0+ and JP = 1+ channel.

As for the NN interaction, we apply the AV8’ interaction
which is a modified version of the realistic AV18 NN interac-
tion [47]. The tensor force is included in the AV8’ interaction
and the calculated binding energy of the deuteron is 2.24 MeV.

III. GAUSSIAN EXPANSION METHOD

In order to solve the NN�c three-body Schrödinger equa-
tion, we apply the Gaussian expansion method and set the
three-body wave function as

�JMT Tz

(3
�c

H
) =

2∑
c=1

∑
s,S,L

∑
n1,l1

∑
n2,l2

C(c)
γ A

× {{(
φ

(c)
n1l1

(rc)ψ (c)
n2l2

(Rc))L

× [(
χ1

1/2χ
2
1/2

)
s
χ3

1/2

]
S

}
JM

(
τ 1

1/2τ
2
1/2

)
T Tz

}
, (9)
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FIG. 1. Effective N�c interaction of the 1S0 case.
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FIG. 2. Effective N�c interaction of the 3S1 case.

where the two sets of Jacobian coordinates (labeled as 1 and
2) are shown in Fig. 3. Here, γ denotes {L, s, S, n1, l1, n2, l2}.
χ and τ represent the spin and isospin wave function of the
nucleon or �c, respectively. Note that we omit the isospin
wave function of �c since it is an isospin singlet. The A is
the antisymmetric operator between the two nucleons. The
relative wave functions between the baryons, corresponding
to the two Jacobi coordinates, φn1l1 (r), ψn2l2 (R) are expanded
by using the following Gaussian basis functions, applying the
GEM:

φn1l1 (r) = r�1 e−(r/rn1 )2
Y�1m1 (r̂),

ψn2l2 (R) = R�2 e−(R/Rn2 )2
Y�2m2 (R̂). (10)

The Gaussian variational parameters are chosen to have geo-
metric progression:

rn1 = rminAn1−1
1 ,

(
n1 = 1 − nmax

1

)
,

Rn2 = RminAn2−1
2 ,

(
n2 = 1 − nmax

2

)
. (11)

Then, the eigenenergies and the coefficients Cγ are obtained
by applying the Rayleigh-Ritz variational method.

IV. RESULTS AND DISCUSSIONS

The energy levels of 3
�c

H with I = 0, JP = 1/2+, and JP =
3/2+ states are shown in Fig. 4. The binding energies of 3

�c
H

are given with respect to the N + N + �c three-body break-up
threshold. We calculate the energies of 3

�c
H without or with

the Coulomb force between the �+
c and the nucleon, which

are shown in the left and right columns of Fig. 4. As shown in

FIG. 3. Jacobi coordinates of the NN�c three-body system.
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FIG. 4. The calculated energy levels of 3
�c H. The levels without

and with considering the Coulomb force are shown in the left and
right figures, respectively, for the color screening parameter μ =
0.8, 1.0, 1.2 fm−2. The energies are given with respect to the NN�c

three-body breakup threshold. The d + �c threshold is also shown at
E = −2.24 MeV.

Fig. 4, it is obvious that the binding energies are smaller when
we include the repulsive Coulomb force.

The binding energy for the μ = 1.0 fm−2 case is larger
than the μ = 1.2 fm−2 and μ = 0.8 fm−2 cases. This can be
expected from the N�c scattering length in Table. II, in which
the μ = 1.0 fm−2 case has the largest scattering length for
both 1S0 and 3S1. In the μ = 0.8 fm−2 case, no bound state
is obtained with the Coulomb force. And when we exclude
Coulomb force, a very weakly bound state for the 1/2+ state
is obtained with the �c separation energy B�c = 0.01 MeV.
As for the μ = 1.2 fm−2 case, very weakly bound states with
B�c = 0.08 MeV and 0.15 MeV are obtained, respectively, for
the 1/2+ and 3/2+ states. We find that the energy levels of
JP = 3/2+ state are lower than the JP = 1/2+ state for all
three μ values. To further explore the underlying physics,
we compare the S-wave and D-wave components in the final
3
�c

H and 3
�H (as will be explained later) wave functions in

Table V. The S-wave component (L = 0 and S = 1/2) is also
dominant for the 1/2+ state which is also around 93% (shown
in Table V). Thus, the 1S0 N�c component is nearly excluded
in the 3/2+ state while it has a significant contribution in the
1/2+ state. On the other hand, since the 3S1 N�c interaction
is more attractive than the 1S0 case, the binding energy of the
3/2+ state is larger than that the 1/2+ state.

Besides, the energy splitting between the 1/2+ and 3/2+
states does not change significantly when we include the

TABLE V. The S-wave and D-wave (in parentheses) components
(%) in the 3

�c H wave functions with μ = 1.0 (fm−2) (second column)
and 1.2 (fm−2) (third column). The final column is the S-wave and
D-wave components (%) in the 3

�H (1/2+) wave function (see text).

3
�c H(μ = 1.0) 3

�c H(μ = 1.2) 3
�H

1/2+ 93.47(6.53) 93.87(6.13) 94.23(5.77)
3/2+ 93.44(6.56) 93.83(6.17) –

TABLE VI. The �c separation (B�c ) energy of 3
�c H under dif-

ferent models. The units of energy are in MeV. The μ is in unit
of fm−2.

μ = 1.0 μ = 1.2 Ref. [42] Ref. [48]

B�c (1/2+) 0.85 0.08 18.23 –
B�c (3/2+) 1.31 0.15 18.89 0.14 –0.75
1/2+ − 3/2+ 0.46 0.07 0.66 –

Coulomb force since the Coulomb force does not have a
spin-dependent term. The μ = 1.2 fm−2 case has the smallest
energy splitting which is nearly one order smaller than the
μ = 0.8 fm−2 and 1.0 fm−2 cases. As we discussed in the
last paragraph, the much larger 3/2+–1/2+ energy splittings
for μ = 1.0 fm−2 and 0.8 fm−2 originate from the larger
difference between the 1S0 N�c potentials and the 3S1 N�c

potentials.
It is interesting that similar conclusions were made in

Refs. [42,48] for the three-body 3
�c

H calculations. As shown
in Fig. 9 of Ref. [42], the JP = 1+ interaction is also stronger
than the JP = 0+ case though their calculated N�c interaction
is much stronger than ours. For the three-body 3

�c
H calcu-

lation, the binding energy of the JP = 3/2+ state is larger
than the JP = 1/2+ state. In Ref. [48], they also found that
the binding energy for the JP = 3/2+ state in 3

�c
H is larger

than the JP = 1/2+ state. Comparisons of those two works
[42,48] are collected in Table VI, where we show the �c sepa-
ration energies for the JP = 1/2+ and JP = 3/2+ states in the
μ = 1.0 fm−2 and μ = 1.2 fm−2 cases, as well as the energy
difference between the 1/2+ and 3/2+. In our calculation,
the �c separation energies in the μ = 1.2 fm−2 case and the
energy of 1/2+–3/2+ are smaller than the μ = 1.0 fm−2 case.
Despite the extremely large binding energies in Ref. [42], the
1/2+ − 3/2+ energy is close to our μ = 1.0 fm−2 result. As
for the �c separation energies of the JP = 3/2+ state, our
results are consistent with the values in Ref. [48].

As people know [49], the lightest hypernucleus, 3
�H

(JP = 1/2+), is a weakly bound state with the B� = 0.13 ±
0.05 MeV while no bound state is found for the 3

�H (JP =
3/2+) state. In our present calculation, the 3/2+ state for 3

�c
H

is more bound than the 1/2+ state which has an opposite
behavior compared with 3

�H. As we mentioned earlier, this
is because the 3S1 N�c potential is more attractive than the
1S0 N�c potential.

Thus, in order to investigate this opposite behavior in 3
�H,

we depict the 1S0 and 3S1 N� potentials together with the
μ = 1.0 fm−2 N�c potentials in Fig. 5. The N� potentials
used here are the same as the ones used in Ref. [50] which
simulate the G-matrix N� interaction derived from the Ni-
jmegen model f (NF ). As shown in Fig. 5, the 1S0 N�

potential is more attractive than the 3S1 N� potential while
the opposite relation occurs in the N�c potentials. Besides,
in the 3

�H (JP = 1/2+) state, the S-wave component is also
dominant (shown in Table V). It should be noted that the
calculated B� for the 3

�H (JP = 1/2+) state is 0.13 MeV
which agrees with the experimental data. The NN interaction
used in the 3

�H(1/2+) is the same as the one used in 3
�c

H
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and we also apply the GEM to solve the three-body NN�

system. Therefore, as compared with 3
�c

H, we think the oppo-
site relations between the 1S0 and 3S1 N� potentials result in
the opposite energy locations of the 1/2+ and 3/2+ states in
the 3

�H.
Though both the hypertriton and 3

�c
H(1/2+) might have

small binding energies, the dynamical behaviors between �

and �c could be different significantly in the nucleus due to
the much heavier mass of the �c baryon. In order to inves-
tigate this issue, we study the three-body 3

�H wave functions
when calculating the following form:

ρ(R2) =
∫ ∣∣�(

3
�c

H
)∣∣2

d3r2d2R̂2,

ρ(r2) =
∫ ∣∣�(

3
�c

H
)∣∣2

d3R2d2r̂2, (12)

where R2 and r2 are the Jacobian coordinates with channel
c = 2, defined in Fig. 3 and �(3

�c
H) is the wave function of

the 3
�c

H.
In Fig. 6, we depict the ρ(r2) and ρ(R2) of the 3

�c
H (1/2+)

state in the μ = 1.0 fm−2 case. It is obvious that ρ(r2) reflects
the dynamical behavior between the two nucleons and ρ(R2)
reflects the �′

cs behavior. For comparison, we also show the
ρ(r2) and ρ(R2) of the hypertriton.

Then, as shown in Fig. 6, we find that the wave function
of �c is more compact in the 3

�c
H (1/2+) state than � in

the hypertriton though they have similar binding energies.
On the other hand, the nucleon-nucleon wave functions are
similar to each other in 3

�c
H(1/2+) and the hypertriton. It is

well known that in the hypertriton, the � wave function is
very dilute and is around 10 fm away from the deuteron core.
But such behavior may not happen for the �c in the charmed
hypertriton according to our calculation.
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FIG. 6. ρ(r2) and ρ(R2) defined in Eq. (12). The black ones are
the 3

�c H system and the red ones are the hypertriton.

V. SUMMARY

In this work, we investigate the three-body NN�c system
within the framework of the quark-delocalization color-
screening model and probe the possibility of a bound 3

�c
H

(T = 0).
First, with QDCSM, we normalize the � (�∗) and the

l = 2 components into the S-wave N�c constituents. We then
construct effective Gaussian type �cN potentials, reproducing
the �cN scattering lengths and the effective ranges obtained
in the QDCSM for the 1S0 and 3S1 cases. As for the NN
interaction, we apply the AV8’ realistic NN interaction.

With the above potentials, we solve the three-body problem
with GEM and obtain the energy levels of 3

�c
H JP = 1/2+ and

JP = 3/2+ states with different color screening parameters
μ. We find that both JP = 1/2+ and JP = 3/2+ states are
bound under the μ = 1.0 fm−2 and μ = 1.2 fm−2 cases while
unbound when μ = 0.8 fm−2. Our calculated binding energy
of the JP = 3/2+ state is consistent with that of Ref. [48].
We also find that the energy difference of 1/2+–3/2+ is
70–460 keV and close to another calculation in Ref. [42], i.e.,
660 keV.

In our calculation, the energy location of the 3/2+ state
is lower than the 1/2+ state in 3

�c
H. We find it is because

the 3S1 N�c potential is more attractive than the 1S0 N�c

potential within the QDCSM. In contrast, in 3
�H, the 3S1 N�

potential is less attractive than the 1S0 N� potential. Thus,
only the 3

�H (1/2+) state is bound while the 3/2+ state is
unbound.

At the end, we also compare the dynamical behaviors of
�c in 3

�c
H and � in the hypertriton. We find that the �c is

closer to the nucleon core than the � in the hypertriton due
to �′

cs heavier mass. The experimental search of the charmed
hypertriton is urgently needed in order to further study the
charmed hypernuclei.
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