
PHYSICAL REVIEW C 108, L062801 (2023)
Letter

Screening condition in the core of neutron stars
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Earlier, the screening condition in neutron star core has been formulated as equality of velocities of supercon-
ducting protons and the electrons vp = ue at wave numbers q � λ−1 (λ is the London penetration depth) and has
been used to derive the force exerted by the electrons on a moving flux tube. By calculating the current-current
response, I find that vp �= ue for l−1 < q � λ−1 (l is the electron mean-free path). I show that at typical realistic
parameters the electric field induced by a moving (relative to the electrons) flux tube is not screened by the
electron currents. The implication is that the existing picture of the momentum exchange between the electrons
and the flux tubes must be reassessed.
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Introduction. In the outer core of neutron stars, one expects
that the protons are superconducting, the electrons are normal
and the magnetic field is present in the interior, which induces
a magnetic flux tube lattice in the superconducting protons.
Scattering of the electrons by the flux tubes effectively couples
the electrons and the protons, and the interaction of magne-
tized neutron vortices with the flux tubes effectively couples
the superfluid neutrons and superconducting protons. These
couplings play an important role in modeling of observable
phenomena in neutron stars.

Scattering of the electrons by a single flux tube (due to
a neutron vortex) has been considered for the first time by
Alpar, Langer, and Sauls [1]. In later works, the problem was
generalized to the case of the electron scattering by the su-
perconducting proton flux tubes and the flux tube interaction
with the magnetized superfluid neutron vortices was consid-
ered [2]. Calculations were done with the hydrodynamic form
of the electrical conductivity, see Eq. (10) in Ref. [2]; the
hydrodynamic form of the electrical conductivity was also
used for the astrophysical applications in Refs. [3,4]. Later,
controversial results have been obtained and attempts were
made to resolve the controversy ([5] and references therein).
In Eq. (16) of Ref. [5], the so-called screening condition
vp = ue was a basic assumption in the derivations, where vp

is the velocity of the superconducting protons and ue is the
velocity of the electrons. Notice that the derivations in Ref. [5]
are based on the assumption that the separation between the
flux tubes dv is much larger than the size of the magnetic core
λ (Fig. 3 in Ref. [5]). however, straightforward calculations in
the present paper show that in fact dv ≈ λ; this implies that in
realistic conditions it is impossible to choose a surface for the
integration of the momentum flux without a nonzero electric
current (and, thus, vp �= ue). The screening condition was also
used in Ref. [6] in their studies of superfluid neutron vortices
in the core of neutron stars.
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The physical meaning of the screening condition is that
sufficiently far from the flux tube the total electrical current
is zero, Je + Jp = 0, where Je is the electronic electric cur-
rent and Jp is the supercurrent due to protons. Applied to
the realistic parameters in neutron stars, it means that the
screening condition assumed in Refs. [5,6] must be satisfied
in the spatial region between the flux tubes, where the super-
conductor density is spatially uniform. In fact, this assumption
is not obvious because the screening condition is expected to
hold in the hydrodynamic regime, while at length scales of
the order of separation distance between the flux tubes the
electron regime is not hydrodynamic.

The hydrodynamic regime is realized when the relevant
wave numbers q are much smaller than the electron inverse
mean-free path l−1 [7]. In fact, the electron mean-free path l
is typically somewhere between 106 fm and 1011 fm, as will be
shown below. For given magnetic field strength H , the typical
separation distance between the flux tubes is

dv =
(

�0

H

)1/2

≈ 143.8

(
1015 Oe

H

)1/2

fm, (1)

where �0 = π h̄c/e is the magnetic flux quantum, c is the
speed of light, e is the proton electric charge. At typical
temperature T = 108 K, the neutron star matter in the outer
core is effectively in the zero-temperature regime. The length
scale of the magnetic tube associated with the proton vortex is

λ(0) =
(

mpc2

4πe2np

)1/2

≈ 80 fm, (2)

where np = xpn is the proton number density, n = 0.16 fm−3

is the baryon number density, xp = 0.05 is the proton frac-
tion. The electron Fermi wave number is ke = (3πne)1/3 ≈
0.6187 fm−1.

In this paper, I will show that when the flux tube size λ

is resolved by the electron dynamics (that is, at wave num-
bers q ≈ λ−1), the electrons are in the particle-hole regime.
I will calculate the current-current response of the electrons
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and show that the electric fields arising as a result of the
flux tube motion cannot be screened by the electrons leading
to Je + Jp �= 0 in the spatial region between the flux tubes,
which implies that the screening condition is not satisfied.
This implies that the considerations, in particular, the mag-
netic field evolution [2] based on the hydrodynamic form of
the electron electrical conductivity should be reassessed.

Screening of the supercurrent by the electrons. I will do
calculations with the material parameters corresponding to the
nuclear saturation density. The electron velocity ue is the mi-
croscopic velocity averaged on length scale much longer than
k−1

e . Likewise, the proton superflow velocity vp is the quantity
averaged on length scale much longer than the proton coher-
ence length ξ (T ). At T � Tc, the superconducting density is
equal to np, where Tc = γ�p/kBπ , with ln γ = 0.577 is the
Euler constant and �p is the proton s-wave superconducting
energy gap, and

ξ (0) = h̄vF p

2γ�p
≈ 7.2

(
1 MeV

�p

)
fm. (3)

The coherence length ξ sets the length scale for the normal
core of the flux tube, while the magnetic core extends to the
scale ≈ λ. Here, vF p = h̄kp/mp is the electron Fermi velocity,
kp = ke and mp is the proton mass.

The number currents are defined as je = neue and jp =
npvp and the electric currents are Je = −eneue and Jp =
enpvp. Noting that me � mp, where me is the electron mass,
is a reasonable lowest-order approximation even for the
relativistic electrons, one may neglect the inertia of the elec-
trons [8,9].

Therefore, for a given electric field strength, it is sufficient
to assume that the proton velocity is given and then to cal-
culate the equilibrium electron velocity. In this context one is
free to choose the proton phase as a constant, so the super-
current is defined by the electromagnetic vector potential [9].
It will be convenient to work in the Fourier representation,
X(q, ω) = ∫

d3xdt eiq·x−iωt X(x, t ), where X(x, t ) is any func-
tion of space and time. Thus, the proton current Jp may be
seen as given, which is denoted for convenience Jext, and the
electronic current Je may be seen as the induced current Jind;
the total current is the sum Jp + Je. Since a given proton
supercurrent is a transverse vector (∇ · Jp = 0) the electron
response is defined by the transverse electromagnetic response
of the system.

Description of given, induced and the total electric currents
in terms of the dielectric function. Calculation of the electron
current δJe for a given proton current δJp can be done in
the lowest approximation, δJe(q, ω) = σ (q, ω)δE(q, ω). The
electric field δE(q, ω) is related to the vector potential:

E = −c∂t A. (4)

Thus, to characterize the system it is necessary to calculate the
quantity

σ (q, ω) = δJe(q, ω)

δE(q, ω)
= ec

iω

δje(q, ω)

δA(q, ω)
, (5)

which is the electrical conductivity of the electrons.
The electrical conductivity may be expressed through the

dielectric function εt , for which one has at least two equivalent

choices. I will work with the transverse fields in this paper;
for convenience, the subscript t is added to stress that εt is the
transverse dielectric function. The definition of the dielectric
function following Lindhard [10] (with the superscript “L”),
is based on a linear relation between the electric induction D
and the electric field E,

D = ε
(L)
t E, (6)

and then the Maxwell equation can be written as(
q2 − ω2

c2
ε

(L)
t (q, ω)

)
A(q, ω) = 4π

c
Jext (q, ω). (7)

Alternatively, the definition of the dielectric function follow-
ing Jancovici [11] is based on a linear relation between the
total (self-consistent) vector potential A = Aext + Aind [where
Aext is the external (given) part due to a source and Aind is
the induced part due to the electrons] and the external vector
potential:

A(q, ω) = 1

εt (q, ω)
Aext (q, ω). (8)

Then the Maxwell equation reads(
q2 − ω2

c2

)
εt (q, ω)A(q, ω) = 4π

c
Jext (q, ω). (9)

In terms of the identifications assumed above, the electronic
current is a linear functional of the supercurrent:

Je(q, ω) = 1 − εt (q, ω)

εt (q, ω)
Jp(q, ω). (10)

It is easy to relate the two definitions to one another:

ε
(L)
t (q, ω) − 1 = c2q2 − ω2

ω2
[1 − εt (q, ω)]. (11)

It follows from the Maxwell equations that σ is related to
ε

(L)
t [12]:

σ (q, ω) = ω

i4π

(
ε

(L)
t (q, ω) − 1

)
. (12)

It is convenient to introduce the response function χ̃t (q, ω)
according to the definition

εt (q, ω) = 1 + 4πe2

q2
χ̃t (q, ω). (13)

Combining the above equations one can write

χ̃t (q, ω) = cq2

e(ω2 − c2q2)

δje(q, ω)

δA(q, ω)
. (14)

Calculation of σ (q, ω). The next step is to find the explicit
form of εt (q, ω). In the present system, the electrons are
relativistic and quantum degenerate. It is important to distin-
guish between the regimes of the electron dynamics [12]: the
hydrodynamic regime is realized when ω � ν and q � l−1;
the particle-hole regime results when ω > ν and/or q > l−1.
There are two options in the particle-hole regime: with q >

l−1 and ω > ν the collisions are unimportant; with q > l−1

and ω < ν the collisions are important. Here, ν = c/l is the
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electron collision rate, which is defined as a sum of the colli-
sion rates with all kinds of impurities that scatter the electrons.
In the present system,

ν = ν1 + ν2, (15)

where ν1 is the rate of collisions of the electrons with the
normal protons within the magnetic flux tubes (or ν2 is the
rate of collisions of the electrons with the magnetic field lines
within the magnetic flux tubes and the superfluid neutron
vortices).

I will focus on the short length scales (q � l−1) and slow
frequencies ω � ν. Jancovici [11] has already calculated the
dielectric function εt (q, ω) for q � l−1, but completely ne-
glecting the electron collisions (for ω � ν). At temperatures
T � Tc the normal protons in the bulk of the superconductor
may be neglected and collisions of the electrons with the
normal protons occur only within the flux tubes, therefore

ν1 ≈ τ−1
tr

H

Hc2(0)
, (16)

where Hc2(0) = �0/2πξ (0)2, is the upper critical magnetic
field of the superconductor at T = 0, H is the stellar magnetic
field. The electron transport relaxation time with normal pro-
tons was evaluated by Baym, Pethick, and Pines [13] as τtr ≈
2 × 10−14 s. With typical H = 1015 Oe and �p = 1 MeV, I
find ν1 ≈ 7.898 × 1011 s−1. For scattering of the electrons by
the magnetic field in the flux tube, I use the order of magnitude
estimate

ν2 = c

let
≈ cσetnt , (17)

where let is the electron mean-free path between consecutive
collisions of the electron with the flux tube, σet is the differ-
ential cross section for scattering of the electron with the flux
tube and nt = H/�0 is the number of flux tubes per unit area.
Note that if H is smaller than the lower critical magnetic field,
the neutron vortices would provide the dominant impurity
scattering for the electrons. The cross section is given by
σet = αk−1

e , where α = α(keξ, λ/ξ ). From Eqs. (37) and (40)
of Ref. [5] I infer that α ≈ 10−2. Thus, with typical H = 1015

Oe and �p = 1 MeV, I find ν2 ≈ α × 2.343 × 1019 s−1 and
ν ≈ ν2. This coincides with the standard theoretical expecta-
tion that the main source of the electron-proton coupling in
superconducting matter of neutron star core is the electron
interaction with the magnetic flux tubes. The quantitative
estimates in Eqs. (16) and (17) enable to calculate the min-
imum (c/ν2) and the maximum (c/ν1) mean-free path of the
electrons, leading to ≈106 fm and ≈1011 fm correspondingly,
with typical H = 1015 Oe and �p = 1 MeV.

In neutron stars, ω describes dynamical processes related to
jumps in the rotational frequency of the star, or to mechanical
torsional oscillations, or to sound waves and may take values
in the range between ≈0 and ≈104 Hz. Therefore ω � ν for
typical realistic conditions.

For the further calculations, εt (q, ω) calculated by Jan-
covici [11] must be modified in order to include the electron

collisions. I will use the following notation:

χ̃t (q, ω) =
{

χt (q, ω) for ω � ν,

χν
t (q, ω) for ω � ν.

(18)

As the second step, I turn to the kinetic equation, from
which the functional derivative δje(q, ω)/δA(q, ω) can be
calculated in both cases, when either ω � ν (the collision
integral I[n1p] is nonzero) or ω � ν (I[n1p] = 0). Here, n1p

is the departure of the distribution function from true equilib-
rium [12,14]. In the relaxation time approximation (RTA), the
collision integral is written in the form

I[n1p] = −ν
(
n1p − nR

1p

)
, (19)

where nR
1p is the so-called locally relaxed equilibrium distri-

bution function [14].
As Conti and Vignale have shown [14], in RTA the re-

sponse function with collisions [χν
t (q, ω)] can be obtained

from the response function without collisions with the fre-
quency ω replaced by ω + iν [χt (q, ω + iν)]:

χν
t (q, ω) = ω

ω + iν
χt (q, ω + iν). (20)

Notice that Conti and Vignale [14] have worked with the
quantity χτ

t (the superscript 1999 is referring to the quantities
used in Ref. [14]),

χτ
t (q, ω) ≡ δj1999

e (q, ω)

δA1999(q, ω)
= −c

e

δje(q, ω)

δA(q, ω)
, (21)

which, as can be easily seen from Eqs. (14), (18), and (21), is
proportional to χν

t :

χν
t (q, ω) = q2

c2q2 − ω2
χτ

t (q, ω). (22)

By virtue of the proportionality between χν
t and χτ

t seen in
Eq. (22), the result obtained in RTA for the relation between
χτ

t and its collisionless counterpart by Conti and Vignale [14],
is applicable to the relation between χν

t and χt ; this validates
the formula in Eq. (20).

This conclusion is useful because it allows to find χν
t (q, ω)

from χt (q, ω), which has been obtained in Ref. [11]. Equa-
tion (66) from Ref. [11] gives:

χt (q, ω) = s

2

∂ne

∂μe

(
s

1 − s2
+ 1

2
log

s + 1

s − 1

)
, (23)

where μe is the electron Fermi energy, ∂ne/∂μe = k2
e /π

2h̄c
and s ≡ s(q, ω) = ω

cq . Collecting the results I obtain the main
formula of this paper:

σ (q, ω) = ω2 − c2q2

iω

e2

q2

ω

ω + iν
χt (q, ω + iν). (24)

From Eqs. (13), (18), (20), and (23) I will calculate the quan-
tity

ζ ≡ 1 − εt (q, ω)

εt (q, ω)
, (25)

which indicates effectiveness of the current-current screening,
see Eq. (10). The limiting case, ζ = −1 implies that vp = ue –
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FIG. 1. The real part of the proportionality coefficient ζ between
the induced current and the test current, Eq. (25), as function of the
collision frequency ν with wave number set as q = ν/c. From left to
right, the lines correspond to ω = 10, 102, 103, and 104.

the screening condition holds. On the contrary, ζ = 0 implies
that vp �= ue – the screening condition is not satisfied.

Numerical results. I turn to evaluation of ζ for various
q, ω and ν. Figures 1–4 display ζ , Eq. (25), as function of
ν for four different frequencies (ω = 10, 102, 103, and 104)
and for two different length scales (q = ν/c and 10ν/c). The
chosen set is sufficient to reveal general patterns in behavior
of ζ as function of q, ω, and ν. Comparing the positions of
lines in Figs. 1 and 3 one observes that at fixed ν, decreasing
of q leads to improvement of screening; this implies that the
smaller q is, the closer ζ is to minus unity, as expected. One
can say that decreasing of q at fixed ω moves the curve ζ in
Fig. 1 to the right. If ν is fixed, for instance, ν = 3 × 1018 Hz,
then for any ω between 0 and 104 Hz, the electrons do not
screen the proton supercurrent at any length scale shorter
than the electron mean-free path (q > ν/c ≈ 108 cm−1). A
somewhat nontrivial result is that increasing of ω improves the
screening effectiveness; for example, with the collision rate
ν = 1017 Hz, one would have complete screening (ζ = −1) at
q = ν/c ≈ 3 × 106 cm−1 only for ω � 108 Hz (this numeri-
cal result is not shown explicitly in the figures but could be
seen in Fig. 1 as ultimate shift of the curve ζ to the right
leaving in the plot only the tail with ζ = −1). One can say
that increasing of ω at fixed q moves the curve ζ in Fig. 1 to
the right.

The imaginary part of ζ is shown in Figs. 2 and 4. It is zero
at either complete screening (ζ = −1) or at screening absent
(ζ = 0), while in the intermediate case, which can be called
an incomplete screening, the induced current may have the
phase-shifted (by π/2) component with magnitude equal to
that of the in-phase component of the induced current.

FIG. 2. The imaginary part of the proportionality coefficient ζ

between the induced current and the test current, Eq. (25), as function
of the collision frequency ν with wave number set as q = ν/c. From
left to right, the lines correspond to ω = 10, 102, 103, and 104.

FIG. 3. The same as Fig. 1 but q = 10ν/c.

Conclusions. Based on microscopic physics, I have de-
veloped the framework, which can be used to estimate the
effectiveness of the electrical current response of the electrons
to a given proton supercurrent in presence of a lattice of flux
tubes. I have used typical parameters corresponding to the
core of neutron stars and have studied the screening condition
for various values of the electron momentum-nonconserving
collision frequency. I found that for typical frequencies of
change of the relative velocity between the electrons and the
superconducting protons (between about 0 and 104 Hz), the
electrons are unable to screen the proton supercurrent if the
latter is present.

The presence of the proton supercurrent in the spatial
regions between the flux tubes is easy to see. In realistic
conditions, the dynamics arises because the proton flux tubes
are forced to move relative to the electrons. For example, the
low-lying sound mode in the outer core corresponds to out-
of-phase motion of the neutron fluid and the electron-proton
plasma [15], while the total matter density is locally unper-
turbed. In case when the proton flux tubes and the neutron
vortices are present, this mode will be modified, but will be
still possible. Due to the vortex-flux tube pinning, in that mode
one expects that the flux tubes are guided by the motion of the
neutron vortices. If the velocity of this mode is of the order of
0.1c, then its lowest frequency (when its wavelength is of the
order of the stellar size 106 cm) is of the order of 3 kHz, which
is in the range of frequencies mentioned above and considered
in Figs. 1–4.

It is easy to see, using the first London equation [16], why
a motion of the flux tube relative to the electrons induces
the microscopic electric field (which in turn might induce the
electric current depending on the electric conductivity). The
electric supercurrent of a single proton flux tube is given by

Jtube(r) ≈ Y0

(
ey

x

r2
− ex

y

r2

)
e−r/λ, (26)

FIG. 4. The same as Fig. 2 but q = 10ν/c.
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FIG. 5. Arrows show the vector pattern of the unscreened (with-
out the electron contribution) microscopic electric field Etube(r) due
to a moving array of four vortices. The field Etube(r) is calculated
from Eq. (27) with λ/ξ = 10 corresponding to � = 0.8956 MeV in
Eqs. (2) and (3) and dv = λ corresponding to H = 3.231 × 1015 Oe
in Eq. (1). The normal cores of the flux tubes are displayed by the
dotted circles. The velocity of flux tubes relative to the electron liquid
is pointed towards −ex direction.

where Y0 = nph̄e/2mp, (ex, ey, ez) are Cartesian basis vectors,
ez is along the flux tube, r = exx + eyy and r2 = x2 + y2.
In the rest frame of reference of the electrons, a moving

flux tube with velocity vL = exvL generates the microscopic
electric field, which can be easily found from the first London
equation [16]:

Etube(r) = mp

npe2
∂t Jtube(r − vLt ) = −(vL · ∇′)Jtube(r′)|,

(27)

where ∇′ = ∂r′ and r′ = r − vLt . Inserting Eq. (26) into (27)
one finds Etube(r).

In Fig. 5, I plot the microscopic electric field Etube(r) due to
a moving array of four vortices at a fixed instant of time. One
observes that the transverse electric field is indeed generated
in the spatial region between the vortices. In case when the
system parameters lead to ζ = 0 (this is the case for the
realistic parameters as discussed in detail above), the vortex-
induced electric field generates the proton electric current in
the spatial region between the vortices, while the electron
current is not excited; in this case the screening condition is
not satisfied. In the opposite case when ζ = −1, the electron
current is excited and completely screens the proton supercur-
rent, so the resulting total electric current is zero; however,
this case is not realized for the realistic parameters. The astro-
physical implication is that since the screening condition is not
satisfied, then the earlier conclusions regarding the electron-
flux tube interactions in neutron star core must be reassessed;
the rate of momentum exchange between the electrons and
the flux tube lattice in the superconducting and/or superfluid
nuclear matter in the core of neutron stars remains an open
question.
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