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Role of isospin composition in low-energy nuclear fusion
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We employ a microscopic approach that examines the impact of isospin dynamics on the process of low-
energy nuclear fusion along an isotope chain and dependence on deformation. Our method utilizes the density
constrained time-dependent Hartree-Fock theory (DC-TDHF), where isoscalar and isovector characteristics
of the energy density functional (EDF) are examined in turn. This approach is applied to a series of fusion
interactions of 176Yb with increasingly neutron rich isotopes of calcium. By evaluating the contributions from
the isoscalar and isovector components of the EDF, we look to quantify the influence of isospin composition
on the conditions under which fusion is most likely to take place. Our findings reveal that, in nonsymmetric
systems, the isovector dynamics plays a significant role. Its typical effect is a reduction in the potential barrier,
which turns into enhancement for neutron-rich systems.
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The study of fusion reactions is one of the major research
areas of low-energy heavy-ion physics [1–3]. Unfortunately,
from the theoretical standpoint the lack of a practical many-
body approach for sub-barrier tunneling requires the reduction
of fusion studies to the determination of an effective ion-
ion interaction potential that allows for traditional tunneling
methods to be employed. If the ion-ion potential is initially
computed with frozen nuclear densities other quantal effects,
such as the excitation of the target and projectile and transfer
of nucleons during the initial phase of the collision, have to
be included via various approximations. The most commonly
used method to achieve these goals is the coupled-channels
(CC) approach [4–6]. An alternate approach, in which the
dynamics of the collision is included at the mean-field level, is
provided by the density-constrained time-dependent Hartree-
Fock (DC-TDHF) method [7,8].

The dependence of fusion cross sections on neutron excess,
or specifically the total isospin quantum number Tz = (Z −
N )/2, is a significant question in the realm of fusion reactions,
particularly fusion reactions involving exotic neutron-rich
nuclei. This topic has gained further relevance as rare iso-
tope facilities conduct increasingly sophisticated exotic beam
experiments [9]. Furthermore, understanding the impact of
isospin dynamics on fusion is crucial for the synthesis of
superheavy elements using neutron-rich nuclei [10]. Beyond
its implications for nuclear structure and reactions, addressing
this inquiry holds substantial importance for our comprehen-
sion of the nuclear equation of state (EOS) and symmetry
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energy [11,12], which are intimately related to nuclear struc-
ture [13] and dynamics [14,15], as well as most astrophysical
phenomena [16,17]. Typically, the influence of isospin flow
during heavy-ion reactions is discussed in terms of the (N/Z )
asymmetry of the target and projectile or the Q values as-
sociated with nucleon transfer [18]. However, there are still
unresolved issues with the Q-value based transfer methods.
First, the precise magnitude of fusion enhancement based on
a known Q value is not well understood [19,20]. Second,
for exotic nuclei Q values may not be available. Finally, the
Q-value transfer is based on the entrance channel properties
of the participating nuclei whereas the dynamics during the
neck formation phase of the collision may introduce other dy-
namical effects. One such effect, the Pauli exclusion principle,
has been recently discussed [21,22]. For reactions involving
deformed nuclei the ion-ion barrier and the fusion dynamics
also depend on the orientation of the nuclei with respect to the
beam axis [23–25].

The time-dependent Hartree-Fock (TDHF) method supple-
mented with a density constraint, DC-TDHF, takes advantage
of the dynamics included in the TDHF time evolution, which
has been successfully utilized to study multinucleon transfer
reactions [26–30], deep-inelastic damped collisions [31–33],
and quasifission [34–41]. The benefit of this approach is that
both the structure and reactions are handled on the same foot-
ing through an energy density functional with pre-determined
parameters. Hence, the dynamical transfer mechanism, and
their influence on the ion-ion interaction potentials at the
mean-field level can be studied without making a priori as-
sumptions.

Within the TDHF theory, the totally antisymmetric many-
body wave function is assumed to be a single Slater
determinant. Neglecting the two-body correlations preserves
the Slater determinant nature of the many-body state through-
out the time evolution. This many-body state is then used
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to construct the time-dependent action using an effective
nucleon-nucleon interaction. Variation of this action with re-
spect to single-particle states φ∗

λ ,

δS

δφ∗
λ

= δ

δφ∗
λ

∫
dt 〈�(t )|H − ih̄

∂

∂t
|�(t )〉 = 0, (1)

gives us the most probable reaction path as a set of fully mi-
croscopic, coupled, nonlinear, self-consistent, time-dependent
Hartree-Fock equations of motion for the single-particle
states,

h({φμ}) φλ(r, t ) = ih̄
∂

∂t
φλ(r, t ) (λ = 1, . . . , A), (2)

where h is the single-particle Hamiltonian. Employing an
effective interaction such as the Skyrme interaction results in
the total energy of the system being represented as an volume
integral of an energy density functional [42],

E =
∫

d3rH(r). (3)

For the purposes of this work the Skyrme EDF may be de-
composed into isoscalar and isovector parts [43] (in addition
to the conventional kinetic and Coulomb terms) as

H(r) = h̄2

2m
τ0 + H0(r) + H1(r) + HC (r). (4)

The isoscalar and isovector terms carry an isospin index
I = 0, 1 for the energy densities, respectively. The isoscalar
[H0(r)] energy density depends on the isoscalar particle
density, ρ0 = ρn + ρp, whereas the isovector [H1(r)] energy
density depends on the isovector particle density, ρ1 = ρn −
ρp. These definitions, of course, prescribe analogous expres-
sions for other densities and currents. The local gauge and
Galilean invariant form is given by [43]

HI (r) = Cρ
I ρ2

I + Cs
I s2

I + C	ρ
I ρI	ρI

+ C	s
I sI · 	sI + Cτ

I

(
ρIτI − j2

I

) + CT
I

(
sI · TI − J

↔2
I

)
+ C∇J

I (ρI∇ · JI + sI · (∇ × jI )). (5)

The density dependence of the coupling constants has been
restricted to the Cρ

I and Cs
I terms only, which stems from the

most common choice of Skyrme EDF. These density depen-
dent coefficients contribute to the coupling of isoscalar and
isovector fields in the Hartree-Fock Hamiltonian [43].

The decomposition of the Skyrme EDF into isoscalar
and isovector components makes it feasible to study isospin
dependence of nuclear properties microscopically, both for
nuclear reactions [44,45] as well as for nuclear structure [43].
This is possible for any approach that employs the Skyrme
EDF to compute ion-ion interaction potentials. Here, we
implement the decomposed Skyrme EDF in the density-
constrained DC-TDHF method [7,45] to study isospin effects
in fusion barriers. The DC-TDHF approach permits the
study of sub-barrier fusion through the direct calculation of
nucleus-nucleus potentials, V (R), from TDHF dynamics. The
DC-TDHF method has been used in the study of fusion for
a wide range of nuclear reactions [46–52]. The basic idea of
the DC-TDHF method is the following: At certain time steps

t [or internucleon distances R(t )], a minimization of the static
energy is performed while proton and neutron densities are
constrained to be the instantaneous densities yielded from the
TDHF equations. That is,

EDC(R) =
{

E [ρn, ρp] +
∫

d3r λn(r)
[
ρn(r) − ρ tdhf

n (r, t )
]

+
∫

d3r λp(r)
[
ρp(r) − ρ tdhf

p (r, t )
]}∣∣∣∣

minρ

, (6)

where λn(r) and λp(r) are Lagrange multipliers. This
minimized energy is referred to as the so-called density con-
strained energy, EDC(R). In essence, all excitation energy has
been removed from the system through this procedure. To
obtain the underlying ion-ion interaction potential, V (R), the
constant binding energies (obtained from a static Hartree-
Fock approach) of the two individual nuclei (EA1 and EA2 ) are
then subtracted:

Vtotal(R) = EDC(R) − EA1 − EA2 . (7)

Ion-ion interaction barriers calculated from the DC-TDHF ap-
proach self-consistently contain all of the dynamical changes
in the nuclear density throughout the TDHF reaction. Utiliz-
ing the decomposition of the Skyrme EDF [Eq. (5)], we can
rewrite this potential as

Vtotal(R) =
∑

I=0,1

vI (R) + Vcoul(R), (8)

where vI (R) denotes the potential computed by using the
isoscalar and isovector parts of the Skyrme EDF given in
Eqs. (4) and (7). The Coulomb potential is solved from the
typical three-dimensional Poisson equation (where the Slater
approximation is used for the Coulomb exchange term) via
fast Fourier transform techniques.

We have implemented the DC-TDHF approach to study
fusion barriers for a number of systems involving spherical
isotopes of calcium without the use of the pairing interaction
(in particular, calcium-40, -44, -48, and -54) on prolate-
deformed ytterbium-176, which permits us to also inspect
the orientation dependence of isospin flow. All calculations
were done on a three-dimensional Cartesian lattice with no
symmetry assumptions [53], and the Skyrme SLy4d EDF [54]
was used. The Cartesian box size utilized for all calculations
was chosen to be 60×32×32 fm3, with a mesh spacing of
1.0 fm in all directions. Employing an advanced numerical
discretization technique known as the basis-spline collocation
method [55], these values provide very accurate numerical
results.

For each system under consideration, separate DC-TDHF
calculations were performed for two orientations of the
prolate-deformed 176Yb nucleus: Euler angle rotations cor-
responding to β = 0◦ and β = 90◦ (solid and dashed lines,
respectively). The center-of-mass energy was chosen to be
1.05 times the corresponding Bass barrier for each system.
We begin with fusion of 40Ca + 176Yb colliding at Ec.m. =
166.45 MeV, plotted in Fig. 1. The black curves denote the
total DC-TDHF potential while the red curves are the com-
bination of isoscalar and Coulomb potentials. The difference
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FIG. 1. For the 40Ca + 176Yb system, total and isoscalar DC-
TDHF potentials for two orientations of the prolate-deformed 176Yb
(dashed lines denote a Euler angle rotation of β = 90◦). The
shaded region in blue depicts a significant reduction as an effect
of the isovector contribution to the energy density. The inset shows
the isoscalar and isovector contributions to the interaction barrier
without the Coulomb potential. The TDHF collision energy was
Ec.m. = 166.45 MeV.

between these curves shows the net isovector contribution
to the ion-ion interaction potential (shaded regions). For the
symmetric, doubly magic 40Ca nucleus colliding with ei-
ther orientation of 176Yb, there is a substantial reduction of
the barrier (area shaded in blue) as a result of the added
isovector potentials. This we refer to as the isovector re-
duction, meaning that the isovector contribution is making
the overall potential thinner in the inner barrier region and
causing a slightly lower barrier height. The inset graph shows
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FIG. 2. For the 48Ca + 176Yb system, total and isoscalar DC-
TDHF potentials for two orientations of the prolate-deformed 176Yb
(dashed lines denote a Euler angle rotation of β = 90◦). The shaded
region in red depicts a small enhancement as an effect of the
isovector contribution to the energy density. The inset shows the
isoscalar and isovector contributions to the interaction barrier with-
out the Coulomb potential. The TDHF collision energy was Ec.m. =
161 MeV.
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FIG. 3. For the 52Ca + 176Yb system, total and isoscalar DC-
TDHF potentials for two orientations of the prolate-deformed 176Yb
(dashed lines denote a Euler angle rotation of β = 90◦). The shaded
region in red depicts a significant enhancement as an effect of
the isovector contribution to the energy density. The inset shows
the isoscalar and isovector contributions to the interaction barrier
without the Coulomb potential. The TDHF collision energy was
Ec.m. = 159.9 MeV.

the isoscalar/isovector potential contributions by themselves,
without the Coulomb energy.

Next, we examine the 48Ca + 176Yb system at Ec.m. =
161 MeV. In Fig. 2, with the addition of eight neutrons to the
system, we start to see the role of the isovector contribution to
the energy density change. Rather than the reduction observed
in with 40Ca, there is now a small isovector enhancement of
the potential barrier (areas shaded in red). This difference
in potential barriers for 40Ca and 48Ca is analogous to the

FIG. 4. For the 54Ca + 176Yb system, total and isoscalar DC-
TDHF potentials for two orientations of the prolate-deformed 176Yb
(dashed lines denote a Euler angle rotation of β = 90◦). The shaded
region in red depicts an even more significant enhancement as an
effect of the isovector contribution to the energy density. The inset
shows the isoscalar and isovector contributions to the interaction
barrier without the Coulomb potential. The TDHF collision energy
was Ec.m. = 158.98 MeV.
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40Ca +176 Yb

40Ca +176 Yb

FIG. 5. For the 40Ca + 176Yb system, single-particle currents for
neutrons (upper half slice shown in blue) and for protons (lower half
slice shown in red). For this system we observe that the net neutron
flow is from 176Yb to 40Ca, while the proton flow is in the opposite
direction. Also shown is the shaded outline of the position of the two
nuclei (in this case for the β = 0◦ orientation of 176Yb).

experimental observation of a sub-barrier fusion enhance-
ment in the system 132Sn + 40Ca as compared to the more
neutron-rich system 132Sn + 48Ca [56]. It was shown in an
earlier publication [57] that for most systems isovector dy-
namics results in the thinning of the barrier, thus enhancing
the sub-barrier fusion cross sections. The isovector reduc-
tion effect vanishes for symmetric systems as well as the
48Ca + 132Sn system for which neutron pickup Q values are all
negative. This enhancement effect becomes more pronounced
as further neutrons are introduced to the calcium nuclei.
For 52Ca + 176Yb at Ec.m. = 159.9 MeV (Fig. 3) and then
54Ca + 176Yb at Ec.m. = 158.98 MeV (Fig. 4), the potentials
calculated from solely the isoscalar and Coulomb terms are
now both lower in peak energy, and smaller in width than
those calculated with the total density functional.

In all the reactions studied here, we also note that the effect
of the isovector contribution is more enhanced for the tip
orientation (β = 0) of the target nucleus. This is likely due
to the fact that the contact with the tip orientation happens
earlier (larger R) compared to the side orientation. Since the
side orientation normally would have a larger area of contact
with the projectile, this suggests a competition between time
spent between the two nuclei prior to fusion and the size of
the overlap region. Thus, nucleon transfer should also depend
on the orientation for deformed nuclei, which is normally
not taken into account in nonmicroscopic approaches. It is
possible to provide a further insight to these results by exam-
ining the transfer of neutrons and protons during the contact
phase of the collision process since the isovector contribution
is intimately related to transfer properties. For this purpose
we have plotted the single-particle currents during the TDHF
evolution. In Fig. 5 we plot these currents at the initial contact
phase for the 40Ca + 176Yb system, together with the shaded

54Ca +176 Yb

FIG. 6. For the 54Ca + 176Yb system, single-particle currents for
neutrons (upper half slice shown in blue) and for protons (lower half
slice shown in red). For this system we observe that the net neutron
and proton flow is from 54Ca to 176Yb. Also shown is the shaded
outline of the position of the two nuclei (in this case for the β = 0◦

orientation of 176Yb).

outline of the position of the two nuclei (in this case for the
β = 0◦ orientation of 176Yb). The upper half plane shows the
direction of neutron flow (blue arrows) while the lower half
plane shows the proton currents (red arrows). We observe that
in this case neutrons are flowing from 176Yb towards 40Ca,
while the proton flow is in the reverse direction from 40Ca
towards 176Yb. This mode of transfer leads to the isovector
reduction of the potential barrier. In Fig. 6 we plot the same
quantities for the 54Ca + 176Yb system. In this case we ob-
serve that both neutrons and protons are flowing from 54Ca to
176Yb. The case for 52Ca is similar to the 54Ca and for the 48Ca
the net transfer is negligibly small, which explains why the
there is very little isovector contribution to the fusion barrier.

In summary, we have performed DC-TDHF calculations
with the decomposed EDF into isoscalar and isovector parts
with the purpose of identifying the isovector contribution to
the overall fusion potential barrier. The isovector contribution
is an indicator of the influence of particle transfer during
the early stages of nuclear contact prior to fusion. We ob-
served that for the 40Ca + 176Yb system the neutron transfer
is from the target to projectile, which leads to the reduction
of the potential barrier, whereas for the neutron rich systems
the transfer reverses direction and leads to the enhancement
of the potential barrier. These changes affect both the height
and the width of the barrier. We also observe that transfer does
depend on the orientation of the deformed target.
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