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Becke and Edgecombe suggested in 1990 a theoretical tool to describe electron localization in atoms and
molecules, an idea which was borrowed by a large number of nuclear theorists since 2011 to describe nucleon
localization in nuclear systems. I argue here that these arguments are highly questionable and cannot be used
in interacting systems where effects beyond the naive mean field or the simple Hartree-Fock framework are
important and the inclusion of correlations induced by particle interactions is necessary in order to introduce
such a localization function. I also describe several aspects of the exchange and irreducible two-body density
matrices, which depend on the character and strength of the two-particle interaction and which can be useful in
justifying the derivation of an appropriate energy density functional.
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In nuclei lighter than 40Ca molecular-like states have been
studied for a long time [1,2]. The nuclear molecular clusters
are in reality microcrystals, as the relative separation between
the clusters varies very little. In the crust of neutron stars
the formation of the so-called pastalike phase, another type
of matter clusterization, or matter crystallization more accu-
rately, is known for decades [3]. Obviously, the formation of
fission fragments in nuclear fission [4] is another example of
dynamical formation of nuclear clusters. In order to easily
identify theoretically the formation of “clumps” of electronic
matter in atoms and molecules Becke and Edgecombe [5]
advocated the use in the Hartree-Fock approximation of the
quantity

Dτ,σ (r) = ττ,σ (r) − 1

4

|∇nτ,σ (r)|2
nτ,σ (r)

− | jτ,σ (r)|2
nτ,σ (r)

, (1)

where the subscripts τ = n, p, and σ stand for isospin and
spin respectively in the case of nuclear systems and ττ,σ (r),
nτ,σ (r), and jτ,σ (r) are the kinetic energy, nucleon and cur-
rent number densities, respectively. The current density term
is required by Galilean invariance [6–12], the form used by
nuclear theorists [13–30] (this is very likely an incomplete list
of references). Readers will recognize that Dτ,σ (r), related to
the kinetic energy density without the last term, was known
to von Weizsäcker [31] (here in the original form, without the
current number density),

ττ,σ (r) = 3

5
(6π2)2/3n5/3

τ,σ (r) + 1

4

|∇nτ,σ (r)|2
nτ,σ (r)

. (2)

The accuracy of second term in Eq. (2) was questioned many
times over the years [32–35], and gradient expansions lead to
a prefactor 1/36 instead of 1/4, and currently Padé approxi-
mants and other parametrizations are also considered. There
are several reasons for this intense interest in the gradient
term, which originates from the definition of the two-body
density matrix (see below), since in the density functional
theory (DFT) [34] the exchange and correlation energies, aris-

ing from interactions, are treated on a equal footing, unlike
in the Hartree-Fock approximation, which was used in intro-
ducing Dτ,σ (r) in Eq. (1). Equation (1) is derived from the
Hartree-Fock approximation of the two-body number density
for spin pairs with S = 1, Sz = ±1, T = 1, Tz = ±1 only, for
which Pauli correlation exists

n2(ξ, ζ ) = 1
2 [n1(ξ, ξ )n1(ζ , ζ ) − n1(ξ, ζ )n1(ζ , ξ )], (3)

where n1(ξ, ζ ) = ∑
k φk (ξ )φ∗

k (ζ ) is the Hartree-Fock density
matrix expressed through the single-particle wave functions
φk (ξ ) and ξ = (r1, σ, τ ), ζ = (r2, σ

′, τ ′). In the limit s =
r1 − r2 → 0 [5–7,9,11–13]

n2(ξ, ζ ) = 1
3 nτ,σ (r)Dτ,σ (r)s2 + O(s4)

and the conditional probability to find a particle with coordi-
nate r′ from a particle with coordinate r and the same spin
and isospin is proportional to Dτ,σ (r). The fermion local-
ization function (FLF) Cτ,σ (r) was introduced in Ref. [5,13]
basically as a measured of the accuracy of the zeroth-order
Thomas-Fermi approximation for the kinetic energy density

Cτ,σ (r) =
⎧⎨
⎩1 +

[
Dτ,σ (r)

3
5 (6π2)5/3n2/3

τ,σ (r)

]2
⎫⎬
⎭

−1

. (4)

It appears that in atomic and molecular systems, where the
role of correlation energy is significantly less important than
in nuclei and the Hartree-Fock approximation is sufficiently
accurate [21], the spatial profiles of the electronic shells more
pronounced in Cσ (r) than in number density profiles nσ (r). As
the term proportional to |∇nτ,σ (r)|2 has a subdominant role
in DFT [32–35], likely it can be neglected, and in the case of
static systems the quantity Cτ,σ (r) is defined basically by the
ratio of the actual kinetic energy density to its Thomas-Fermi
approximation. It is obvious that neither this ratio nor the
quantity Cτ,σ (r) defines an observable and this is merely a
somewhat arbitrary measure of the accuracy of the Thomas-
Fermi approximation to the kinetic energy density alone.
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From many studies performed in nuclear physics over the
years, it is clear that the extended Thomas-Fermi approxima-
tion, including corrections up to O(h̄4) for the kinetic energy
density provides a pretty good approximation for densities
and total energies of nuclear systems, see Section 4.4 in
Ref. [35], where references to many more complete studies
can be found. The (extended) Thomas-Fermi approximation,
however, does not describe shell effects or, more gener-
ally, the quantization of the single-particle motion in various
geometries.

Does the quantity Cτ,σ (r) indeed help us better visualize
clustering effects? Cluster formation are typically due to the
existence of two-, three-, and four-body and higher interac-
tions between particles and not the result of the quantization
of the single-particle motion in a finite system. The main part
of the interaction between electrons is repulsive, and in any
physical system (except hard balls at high density) clusters
would form only if there will be an effective attractive inter-
action between the electrons. One might argue that the Fock
exchange Coulomb energy between electrons is attractive,
a result which is, however, accurate only for nonrelativities
systems [34]. However, it is hard to make the argument that
the “attractive” electron Coulomb exchange energy between
electrons with the same spin, or in spin-polarized electron
systems, leads to electron clusterization or electron shells. On
the other hand, in nuclear systems, which are typically bound
and therefore the interparticle interaction is mainly attractive,
and volume and symmetry energies favor spin- and isospin
unpolarized systems, the exchange interaction is repulsive,
and again, one can hardly make the case that the spin- and
isospin-polarized nuclear systems can clusterize or lead to
quantization of the single-particle motion. One might bring
as a counterexample the Wigner crystal [36] of a very low
density electron gas, which, however, is basically a classical
system, where exchange effects are negligible, see also below.
The Wigner crystal is similar to a system of hard spheres,
which does not clusterize, but the negligible effects of the ex-
change energy could lead to a disorder state of spins. Clearly,
the quantity Cτ,σ (r), which is sensitive to the quantization
of the single-particle motion and is by definition a one-body
quantity, cannot describe the formation of clusters, which
implies a very strong spatial correlation between various par-
ticles and which therefore should be described by a two-body
or many-body number density.

In nuclei and in cold fermionic atomic systems, which are
qualitatively similar to dilute neutron matter [37], the situation
is much more complex. It makes sense to discuss at first the
cold atom systems, where the interaction is very simple and
both experimental and ab initio theoretical approaches are in
complete agreement to a very high degree of accuracy. For
a Fermi gas with the zero-range interaction the properties of
the system are controlled by a single dimensionless param-
eter kF a, where a is the s-wave scattering length, kF is the
average Fermi momentum, and where there is a complete
understanding of both infinite homogeneous systems as well
as systems in external traps [10,12]. Around unitarity, where
the scattering length |a| � 1/ 3

√
n only two fermions interact,

one with spin up and the other with spin down, and in the limit
|a| → +∞ the entire system is a gas of barely overlapping

pairs with total spin S = 0, thus a clustered system. In such a
Fermi system Cooper pairs are formed, with size ranging from
extremely large to smaller than the average interparticle sep-
aration, depending on the actual value of a, and these Cooper
pairs freely collide with each other without being destroyed.
The two-body number density for a particle with spin-up and
the other with spin-down has a universal behavior n2(r1, r2) ∝
1/|r1 − r2|2 at any energy or temperature for |r1 − r2| < |a|.
This behavior is related to a one-body momentum distribution
for large momenta np ∝ 1/p4 [10,12,37–49]. This system is
very similar to the dilute neutron matter appearing in neutron
stars [50–52]. These essentially independent “Cooper pairs”
are clusters.

The method suggested by Becke and Edgecombe [5] and
used in nuclear studies cannot capture this kind of clustering
in either dilute neutron matter, nor in nuclei [13–30], since
it considers the correlations or clustering between fermions
with the same spin only. An ad hoc alternative was, however,
adopted in nuclei to describe clustering or localization on nu-
cleons, and one uses the product Cn,σ (r)Cp,σ (r). It is obvious,
on the other hand, that a product of probabilities describes
independent events and therefore the proton and neutron dis-
tributions cannot be correlated, and therefore this measure
actually points to the absence of clustering. The clustering in
nuclear systems cannot be explained through exchange effects
but through the interplay among volume energy, surface ten-
sion, and symmetry energy in a region with a nuclear matter
with both protons and neutrons; see for a classical example the
case of the nuclear pasta phase, which actually is a quantum
crystal [3], as are the nuclear molecular states [1,2] as well.
A cluster has a well-defined surface, which is characterized
by a repulsive surface energy, due to nuclear surface tension.
Surface tension can be counteracted by a stronger, typically
proton-neutron attraction, iff proton and neutron densities are
(almost) spin saturated.

The kinetic energy density for fermions with the same
spin in a large momentum interval exhibits a power-law
behavior np ∝ 1/p4 in the presence of either pairing cor-
relations and/or SRCs [10,12,38–43,46–49] and that would
lead to a false signal using Eq. (4). The SRCs in nuclei are
due to several effects, the tensor interaction between protons
and neutrons [45,53–58] and pairing correlations [10,12,37–
44,46–49], the latter also leading to long-range correlations.
It is important to appreciate that in the case of zero-range
interactions the SRCs between two fermions, which for a
dilute atomic gas are between fermions of the same kind,
but with opposite spins, are present at any excitation energy
[37,41–43], even when a pairing condensate, characterized by
long-range phase order, does not even exist for example in
nuclear systems [47,48,59–64].

In order to describe such clustering or SRCs using Eq. (4)
one has to consider the generalization of the FLF,

Cτ (r) =
⎧⎨
⎩1 +

[
Dτ (r)

3
5 (3π2)2/3n2/3

τ (r)

]2
⎫⎬
⎭

−1

, (5)

Dτ (r) = ττ (r) − �τ (r)κτ (r)

− 1

4

|∇nτ (r)|2
nτ (r)

−
∑

τ

| jτ (r)|2
nτ (r)

, (6)
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with the very critical important correction arising from the
pairing interaction, here for nn- or pp pairs only. Here
nτ (r), ττ (r), κτ (r), and �τ (r) are the regularized number,
kinetic energy, anomalous densities, and the renormalized
corresponding pairing potentials. In the case of zero-range
pairing interaction the kinetic energy density and anomalous
number density both diverge, but the combination ττ (r) −
�τ (r)κτ (r) in Eq. (5) is free of divergencies [10,39,40,65].
Since in nuclei the SRCs are mostly due to the presence
of the tensor interaction between the protons and neutrons,
their effect can be described by introducing an effective
pn-pairing field [47]. For nuclear systems, as experiments also
amply demonstrate [53,55–58] there is always a momentum
interval where the nucleon momentum distribution has power-
law behavior n(p) ∝ 1/p4 as obtained in various ab initio
studies [45,63,66] and references therein. The correction due
the presence of pairing or/and SRCs has never been consid-
ered in discussing nucleon localization in previous studies
and it is clear that the definition of the function D(r) then
depends on arbitrary cutoffs used in theoretical calculations
[13–30]. The use of finite short-range interactions, such as
Gogny interaction, might superficially mask the presence of
divergences, as there is always a relatively large momentum
interval contributing to the kinetic energy and anomalous
densities controlled by the short radius of the interaction and
where the momentum distribution has a power-law behavior.

Even after introducing the renormalized quantity Dτ (r),
see Eq. (6), it is still not obvious that Cτ (r) is satisfactory
measure of clusterization in nuclear physics, since Cτ (r) is
not an observable. As Cτ (r) is a measure of how good the
Thomas-Fermi approximation only, and that since in DFT the
gradient term of the nucleon density |∇nτ (r|2

nτ (r) can likely be
neglected [32–35], and in the absence of any currents, the only
thing left in Eq. (4) is the ratio of the renormalized kinetic
energy density to its Thomas Fermi approximation, which
again, it is not an observable, unlike the presence of a cluster.

The tensor interaction plays a very important role in nuclei;
in particular it leads to a bound proton-neutron system. The
role of SRCs in nuclei, due mainly to the tensor interaction
between protons and neutrons has been known for a long time.
Levinger [53,54] pointed out more than 70 years ago that
SRCs are critical to describe the nuclear photo-effect. Since
photons are a weak probe of nuclear properties, the fact that
a pair of neutron and proton is predominantly emitted clearly
points to the presence of short-range quasideuteron pairs in
nuclei prior to the photon striking a nucleus. The presence of
strong SRCs in nuclei has been persuasively demonstrated in
the JLAB experiment in the past decade [55–58]. Obviously,
SRCs due predominantly to tensor interaction lead to the for-
mation of clusters, as one can clearly see in light nuclei where
α-like molecular clusters are routinely observed and in which
case both proton and neutron subsystems are spin saturated
and symmetry energy effects dominate, leading to clusters
with mainly equal proton and neutron numbers. A simple
evaluation of the magnitude of the symmetry energy shows
that half of its magnitude is controlled by minimizing the
kinetic energy and thus equalizing the spin-up and spin-down
occupation probabilities of same type of nucleons, and the
other half is due to the proton-neutron interaction. As the ini-

tial study of localization effects in nuclei [13] clearly shows,
see Fig. 2 in this reference, the FLF Cτ,σ (r) simply very
accurately predicts where the gradient of the number density
nσ,τ for a specific σ and τ is largest. The volume and sym-
metry energy ensure that a subsystem is spin- and/or isospin
unpolarized, unless Coulomb effects become relevant, as in
the case of the pasta phase in neutron star crust [3]. The
volume energy and the nuclear surface tension are largely
spin and isospin independent. When an “internal” surface
appears the single-particle quantization effects start playing a
subdominant role and they appear to be amplified by the FLF
Cσ,τ (r), however, leading to unrealistic images of the nuclear
matter distribution. Consider the example of 16O discussed in
Ref. [13], where the FLF Cn,σ (r) allegedly points to the exis-
tence of “spatial shell-like” structure of 16O with an average
radius of about 3 fm or larger and an very pronounced “inner
density depression” with a radius of about 1.25 fm (estimated
at half-density). One might surmise that the proton localiza-
tion should be very similar. At the same time no conceivable
density probe of 16O ever revealed the existence of such a pro-
nounced clustering effect, specifically the existence of a well-
defined spherical shell structure in the number density. Is there
any other type of probe to reveal the reality of this type of clus-
tering? The FLF Cτ,σ (r) is at best some rather arbitrary mea-
sure of the accuracy of the Thomas-Fermi approximation to
the spin and isospin kinetic energy density and has a very ten-
uous relation with possible clustering effects, which are con-
trolled by the interplay of the surface tension, the local spin,
and isospin saturation in a given nucleus. In larger nuclei and
particularly in neutron start crust there are significant effects
due to Coulomb interaction, which only indirectly reflect on
the accuracy of the Thomas-Fermi approximation of the spin-
isospin kinetic energy density “measured” by the FLF Cτ,σ (r).

The exact two-body density matrix n2(ξ, ζ , ζ ′, ξ ′) can be
represented as a Hartree-Fock like contribution due to the one-
body density matrix n1(ξ, ζ ), plus an irreducible two-body
part ncorr (ξ, ζ , ζ ′, ξ ′),

n2(ξ, ζ , ζ ′, ξ ′) = 〈�|ψ†(ξ )ψ†(ζ )ψ (ζ ′)ψ (ξ ′)|�〉
= 1

2
[n1(ξ, ξ ′)n1(ζ , ζ ′)

− n1(ξ, ζ ′)n1(ζ , ξ ′)]

+ ncorr (ξ, ζ , ζ ′, ξ ′), (7)

n1(ξ, ζ ) = 〈�|ψ†(ζ )ψ (ξ ))|�〉
=

∑
k

nkφk (ξ )φ∗
k (ζ ), 0 � nk � 1,

(8)∑∫
ξ

n1(ξ, ξ ) =
∑

k

nk = N, 〈φk|φl〉 = δkl , (9)

nex(ξ, ζ , ζ ′, ξ ′) = −1

2
n1(ξ, ζ ′)n1(ζ , ξ ′), (10)

∑∫
ξ,ζ

n2(ξ, ζ , ζ , ξ ) = N (N − 1)

2
, (11)

∑∫
ξ,ζ

ncorr (ξ, ζ , ζ , ξ ) = −1

2

∑
k

nk (1 − nk ) � 0, (12)
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where N is the particle number, nk and φk (ξ ) are the canonical
occupation probabilities and canonical single-particle wave
functions [48], also known as natural orbitals [67,68], and
ξ, ζ , ξ ′, ζ ′ are the particle coordinates ξ = (r, σ, τ ) and so
forth. The irreducible two-body part of the two-body den-
sity matrix vanishes only in the case of a pure Hartree-Fock
wave function, when nk = 0 or 1 only, and it is only the
second rank of the general many-body Born-Bogoliubov-
Green-KirkwoodYvon (BBGKY) hierarchy of many-body
reduced density matrices [69]. Obviously the solution for
the entire chain of these different rank density matrices is
more complicated than the solution of the corresponding
many-body Schrödinger equation and in practice the BBGKY
hierarchy of equations is truncated in practice at the one-,
two-, or three-body levels at most [70–78]. The trace of the
exchange + two-body irreducible density matrices is indepen-
dent of the particle interaction∑∫

ξ,ζ

[nex(ξ, ζ , ζ , ξ ) + ncorr (ξ, ζ , ζ , ξ )] ≡ −N

2
, (13)

which justifies the Kohn-Sham introduction of the exchange-
correlation energy density [79] and which naturally follows
form the Kohn-Hohenberg theorem [80], which states that
there is a one-to-one correspondence between the many-body
wave function and the one-body density distribution. There
are many methods suggested over the years to go the beyond
the Hartree-Fock approximation, and perhaps the most com-
mon is the shell model in different incarnations, the most
recent version being the valence-space in-medium similar-
ity renormalization group method (VS-IMSRG) in nuclear
physics, recently extended to atomic systems, see Ref. [81]
where comparison with other approaches, such as coupled
clusters and configuration interaction, many-body perturba-
tion theory, and earlier references are available. IMSRG
framework requires, however, the construction of operators
for observables in a reduced space, in this case for the density
matrix n2(ξ, ζ , ζ ′, ξ ′), which is not a simple and very trans-
parent procedure [82]. The total, mean field, and correlation
energies of a system with two-body interactions V2b only are
given by

Etot = Tr(T n1) + Tr(n2V2b), (14)

Emf = Tr(n2,mfV2b), n2,mf = n2 − ncorr, (15)

Ecorr = Tr(ncorrV2b), (16)

where T is the kinetic energy and the trace is an integral
over all spatial coordinates and a sum over spin-isospin co-
ordinates. The correlation energy is negative for a repulsive
V2b interaction and, together with the effect of the Fock con-
tribution, leads to a bigger “Fermi hole,” particularly in the
case of a short-ranged repulsive interaction, as one would
expect (assuming the single-particle occupation probabilities
nk do not change). The opposite happens in the case of an
attractive interaction. Equation (13) suggests that the ex-
change and correlation effects act in opposite directions, a
trend partially confirmed by microscopic calculations in the
case of the homogeneous electron gas [78,83–87].

For the sake of the following argument I introduce
the coupling constant λ of the two-body interaction λV2b,

which is negative for attractive and positive for repulsive
particle-particle interaction. In general an arbitrary two-body
interaction can have both attractive and repulsive parts, and
for simplicity of the argument I define here a given two-
body interaction λV2b to be attractive if the interaction energy
Tr(λV2bNcorr ) < 0 in the limit λ → −∞ and repulsive other-
wise. (For interactions with both repulsive and attractive parts
this criterion should be applied with care.) The derivative of
the correlation interaction energy with respect to the coupling
constant (fixed nk , thus first order perturbation in δλ)

dEcorr

dλ
= Tr(V2bncorr ) � 0, (17)

describes the effect of presence of two-body correlations alone
on the two-particle distributions in the presence of two-body
interactions beyond the mean field. Equation (17) shows that
with increasing strength λ, from very strong attractive to very
strong repulsive interaction, the correlation energy Ecorr de-
creases, which in the case of short-range interactions implies
that the “Fermi hole” for two identical nucleons becomes
bigger. The extreme values of the trace of Tr(ncorr ), under the
constraint

∑
k nk = N , are

−N

2
< −N

2

(
1 − N

Nsp

)
�

∑∫
ξ,ζ

ncorr (ξ, ζ , ζ , ξ ) � 0, (18)

which are achieved for

nk = N

Nsp
, for the minimum, (19)

nk = 0 or nk = 1 for the maximum, (20)

where Nsp is the number of single-particle states and which
theoretically is infinite. The maximum value for Tr(ncorr ) =
0 is achieved in the case of a Wigner crystal [36] for
long-range very strong repulsive interactions (electron gas)
[78,83–85] or in the case of a gas for short-ranged very
strong repulsive interactions. The minimum value is at-
tained for a Bardeen-Cooper-Schrieffer superconductor with
very large attraction and zero spin polarization. In this
limit, known as the Bore-Einstein condensate (BEC) state,
the unpolarized Fermi system is a gas of highly bound
dimers/Cooper pairs) with sizes much smaller than the aver-
age interparticle separation and these dimers repel each other
[88,89]. In the limit of a Wigner gas (infinitely repulsive
V2b) Tr(nex) ≡ 0 and in the opposite BEC limit (infinitely
attractive V2b) Tr(nex) = −N2/2Nsp) is basically vanishing
as well. In the case of attractive short-range interactions
and finite spin polarization a wide range of phases are
possible [39,62,90–97].

Since the main argument presented by Becke and
Edgecombe [5] is based on the behavior of the two-body num-
ber density in the limit when r1 − r2 → 0 and equal spin and
isospins, it becomes obvious that merely the presence of Pauli
correlations is not a sufficient argument to judge the proba-
bility to find another particle nearby in a nuclear medium, in
particularly when they have different spins and/or isospins.
Correlations induced by the strong particle interactions are
crucial and their character depends of whether the interaction

L051303-4



EXAMINING THE JUSTIFICATION FOR THE … PHYSICAL REVIEW C 108, L051303 (2023)

is attractive or repulsive. The same rule in Eq. (12) for the
two-body irreducible density matrix is expected to be satisfied
for any accurate many-body wave function |�〉 and since in
the presence of interactions

∑
k nk (1 − nk ) �= 0 it becomes

obvious that the procedure suggested in Ref. [5] and used
quite extensively in nuclear physics [13–30] cannot describe
the clusterization of matter. The ad hoc procedure adopted in
these nuclear studies of the FLF as Cn,σ (r)Cp,σ (r) describes
independent neutron and proton spin-number densities and
“does not describe correlated neutron-proton subsystems.”
The recent study [29], pointing to the formation of α-like
structures during nuclear fission, is a clear example why the
FLF is such an inadequate measure, as the authors of this
study where unable to even determine whether either two 3H ,
4He, or 6He are present in the neck region. At the same time
proton and neutron density distributions presented in the study
[29] fail to show the presence of any cluster either before,
during, or after scission. One can fairly well decide that the
clusterlike structures in the FLFs observed so far in these
studies is fictitious or simply coincidental at best, since the
FLF, which is a product Cn,σ (r)Cp,σ (r), cannot and does not
describe correlations between proton and neutron subsystems,
unlike the irreducible two-body number density.

The nn- and pp-pairing correlations (with S = 0 and T =
1) alone may lead to a significant correction the FLF. Sim-
ilarly, the role of the np SRCs in localization effects is
another aspect (summed over isospin), which cannot be de-
scribed with the nuclear FLF Cn,σ (r)Cp,σ (r), but which can
be simulated in a DFT framework by introducing a dynamic
proton-neutron pairing [47,49]. The presence of pairing cor-
relations leads to another complication, due to the fact that
the gauge or particle conservation symmetry is broken. In the
Hartree-Fock-Bogoliubov (HFB) approximation the two-
body density matrix has the structure

n2(ξ, ζ , ζ ′, ξ ′) = 〈�HFB|ψ†(ξ )ψ†(ζ )ψ (ζ ′)ψ (ξ ′)|�HFB〉
= 1

2 [n1(ξ, ξ ′)n1(ζ , ζ ′) − n1(ξ, ζ ′)n1(ζ , ξ ′)]

+ 1
2κ (ξ, ζ )κ∗(ξ ′, ζ ′), (21)

where κ (ξ, ζ ) = 〈�HFB|ψ (ζ )ψ (ξ )|�HFB〉 is the anomalous
density-matrix and the corresponding irreducible two-body
density matrix satisfies now the incorrect condition

1

2

∑∫
ξ,ζ

|κ (ξ, ζ )|2 � 0, (22)

with an the opposite sign to Eq. (12) and as a result the cor-
responding two-body density matrix does not satisfy anymore
the expected sum rule defined in Eq. (11). This aspect can
be corrected only after the particle projection of the HFB
many-wave function �HFB is performed. Consequently, the
improved Dτ (r) introduced in Eq. (6) cannot be expected to
lead to a correct outcome in the presence of pairing correla-
tions, unless particle projection is performed when evaluating
the two-body density matrix. The particle projected occupa-
tion probabilities nk and the corresponding particle projected
HFB two-body density matrix n2(ξ, ζ , ζ ′, ξ ′) can be easily
evaluated [98]. Pairing correlations are particular example
when the irreducible density matrix ncorr (ξ, ζ , ζ ′, ξ ′) plays a
large role and the role of exchange effects is reduced.

In summary, I have shown that the use of the FLF in-
troduced by Becke and Edgecombe [5] and widely used in
theoretical nuclear studies [13–30] is ill justified and cannot
correctly describe clusterization effects, which require the
knowledge of the irreducible two-body number density ncorr

if a similar approach is adopted. The cases of the Wigner
crystal and of the unitary Fermi gas in the BEC limit discussed
above are clear examples where FLF fails to disentangle the
“clusters.” Another example would be a system of two dimers,
one a relatively strongly bound “S = 1 neutron dimer” and
the other a relatively strongly bound “S = 1 proton dimer,”
when either these two dimers repel in a trap or are weakly
bound. Particularly large errors can be incurred when includ-
ing pairing correlations within the energy density functional,
which are ubiquitous nuclear systems discussed so far in
literature, and which have a significant impact on various
nuclear properties. The homogeneous electron gas [78,83–
87], neutron matter with chiral effective two- and three-body
interactions [50–52] and the dilute Fermi gas, particularly in
the unitary and BEC regime, are examples of microscopic
well-studied systems [10,12,37,39,62,88–97], where the role
of both exchange, correlations, and temperature effects are
important. The case of quarks localized inside hadrons is the
most notable example of the dominant role of strong correla-
tions effects.
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Meng, Microscopic analysis of induced nuclear fission dynam-
ics, Phys. Rev. C 105, 044313 (2022).

[31] C. F. von Weizsäcker, Zur theorie der kernmassen, Z. Phys. A
96, 431 (1935).

[32] A. E. DePristo and J. D. Kress, Kinetic-energy functionals via
Padé approximations, Phys. Rev. A 35, 438 (1987).

[33] R. O. Jones and O. Gunnarsson, The density functional formal-
ism, its applications and prospects, Rev. Mod. Phys. 61, 689
(1989).

[34] R. M. Dreizler and E. K. U. Gross, Density Functional
Theory: An Approach to the Quantum Many-Body Physics
(Springer-Verlag, Berlin, 1990).

[35] M. Brack and R. K. Bhaduri, Semiclassical Physics, Frontiers
in Physics, Vol. 96 (Addison-Wesley, Reading MA, 1997).

[36] E. Wigner, On the interaction of electrons in metals, Phys. Rev.
46, 1002 (1934).

[37] The BCS–BEC Crossover and the Unitary Fermi Gas, Lecture
Notes in Physics Vol. 836, edited by W. Zwerger (Springer-
Verlag, Berlin, 2012).

[38] A. Bulgac, Hartree-Fock-Bogoliubov approximation forfinite
systems, arXiv:nucl-th/9907088.

[39] A. Bulgac and Y. Yu, Renormalization of the Hartree-Fock-
Bogoliubov equations in the dase of a zero range pairing
interaction, Phys. Rev. Lett. 88, 042504 (2002).

[40] A. Bulgac, Local density approximation for systems with pair-
ing correlations, Phys. Rev. C 65, 051305(R) (2002).

[41] S. Tan, Energetics of a strongly correlated Fermi gas, Ann.
Phys. 323, 2952 (2008).

[42] S. Tan, Large momentum part of a strongly correlated Fermi
gas, Ann. Phys. 323, 2971 (2008).

[43] S. Tan, Generalized virial theorem and pressure relation for a
strongly correlated Fermi gas, Ann. Phys. 323, 2987 (2008).

[44] S. Gandolfi, K. E. Schmidt, and J. Carlson, BEC-BCS crossover
and universal relations in unitary Fermi gases, Phys. Rev. A 83,
041601(R) (2011).

[45] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla,
K. E. Schmidt, and R. B. Wiringa, Quantum Monte Carlo meth-
ods for nuclear physic, Rev. Mod. Phys. 87, 1067 (2015).

[46] A. Bulgac, Time-dependent density functional theory for
fermionic superfluids: From cold atomic gases, to nuclei and
neutron star crust, Phys. Stat. Solidi B 256, 1800592 (2019).

[47] A. Bulgac, Pure quantum extension of the semiclassical
Boltzmann-Uehling-Uhlenbeck equation, Phys. Rev. C 105,
L021601 (2022).

[48] A. Bulgac, M. Kafker, and I. Abdurrahman, Measures of com-
plexity and entanglement in many-fermion systems, Phys. Rev.
C 107, 044318 (2023).

[49] A. Bulgac, Entanglement entropy, single-particle occupation
probabilities, and short-range correlations, Phys. Rev. C 107,
L061602 (2023).

[50] A. Roggero, A. Mukherjee, and F. Pederiva, Quantum Monte
Carlo calculations of neutron matter with nonlocal chiral inter-
actions, Phys. Rev. Lett. 112, 221103 (2014).

[51] G. Wlazłowski, J. W. Holt, S. Moroz, A. Bulgac, and K. J.
Roche, Auxiliary-field quantum Monte Carlo simulations of
neutron matter in chiral effective field theory, Phys. Rev. Lett.
113, 182503 (2014).

L051303-6

https://doi.org/10.1016/j.aop.2005.11.001
https://doi.org/10.1103/PhysRevA.76.040502
https://doi.org/10.1103/PhysRevC.82.014305
https://doi.org/10.1103/PhysRevC.83.034312
https://doi.org/10.1103/PhysRevC.94.064323
https://doi.org/10.1103/PhysRevC.96.064608
https://doi.org/10.1103/PhysRevC.96.024306
https://doi.org/10.1103/PhysRevC.96.061301
https://doi.org/10.1103/PhysRevC.105.014619
https://doi.org/10.1007/s43673-022-00042-7
https://doi.org/10.1038/s41586-018-0780-0
https://doi.org/10.1103/PhysRevLett.120.053001
https://doi.org/10.1103/PhysRevC.100.041602
https://doi.org/10.1103/RevModPhys.91.011001
https://doi.org/10.1103/PhysRevC.102.044305
https://doi.org/10.1103/PhysRevC.104.034619
https://doi.org/10.1103/PhysRevC.106.014307
https://doi.org/10.1103/PhysRevC.107.064605
https://doi.org/10.1103/PhysRevC.107.014303
https://doi.org/10.1103/PhysRevLett.128.172501
https://doi.org/10.1103/PhysRevC.105.044313
https://doi.org/10.1007/BF01337700
https://doi.org/10.1103/PhysRevA.35.438
https://doi.org/10.1103/RevModPhys.61.689
https://doi.org/10.1103/PhysRev.46.1002
http://arxiv.org/abs/arXiv:nucl-th/9907088
https://doi.org/10.1103/PhysRevLett.88.042504
https://doi.org/10.1103/PhysRevC.65.051305
https://doi.org/10.1016/j.aop.2008.03.004
https://doi.org/10.1016/j.aop.2008.03.005
https://doi.org/10.1016/j.aop.2008.03.003
https://doi.org/10.1103/PhysRevA.83.041601
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1002/pssb.201800592
https://doi.org/10.1103/PhysRevC.105.L021601
https://doi.org/10.1103/PhysRevC.107.044318
https://doi.org/10.1103/PhysRevC.107.L061602
https://doi.org/10.1103/PhysRevLett.112.221103
https://doi.org/10.1103/PhysRevLett.113.182503


EXAMINING THE JUSTIFICATION FOR THE … PHYSICAL REVIEW C 108, L051303 (2023)

[52] I. Tews, S. Gandolfi, A. Gezerlis, and A. Schwenk, Quantum
Monte Carlo calculations of neutron matter with chiral three-
body forces, Phys. Rev. C 93, 024305 (2016).

[53] J. S. Levinger, The high energy nuclear photoeffect, Phys. Rev.
84, 43 (1951).

[54] J. S. Levinger, Fifty years of the quasi-deuteron model, Nucl.
Phys. A 699, 255 (2002).

[55] O. Hen et al., Momentum sharing in imbalanced Fermi systems,
Science 346, 614 (2014).

[56] O. Hen, G. A. Miller, E. Piasetzky, and L. B. Weinstein,
Nucleon-nucleon correlations, short-lived excitations, and the
quarks within, Rev. Mod. Phys. 89, 045002 (2017).

[57] R. Cruz-Torres, A. Schmidt, G. A. Miller, L. B. Weinstein,
N. Barnea, R. Weiss, E. Piasetzky, and O. Hen, Short range
correlations and the isospin dependence of nuclear correlation
functions, Phys. Lett. B 785, 304 (2018).

[58] R. Cruz-Torres, D. Lonardoni, R. Weiss, M. Piarulli, N. Barnea,
D. W. Higinbotham, E. Piasetzky, A. Schmidt, L. B. Weinstein,
R. B. Wiringa, and O. Hen, Many-body factorization and
position–momentum equivalence of nuclear short-range corre-
lations, Nat. Phys. 17, 306 (2021).

[59] A. Bulgac, P. Magierski, K. J. Roche, and I. Stetcu, Induced fis-
sion of 240Pu within a real-time microscopic framework, Phys.
Rev. Lett. 116, 122504 (2016).

[60] A. Bulgac, S. Jin, K. J. Roche, N. Schunck, and I. Stetcu,
Fission dynamics of 240Pu from saddle to scission and beyond,
Phys. Rev. C 100, 034615 (2019).

[61] A. Bulgac, S. Jin, and I. Stetcu, Nuclear fission dynamics: Past,
present, needs, and future, Front. Phys. 8, 63 (2020).

[62] A. Richie-Halford, J. E. Drut, and A. Bulgac, Emergence of
a pseudogap in the BCS-BEC crossover, Phys. Rev. Lett. 125,
060403 (2020).

[63] A. Bulgac, New developments in fission studies within the time-
dependent density functional theory framework, EPJ Web Conf.
284, 04001 (2023).

[64] P. Magierski, A. Makowski, M. C. Barton, K. Sekizawa, and
G. Wlazłowski, Pairing dynamics and solitonic excitations in
collisions of medium-mass, identical nuclei, Phys. Rev. C 105,
064602 (2022).

[65] P. J. Borycki, J. Dobaczewski, W. Nazarewicz, and M. V.
Stoitsov, Pairing renormalization and regularization within
the local density approximation, Phys. Rev. C 73, 044319
(2006).

[66] R. Schiavilla, R. B. Wiringa, S. C. Pieper, and J. Carlson, Tensor
forces and the ground-state structure of nuclei, Phys. Rev. Lett.
98, 132501 (2007).

[67] P.-O. Löwdin, Quantum theory of many-particle systems. I.
Physical interpretations by means of density matrices, natural
spin-orbitals, and convergence problems in the method of con-
figurational interaction, Phys. Rev. 97, 1474 (1955).

[68] P.-O. Löwdin and H. Shull, Natural orbitals in the quan-
tum theory of two-electron systems, Phys. Rev. 101, 1730
(1956).

[69] K. Huang, Statistical Mechanics (John Wiley & Sons,
New York, 1987).

[70] D. S. Koltun, Total binding energies of nuclei, and particle-
removal experiments, Phys. Rev. Lett. 28, 182 (1972).

[71] M. Bernheim, A. Bussière, A. Gilleber, J. Mougey, Phan Xuan
Ho, M. Priou, D. Royer, I. Sick, and G. J. Wagner, 12C(e, e′ p)
results as a critical test of an energy sum rule, Phys. Rev. Lett.
32, 898 (1974).

[72] A. Faessler, S. Krewald, and G. J. Wagner, Is there evidence of
three-body forces from violation of the Koltun energy sum rule?
Phys. Rev. C 11, 2069 (1975).

[73] S. Adachi and P. Schuck, Landau’s collision term in the memory
function approach to the nuclear response function and the
spreading width of giant resonances, Nucl. Phys. A 496, 485
(1989).

[74] J. Dukelsky, G. Röpke, and P. Schuck, Generalized Brückner-
Hartree-Fock theory and self-consistent RPA, Nucl. Phys. A
628, 17 (1998).

[75] P. Schuck and M. Tohyama, Progress in many-body theory with
the equation of motion method: Time-dependent density matrix
meets self-consistent RPA and applications to solvable models,
Phys. Rev. B 93, 165117 (2016).

[76] A. Cipollone, C. Barbieri, and P. Navrátil, Isotopic chains
around oxygen from evolved chiral two- and three-nucleon
interactions, Phys. Rev. Lett. 111, 062501 (2013).

[77] A. Carbone, A. Cipollone, C. Barbieri, A. Rios, and A. Polls,
Self-consistent Green’s functions formalism with three-body
interactions, Phys. Rev. C 88, 054326 (2013).

[78] J. J. Kas, T. D. Blanton, and J. J. Rehr, Exchange-correlation
contributions to thermodynamic properties of the homogeneous
electron gas from a cumulant Green’s function approach, Phys.
Rev. B 100, 195144 (2019).

[79] W. Kohn and L. J. Sham, Self-consistent equations includ-
ing exchange and correlation effects, Phys. Rev. 140, A1133
(1965).

[80] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys.
Rev. 136, B864 (1964).

[81] G. Tenkila, V. Chand, T. Miyagi, H. Patel, S. R. Stroberg,
R. F. Garcia Ruiz, and J. D. Holt, Ab initio in-medium sim-
ilarity renormalization group for open-shell atomic systems,
arXiv:2212.08188 [physics.atom-ph].

[82] A. J. Tropiano, S. K. Bogner, R. J. Furnstahl, and M. A. Hisham,
Quasi-deuteron model at low renormalization group resolution,
Phys. Rev. C 106, 024324 (2022).

[83] V. V. Karasiev, T. Sjostrom, J. Dufty, and S. B. Trickey,
Accurate homogeneous electron gas exchange-correlation free
energy for local spin-density calculations, Phys. Rev. Lett. 112,
076403 (2014).

[84] T. Chachiyo, Simple and accurate uniform electron gas correla-
tion energy for the full range of densities, J. Chem. Phys. 145,
021101 (2016).

[85] V. V. Karasiev, Comment on “Communication: Simple and ac-
curate uniform electron gas correlation energy for the full range
of densities,” J. Chem. Phys. 145, 157101 (2016).

[86] T. Dornheim, S. Groth, and M. Bonitz, The uniform electron
gas at warm dense matter conditions, Phys. Rep. 744, 1 (2018).

[87] M. Bonitz, T. Dornheim, Z. A. Moldabekov, S. Zhang, P.
Hamann, H. Kählert, A. Filinov, K. Ramakrishna, and J.
Vorberger, Ab initio simulation of warm dense matter, Phys.
Plasmas 27, 042710 (2020).

[88] M. Randeria, Crossover from BCS theory to Bose-Einstein con-
densation, in Bose-Einstein Condensation, edited by A. Griffin,
D. W. Snoke, and S. Stringari (Cambridge University Press,
Cambridge, UK, 1995).

[89] D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, Weakly
bound dimers of fermionic atoms, Phys. Rev. Lett. 93, 090404
(2004).

[90] A. Bulgac, Dilute quantum droplets, Phys. Rev. Lett. 89,
050402 (2002).

L051303-7

https://doi.org/10.1103/PhysRevC.93.024305
https://doi.org/10.1103/PhysRev.84.43
https://doi.org/10.1016/S0375-9474(01)01501-9
https://doi.org/10.1126/science.1256785
https://doi.org/10.1103/RevModPhys.89.045002
https://doi.org/10.1016/j.physletb.2018.07.069
https://doi.org/10.1038/s41567-020-01053-7
https://doi.org/10.1103/PhysRevLett.116.122504
https://doi.org/10.1103/PhysRevC.100.034615
https://doi.org/10.3389/fphy.2020.00063
https://doi.org/10.1103/PhysRevLett.125.060403
https://doi.org/10.1051/epjconf/202328404001
https://doi.org/10.1103/PhysRevC.105.064602
https://doi.org/10.1103/PhysRevC.73.044319
https://doi.org/10.1103/PhysRevLett.98.132501
https://doi.org/10.1103/PhysRev.97.1474
https://doi.org/10.1103/PhysRev.101.1730
https://doi.org/10.1103/PhysRevLett.28.182
https://doi.org/10.1103/PhysRevLett.32.898
https://doi.org/10.1103/PhysRevC.11.2069
https://doi.org/10.1016/0375-9474(89)90073-0
https://doi.org/10.1016/S0375-9474(97)00606-4
https://doi.org/10.1103/PhysRevB.93.165117
https://doi.org/10.1103/PhysRevLett.111.062501
https://doi.org/10.1103/PhysRevC.88.054326
https://doi.org/10.1103/PhysRevB.100.195144
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.136.B864
http://arxiv.org/abs/arXiv:2212.08188
https://doi.org/10.1103/PhysRevC.106.024324
https://doi.org/10.1103/PhysRevLett.112.076403
https://doi.org/10.1063/1.4958669
https://doi.org/10.1063/1.4964758
https://doi.org/10.1016/j.physrep.2018.04.001
https://doi.org/10.1063/1.5143225
https://doi.org/10.1103/PhysRevLett.93.090404
https://doi.org/10.1103/PhysRevLett.89.050402


AUREL BULGAC PHYSICAL REVIEW C 108, L051303 (2023)

[91] A. Bulgac, M. McNeil Forbes, and A. Schwenk, Induced P-
wave superfluidity in asymmetric fermi gases, Phys. Rev. Lett.
97, 020402 (2006).

[92] A. Bulgac and M. McNeil Forbes, Zero-temperature thermody-
namics of asymmetric Fermi gases at unitarity, Phys. Rev. A 75,
031605(R) (2007).

[93] A. Bulgac and M. Michael Forbes, Unitary fermi supersolid:
The Larkin-Ovchinnikov phase, Phys. Rev. Lett. 101, 215301
(2008).

[94] P. Magierski, G. Wlazłowski, A. Bulgac, and J. E. Drut, Finite-
temperature pairing gap of a unitary Fermi gas by quantum
Monte Carlo calculations, Phys. Rev. Lett. 103, 210403 (2009).

[95] P. Magierski, G. Wlazłowski, and A. Bulgac, Onset of a pseu-
dogap regime in ultracold fermi gases, Phys. Rev. Lett. 107,
145304 (2011).

[96] G. Wlazłowski, P. Magierski, J. E. Drut, A. Bulgac, and
K. J. Roche, Cooper pairing above the critical tempera-
ture in a unitary Fermi gas, Phys. Rev. Lett. 110, 090401
(2013).

[97] P. Magierski, B. Tüzemen, and G. Wlazłowski, Spin-polarized
droplets in the unitary Fermi gas, Phys. Rev. A 100, 033613
(2019).

[98] A. Bulgac, Restoring broken symmetries for nuclei and reaction
fragments, Phys. Rev. C 104, 054601 (2021).

L051303-8

https://doi.org/10.1103/PhysRevLett.97.020402
https://doi.org/10.1103/PhysRevA.75.031605
https://doi.org/10.1103/PhysRevLett.101.215301
https://doi.org/10.1103/PhysRevLett.103.210403
https://doi.org/10.1103/PhysRevLett.107.145304
https://doi.org/10.1103/PhysRevLett.110.090401
https://doi.org/10.1103/PhysRevA.100.033613
https://doi.org/10.1103/PhysRevC.104.054601

